Limit inline blocks to one per descriptor set.
This should avoid the need for complicated code to calculate the
argument buffer ID stride of an inline uniform block. If there's demand
for more inline blocks, we can revisit this.
Here, the inline uniform block is explicit: we instantiate the buffer
block itself in the argument buffer, instead of a pointer to the buffer.
I just hope this will work with the `MTLArgumentDescriptor` API...
Note that Metal recursively assigns individual members of embedded
structs IDs. This means for automatic assignment that we have to
calculate the binding stride for a given buffer block. For MoltenVK,
we'll simply increment the ID by the size of the inline uniform block.
Then the later IDs will never conflict with the inline uniform block. We
can get away with this because Metal doesn't require that IDs be
contiguous, only monotonically increasing.
There was a hack to workaround a bug in DXC where control point -> patch
constant phase was passed in Function storage, but we have to use
Workgroup here. We will not support these kinds of hacks for invalid
SPIR-V, so hack the reference files to use the "proper" fix and remove
the hack for time being.
To support loading array of array properly in tessellation, we need a
rewrite of how tessellation access chains are handled.
The major change is to remove the implicit unflatten step inside
access_chain which does not take into account the case where you load
directly from a control point array variable.
We defer unflatten step until OpLoad time instead.
This fixes cases where we load array of {array,matrix,struct}.
Removes the hacky path for MSL access chain index workaround.
Add CompilerMSL::Options::texture_1D_as_2D.
Metal imposes significant restrictions on 1D textures, including not being
renderable, clearable, or permitting mipmaps. This option allows SPIR-V 1D
textures to be treated as 2D textures to permit this additional behaviour.
App must of course supply the textures to Metal as 2D textures.
There is an implicit tristate with {-1, 0, +1} values, but it was not
obvious how this was supposed to work before studying the implementation,
so refactor into a tristate enum class.
If there are enough members in an IAB, we cannot use the constant
address space as MSL compiler complains about there being too many
members. Support emitting the device address space instead.
First, when generating from HLSL before invoking the code that comes from the HLSL patch-function a control-flow and full memory-barrier are required to ensure that all the temporary values in thread-local storage for the patch are available.
Second, the inputs to control and evaluation shaders must be properly forwarded from the global variables in SPIRV to the member variables in the relevant input structure.
Finally when arrays of interpolators are used for input or output we need to add an extra level of array indirection because Metal works at a different granularity than SPIRV.
Five parts.
1. Fix tessellation patch function processing.
2. Fix loads from tessellation control inputs not being forwarded to the gl_in structure array.
3. Fix loads from tessellation evaluation inputs not being forwarded to the stage_in structure array.
4. Workaround SPIRV losing an array indirection in tessellation shaders - not the best solution but enough to keep things progressing.
5. Apparently gl_TessLevelInner/Outer is special and needs to not be placed into the input array.
Some fallout where internal functions are using stronger types.
Overkill to move everything over to strong types right now, but perhaps
move over to it slowly over time.
Vulkan has two types of buffer descriptors,
`VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC` and
`VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC`, which allow the client to
offset the buffers by an amount given when the descriptor set is bound
to a pipeline. Metal provides no direct support for this when the buffer
in question is in an argument buffer, so once again we're on our own.
These offsets cannot be stored or associated in any way with the
argument buffer itself, because they are set at bind time. Different
pipelines may have different offsets set. Therefore, we must use a
separate buffer, not in any argument buffer, to hold these offsets. Then
the shader must manually offset the buffer pointer.
This change fully supports arrays, including arrays of arrays, even
though Vulkan forbids them. It does not, however, support runtime
arrays. Perhaps later.
Writable textures cannot use argument buffers on iOS. They must be
passed as arguments directly to the shader function. Since we won't know
if a given storage image will have the `NonWritable` decoration at the
time we encode the argument buffer, we must therefore pass all storage
images as discrete arguments. Previously, we were throwing an error if
we encountered an argument buffer with a writable texture in it on iOS.
This change introduces functions and in one case, a class, to support
the `VK_KHR_sampler_ycbcr_conversion` extension. Except in the case of
GBGR8 and BGRG8 formats, for which Metal natively supports implicit
chroma reconstruction, we're on our own here. We have to do everything
ourselves. Much of the complexity comes from the need to support
multiple planes, which must now be passed to functions that use the
corresponding combined image-samplers. The rest is from the actual
Y'CbCr conversion itself, which requires additional post-processing of
the sample retrieved from the image.
Passing sampled images to a function was a particular problem. To
support this, I've added a new class which is emitted to MSL shaders
that pass sampled images with Y'CbCr conversions attached around. It
can handle sampled images with or without Y'CbCr conversion. This is an
awful abomination that should not exist, but I'm worried that there's
some shader out there which does this. This support requires Metal 2.0
to work properly, because it uses default-constructed texture objects,
which were only added in MSL 2. I'm not even going to get into arrays of
combined image-samplers--that's a whole other can of worms. They are
deliberately unsupported in this change.
I've taken the liberty of refactoring the support for texture swizzling
while I'm at it. It's now treated as a post-processing step similar to
Y'CbCr conversion. I'd like to think this is cleaner than having
everything in `to_function_name()`/`to_function_args()`. It still looks
really hairy, though. I did, however, get rid of the explicit type
arguments to `spvGatherSwizzle()`/`spvGatherCompareSwizzle()`.
Update the C API. In addition to supporting this new functionality, add
some compiler options that I added in previous changes, but for which I
neglected to update the C API.