Without this change, code such as:
```
OpStore %param_var_mipLevelSizes_0 %heightmapMipSizes
```
within a function that then forwards the value `%param_var_mipLevelSizes_0` to another function will not have `%heightmapMipSizes` registered as an argument to the function.
On MSL, the compiler refuses to allow access chains into a normal vector type.
What happens in practice instead is a read-modify-write where a vector type is
loaded, modified and written back.
The workaround is to convert a vector into a pointer-to-scalar before
the access chain continues to add the scalar index.
When loading and storing array types which belong to buffer objects, we
need to treat these values as not being value types. Also, need to
handle array load/store from/to more address space combinations.
Metal is picky about interface matching. If the types don't match
exactly, down to the number of vector components, Metal fails pipline
compilation. To support pipelines where the number of components
consumed by the fragment shader is less than that produced by the vertex
shader, we have to fix up the fragment shader to accept all the
components produced.
Otherwise the following lines will never be reached for the other two valid ycbcr_models (RGB_IDENTITY and YCBCR_IDENTITY) as they would cause a SPIRV_CROSS_THROW.
If a buffer rewrites its Offsets, all member references to that struct
are invalidated, and must be redirected, do so in to_member_reference,
but there might be other places where this is needed. Fix as required.
SPIR-V code relying on this is somewhat questionable, but seems to be
in-spec.
DX may emit ArrayStride and MatrixStride of 16, but the size of the
object does not align with that and expect to pack other members inside
its last member.
The workaround is to emit array size/col/row one less than we expect and
rely on padding to carve out a "dead zone" for the last member.
DXVK emits SPIR-V where fragment shader builtins have names derived from
DXBC assembly, e.g. `oDepth` for `FragDepth`. When we declared the
disabled output, we used this name, but when referencing it, we
continued to use the GLSL name. This breaks compilation.
Like with `point_size` when not rendering points, Metal complains when
writing to a variable using the `[[depth]]` qualifier when no depth
buffer be attached. In that case, we must avoid emitting `FragDepth`,
just like with `PointSize`.
I assume it will also complain if there be no stencil attachment and the
shader write to `[[stencil]]`, or it write to `[[color(n)]]` but there
be no color attachment at n.
Without this patch, `gl_FragCoord` is not output for subpass reads in certain cases where `gl_FragCoord` is not used elsewhere in the shader.
I'm not sure why this isn't caught by existing tests (e.g. [input-attachment.frag](shaders-msl/frag/input-attachment.frag)), but I encountered this issue in code generated by DXC and passed through spire-opt.
I cannot find any reference to this flag ever having existed in older
MSL spec documents, and it breaks compilation on any recent SDK for any
iOS/macOS Metal version. Just remove it.
Limit inline blocks to one per descriptor set.
This should avoid the need for complicated code to calculate the
argument buffer ID stride of an inline uniform block. If there's demand
for more inline blocks, we can revisit this.
Here, the inline uniform block is explicit: we instantiate the buffer
block itself in the argument buffer, instead of a pointer to the buffer.
I just hope this will work with the `MTLArgumentDescriptor` API...
Note that Metal recursively assigns individual members of embedded
structs IDs. This means for automatic assignment that we have to
calculate the binding stride for a given buffer block. For MoltenVK,
we'll simply increment the ID by the size of the inline uniform block.
Then the later IDs will never conflict with the inline uniform block. We
can get away with this because Metal doesn't require that IDs be
contiguous, only monotonically increasing.
- Fixes issue with clip_distance flattening in MSL where member to
flatten from would come from to_member_name, where it should have used
the builtin name directly. This member name was modified by this patch
and broke clip distance test shaders.
- Some cleanups with ir.meta, use ir.find_meta instead to not create
unnecessary hashmap nodes.
MSL does not support this, so we have to emulate it by passing it around
as a varying between stages. We use a special "user(clipN)" attribute
for this rather than locN which is used for user varyings.
From UE4 review, does not cause any changes in test output, and should
only change output if we were unpacking arrays or something like that,
which we don't support.
There was a hack to workaround a bug in DXC where control point -> patch
constant phase was passed in Function storage, but we have to use
Workgroup here. We will not support these kinds of hacks for invalid
SPIR-V, so hack the reference files to use the "proper" fix and remove
the hack for time being.
To support loading array of array properly in tessellation, we need a
rewrite of how tessellation access chains are handled.
The major change is to remove the implicit unflatten step inside
access_chain which does not take into account the case where you load
directly from a control point array variable.
We defer unflatten step until OpLoad time instead.
This fixes cases where we load array of {array,matrix,struct}.
Removes the hacky path for MSL access chain index workaround.
Hoist out some conditionals and make it clear that we go into this path
if strip_array is used when declaring resources, i.e. there was no
explicit unflatten step.
Non-patch arrays of IO variables in tesc/tese have their array index
stripped, and access chains are specially handled, we shouldn't attempt
to create "normal" arrays of these.
Add CompilerMSL::Options::texture_1D_as_2D.
Metal imposes significant restrictions on 1D textures, including not being
renderable, clearable, or permitting mipmaps. This option allows SPIR-V 1D
textures to be treated as 2D textures to permit this additional behaviour.
App must of course supply the textures to Metal as 2D textures.
There is an implicit tristate with {-1, 0, +1} values, but it was not
obvious how this was supposed to work before studying the implementation,
so refactor into a tristate enum class.
This avoids a lot of huge code changes.
Arrays generally cannot be copied in and out of buffers, at least no
compiler frontend seems to do it.
Also avoids a lot of issues surrounding packed vectors and matrices.
If there are enough members in an IAB, we cannot use the constant
address space as MSL compiler complains about there being too many
members. Support emitting the device address space instead.
First, when generating from HLSL before invoking the code that comes from the HLSL patch-function a control-flow and full memory-barrier are required to ensure that all the temporary values in thread-local storage for the patch are available.
Second, the inputs to control and evaluation shaders must be properly forwarded from the global variables in SPIRV to the member variables in the relevant input structure.
Finally when arrays of interpolators are used for input or output we need to add an extra level of array indirection because Metal works at a different granularity than SPIRV.
Five parts.
1. Fix tessellation patch function processing.
2. Fix loads from tessellation control inputs not being forwarded to the gl_in structure array.
3. Fix loads from tessellation evaluation inputs not being forwarded to the stage_in structure array.
4. Workaround SPIRV losing an array indirection in tessellation shaders - not the best solution but enough to keep things progressing.
5. Apparently gl_TessLevelInner/Outer is special and needs to not be placed into the input array.
Some fallout where internal functions are using stronger types.
Overkill to move everything over to strong types right now, but perhaps
move over to it slowly over time.
Vulkan has two types of buffer descriptors,
`VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC` and
`VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC`, which allow the client to
offset the buffers by an amount given when the descriptor set is bound
to a pipeline. Metal provides no direct support for this when the buffer
in question is in an argument buffer, so once again we're on our own.
These offsets cannot be stored or associated in any way with the
argument buffer itself, because they are set at bind time. Different
pipelines may have different offsets set. Therefore, we must use a
separate buffer, not in any argument buffer, to hold these offsets. Then
the shader must manually offset the buffer pointer.
This change fully supports arrays, including arrays of arrays, even
though Vulkan forbids them. It does not, however, support runtime
arrays. Perhaps later.
Writable textures cannot use argument buffers on iOS. They must be
passed as arguments directly to the shader function. Since we won't know
if a given storage image will have the `NonWritable` decoration at the
time we encode the argument buffer, we must therefore pass all storage
images as discrete arguments. Previously, we were throwing an error if
we encountered an argument buffer with a writable texture in it on iOS.
This was straightforward to implement in GLSL. The
`ShadingRateInterlockOrderedEXT` and `ShadingRateInterlockUnorderedEXT`
modes aren't implemented yet, because we don't support
`SPV_NV_shading_rate` or `SPV_EXT_fragment_invocation_density` yet.
HLSL and MSL were more interesting. They don't support this directly,
but they do support marking resources as "rasterizer ordered," which
does roughly the same thing. So this implementation scans all accesses
inside the critical section and marks all storage resources found
therein as rasterizer ordered. They also don't support the fine-grained
controls on pixel- vs. sample-level interlock and disabling ordering
guarantees that GLSL and SPIR-V do, but that's OK. "Unordered" here
merely means the order is undefined; that it just so happens to be the
same as rasterizer order is immaterial. As for pixel- vs. sample-level
interlock, Vulkan explicitly states:
> With sample shading enabled, [the `PixelInterlockOrderedEXT` and
> `PixelInterlockUnorderedEXT`] execution modes are treated like
> `SampleInterlockOrderedEXT` or `SampleInterlockUnorderedEXT`
> respectively.
and:
> If [the `SampleInterlockOrderedEXT` or `SampleInterlockUnorderedEXT`]
> execution modes are used in single-sample mode they are treated like
> `PixelInterlockOrderedEXT` or `PixelInterlockUnorderedEXT`
> respectively.
So this will DTRT for MoltenVK and gfx-rs, at least.
MSL additionally supports multiple raster order groups; resources that
are not accessed together can be placed in different ROGs to allow them
to be synchronized separately. A more sophisticated analysis might be
able to place resources optimally, but that's outside the scope of this
change. For now, we assign all resources to group 0, which should do for
our purposes.
`glslang` doesn't support the `RasterizerOrdered` UAVs this
implementation produces for HLSL, so the test case needs `fxc.exe`.
It also insists on GLSL 4.50 for `GL_ARB_fragment_shader_interlock`,
even though the spec says it needs either 4.20 or
`GL_ARB_shader_image_load_store`; and it doesn't support the
`GL_NV_fragment_shader_interlock` extension at all. So I haven't been
able to test those code paths.
Fixes#1002.
This change introduces functions and in one case, a class, to support
the `VK_KHR_sampler_ycbcr_conversion` extension. Except in the case of
GBGR8 and BGRG8 formats, for which Metal natively supports implicit
chroma reconstruction, we're on our own here. We have to do everything
ourselves. Much of the complexity comes from the need to support
multiple planes, which must now be passed to functions that use the
corresponding combined image-samplers. The rest is from the actual
Y'CbCr conversion itself, which requires additional post-processing of
the sample retrieved from the image.
Passing sampled images to a function was a particular problem. To
support this, I've added a new class which is emitted to MSL shaders
that pass sampled images with Y'CbCr conversions attached around. It
can handle sampled images with or without Y'CbCr conversion. This is an
awful abomination that should not exist, but I'm worried that there's
some shader out there which does this. This support requires Metal 2.0
to work properly, because it uses default-constructed texture objects,
which were only added in MSL 2. I'm not even going to get into arrays of
combined image-samplers--that's a whole other can of worms. They are
deliberately unsupported in this change.
I've taken the liberty of refactoring the support for texture swizzling
while I'm at it. It's now treated as a post-processing step similar to
Y'CbCr conversion. I'd like to think this is cleaner than having
everything in `to_function_name()`/`to_function_args()`. It still looks
really hairy, though. I did, however, get rid of the explicit type
arguments to `spvGatherSwizzle()`/`spvGatherCompareSwizzle()`.
Update the C API. In addition to supporting this new functionality, add
some compiler options that I added in previous changes, but for which I
neglected to update the C API.
These methods have largely the same logic, with minor differences. That
I felt compelled to duplicate the logic into another method was one of
the things that bothered me about the variable pointers change. This
cleans that part of the code up; now we don't have two places to change.
This command allows the caller to set the base value of
`BuiltInWorkgroupId`, and thus of `BuiltInGlobalInvocationId`. Metal
provides no direct support for this... but it does provide a builtin,
`[[grid_origin]]`, normally used to pass the base values for the stage
input region, which we will now abuse to pass the dispatch base and
avoid burning a buffer binding.
`[[grid_origin]]`, as part of Metal's support for compute stage input,
requires MSL 1.2. For 1.0 and 1.1, we're forced to provide a buffer.
(Curiously, this builtin was undocumented until the MSL 2.2 release. Go
figure.)
If this is computed *before* a `demote`, but used *after*, forwarding it
will produce the wrong value. This does make for uglier shaders, but
it's necessary right now to ensure correctness.
I needed to use an assembly shader to produce the test for this.
`spirv-opt` is not smart enough (or too smart?) to eliminate the
variable that would be used in GLSL to express this.
This extension provides a new operation which causes a fragment to be
discarded without terminating the fragment shader invocation. The
invocation for the discarded fragment becomes a helper invocation, so
that derivatives will remain defined. The old `HelperInvocation` builtin
becomes undefined when this occurs, so a second new instruction queries
the current helper invocation status.
This is only fully supported for GLSL. HLSL doesn't support the
`IsHelperInvocation` operation and MSL doesn't support the
`DemoteToHelperInvocation` op.
Fixes#1052.
Make sure to test everything with scalar as well to catch any weird edge
cases.
Not all opcodes are covered here, just the arithmetic ones. FP64 packing
is also ignored.
This provides a few functions normally available in OpenCL to the SPIR-V
shader environment. These functions happen to be available in Metal as
well.
No GLSL, unfortunately. Intel has yet to publish a
`GL_INTEL_shader_integer_functions2` spec.
The only piece added by this extension is the `DeviceIndex` builtin,
which tells the shader which device in a grouped logical device it is
running on.
Metal's pipeline state objects are owned by the `MTLDevice` that created
them. Since Metal doesn't support logical grouping of devices the way
Vulkan does, we'll thus have to create a pipeline state for each device
in a grouped logical device. The upcoming peer group support in Metal 3
will not change this. For this reason, for Metal, the device index is
supplied as a constant at pipeline compile time.
There's an interaction between `VK_KHR_device_group` and
`VK_KHR_multiview` in the
`VK_PIPELINE_CREATE_VIEW_INDEX_FROM_DEVICE_INDEX_BIT`, which defines the
view index to be the same as the device index. The new
`view_index_from_device_index` MSL option supports this functionality.
Using the `PostDepthCoverage` mode specifies that the `gl_SampleMaskIn`
variable is to contain the computed coverage mask following the early
fragment tests, which this mode requires and implicitly enables.
Note that unlike Vulkan and OpenGL, Metal places this on the sample mask
input itself, and furthermore does *not* implicitly enable early
fragment testing. If it isn't enabled explicitly with an
`[[early_fragment_tests]]` attribute, the compiler will error out. So we
have to enable that mode explicitly if `PostDepthCoverage` is enabled
but `EarlyFragmentTests` isn't.
For Metal, only iOS supports this; for some reason, Apple has yet to
implement it on macOS, even though many desktop cards support it.
This maps them to their MSL equivalents. I've mapped `Coherent` to
`volatile` since MSL doesn't have anything weaker than `volatile` but
stronger than nothing.
As part of this, I had to remove the implicit `volatile` added for
atomic operation casts. If the buffer is already `coherent` or
`volatile`, then we would add a second `volatile`, which would be
redundant. I think this is OK even when the buffer *doesn't* have
`coherent`: `T *` is implicitly convertible to `volatile T *`, but not
vice-versa. It seems to compile OK at any rate. (Note that the
non-`volatile` overloads of the atomic functions documented in the spec
aren't present in the MSL 2.2 stdlib headers.)
`restrict` is tricky, because in MSL, as in C++, it needs to go *after*
the asterisk or ampersand for the pointer type it's modifying.
Another issue is that, in the `Simple`, `GLSL450`, and `Vulkan` memory
models, `Restrict` is the default (i.e. does not need to be specified);
but MSL likely follows the `OpenCL` model where `Aliased` is the
default. We probably need to implicitly set either `Restrict` or
`Aliased` depending on the module's declared memory model.
The old method of using a different unpacked matrix type doesn't work
for scalar alignment. It certainly wouldn't have any effect for a square
matrix, since the number of columns and rows are the same. So now we'll
store them as arrays of packed vectors.
Relaxed block layout relaxed the restrictions on vector alignment,
allowing them to be aligned on scalar boundaries. Scalar block layout
relaxes this further, allowing *any* member to be aligned on a scalar
boundary. The requirement that a vector not improperly straddle a
16-byte boundary is also relaxed.
I've also added a test showing that `std430` layout works with UBOs.
I'm troubled by the dual meaning of the `Packed` extended decoration. In
some instances (struct, `float[]`, and `vec2[]` members), it actually
means the exact opposite, that the member needs extra padding. This is
especially problematic for `vec2[]`, because now we need to distinguish
the two cases by checking the array stride. I wonder if this should
actually be split into two decorations.
MSL prior to 2.2 doesn't support these natively in any stage but
compute. But, we can (assuming no threads were terminated prematurely)
get their values with some creative uses of the
`simd_prefix_exclusive_sum()` and `simd_sum()` functions.
Also, fix a missing `to_expression()` with `BuiltInSubgroupEqMask`.
For KhronosGroup/MoltenVK#629.
This is needed to support `VK_KHR_multiview`, which is in turn needed
for Vulkan 1.1 support. Unfortunately, Metal provides no native support
for this, and Apple is once again less than forthcoming, so we have to
implement it all ourselves.
Tessellation and geometry shaders are deliberately unsupported for now.
The problem is that the current implementation encodes the `ViewIndex`
as part of the `InstanceIndex`, which in the SPIR-V environment at least
only exists in the vertex shader. So we need to work out a way to pass
the view index along to the later stages.
This implementation runs vertex shaders for all views up to the highest
bit set in the view mask, even those whose bits are clear. The fragments
for the inactive views are then discarded. Avoiding this is difficult:
calculating the view indices becomes far more complicated if we can only
run for those views which are set in the mask.
We used to use the Binding decoration for this, but this method is
hopelessly broken. If no explicit MSL resource remapping exists, we
remap automatically in a manner which should always "just work".
Older API was oriented around IDs which are not available unless you're
doing full reflection, which is awkward for certain use cases which know
their set/bindings up front.
Optimize resource bindings to be hashmap rather than doing linear seeks
all the time.
In multiple-entry-point modules, we declared builtin inputs which were
not supposed to be used for that entry point.
Fix this, by being more strict when checking which builtins to emit.
This gets rather complicated because MSL does not support OpArrayLength
natively. We need to pass down a buffer which contains buffer sizes, and
we compute the array length on-demand.
Support both discrete descriptors as well as argument buffers.
MSL generally emits the aliases, which means we cannot always place the
master type first, unlike GLSL and HLSL. The logic fix is just to
reorder after we have tagged types with packing information, rather than
doing it in the parser fixup.
Change aux buffer to swizzle buffer.
There is no good reason to expand the aux buffer, so name it
appropriately.
Make the code cleaner by emitting a straight pointer to uint rather than
a dummy struct which only contains a single unsized array member anyways.
This will also end up being very similar to how we implement swizzle
buffers for argument buffers.
Do not use implied binding if it overflows int32_t.
Some support for subgroups is present starting in Metal 2.0 on both iOS
and macOS. macOS gains more complete support in 10.14 (Metal 2.1).
Some restrictions are present. On iOS and on macOS 10.13, the
implementation of `OpGroupNonUniformElect` is incorrect: if thread 0 has
already terminated or is not executing a conditional branch, the first
thread that *is* will falsely believe itself not to be. Unfortunately,
this operation is part of the "basic" feature set; without it, subgroups
cannot be supported at all.
The `SubgroupSize` and `SubgroupLocalInvocationId` builtins are only
available in compute shaders (and, by extension, tessellation control
shaders), despite SPIR-V making them available in all stages. This
limits the usefulness of some of the subgroup operations in fragment
shaders.
Although Metal on macOS supports some clustered, inclusive, and
exclusive operations, it does not support them all. In particular,
inclusive and exclusive min, max, and, or, and xor; as well as cluster
sizes other than 4 are not supported. If this becomes a problem, they
could be emulated, but at a significant performance cost due to the need
for non-uniform operations.
MSL does not seem to have a qualifier for this, but HLSL SM 5.1 does.
glslangValidator for HLSL does not support this, so skip any validation,
but it passes in FXC.
Buffer objects can contain arbitrary pointers to blocks.
We can also implement ConvertPtrToU and ConvertUToPtr.
The latter can cast a uint64_t to any type as it pleases,
so we will need to generate fake buffer reference blocks to be able to
cast the type.
Atomics are not supported on images or texture_buffers in MSL.
Properly throw an error if OpImageTexelPointer is used (since it can
only be used for atomic operations anyways).
* origin/master:
Support running {,update_}test_shader.sh with CMake builds.
Don't apply vertex attribute remapping other non-vertex or non-input interface blocks
Force complex loop in certain rare access chain scenarios.
Fix guard around [[noreturn]].
Deal with mismatched signs in S/U/F conversion opcodes.
Workaround lack of lvalue/rvalue operator overload on MSVC 2013.
Support direct conversions to std::vector from SmallVector.
Fix some minor copy constructor issues in Variant.
Make sure ids_for_types are moved correctly in move operator.
Run format_all.sh.
Refactor out error handling and containers to new headers.
Do not use SmallVector as input type in public interfaces.
Fix various bugs found in testing.
Explicitly implement move operators for ParsedIR.
Try another MSVC 2013 workaround.
Implement edge cases in insert/end and add a simple test case.
Fix GCC 4.x warnings.
Workaround lack of alignas on MSVC 2013.
Reduce pressure on global allocation.
CLI: Make --iterations more useful.
- Replace ostringstream with custom implementation.
~30% performance uplift on vector-shuffle-oom test.
Allocations are measurably reduced in Valgrind.
- Replace std::vector with SmallVector.
Classic malloc optimization, small vectors are backed by inline data.
~ 7-8% gain on vector-shuffle-oom on GCC 8 on Linux.
- Use an object pool for IVariant type.
We generally allocate a lot of SPIR* objects. We can amortize these
allocations neatly by pooling them.
- ~15% overall uplift on ./test_shaders.py --iterations 10000 shaders/.
We cannot deduce if OpLoad needs ArrayCopy templates early since it's
heavily context dependent, and we might only know on 3rd iteration of
the compile loop.