We were passing arrays by value which the compiler fails to optimize,
causing abyssal performance. To fix this, we need to consider that
descriptors can be in constant or const device address spaces.
Also, lone descriptors are passed by value, so we explicitly remove address
space qualifiers.
One failure case is when shader passes a texture/sampler array as an
argument. It's all UniformConstant in SPIR-V, but in MSL it might be
thread, const device or constant, so that won't work ...
Global variable use works fine though, and that should cover 99.9999999%
of use cases.
In Metal, the `[[position]]` input to a fragment shader remains at
fragment center, even at sample rate, like OpenGL and Direct3D. In
Vulkan, however, when the fragment shader runs at sample rate, the
`FragCoord` builtin moves to the sample position in the framebuffer,
instead of the fragment center. To account for this difference, adjust
the `FragCoord`, if present, by the sample position. The -0.5 offset is
because the fragment center is at (0.5, 0.5).
Also, add an option to force sample-rate shading in a fragment shader.
Since Metal has no explicit control for this, this is done by adding a
dummy `[[sample_id]]` which is otherwise unused, if none is already
present. This is intended to be used from e.g. MoltenVK when a
pipeline's `minSampleShading` value is nonzero.
Instead of checking if any `Input` variables have `Sample`
interpolation, I've elected to check that the `SampleRateShading`
capability is present. Since `SampleId`, `SamplePosition`, and the
`Sample` interpolation decoration require this cap, this should be
equivalent for any valid SPIR-V module. If this isn't acceptable, let me
know.