We were passing arrays by value which the compiler fails to optimize,
causing abyssal performance. To fix this, we need to consider that
descriptors can be in constant or const device address spaces.
Also, lone descriptors are passed by value, so we explicitly remove address
space qualifiers.
One failure case is when shader passes a texture/sampler array as an
argument. It's all UniformConstant in SPIR-V, but in MSL it might be
thread, const device or constant, so that won't work ...
Global variable use works fine though, and that should cover 99.9999999%
of use cases.
We used to use the Binding decoration for this, but this method is
hopelessly broken. If no explicit MSL resource remapping exists, we
remap automatically in a manner which should always "just work".
These are mapped to Metal's post-tessellation vertex functions. The
semantic difference is much less here, so this change should be simpler
than the previous one. There are still some hairy parts, though.
In MSL, the array of control point data is represented by a special
type, `patch_control_point<T>`, where `T` is a valid stage-input type.
This object must be embedded inside the patch-level stage input. For
this reason, I've added a new type to the type system to represent this.
On Mac, the number of input control points to the function must be
specified in the `patch()` attribute. This is optional on iOS.
SPIRV-Cross takes this from the `OutputVertices` execution mode; the
intent is that if it's not set in the shader itself, MoltenVK will set
it from the tessellation control shader. If you're translating these
offline, you'll have to update the control point count manually, since
this number must match the number that is passed to the
`drawPatches:...` family of methods.
Fixes#120.