This is not necessary, as we must emit an invalidating store before we
potentially consume an invalid expression. In fact, we're a bit
conservative here in this case for example:
int tmp = variable;
if (...)
{
variable = 10;
}
else
{
// Consuming tmp here is fine, but it was
// invalidated while emitting other branch.
// Technically, we need to study if there is an invalidating store
// in the CFG between the loading block and this block, and the other
// branch will not be a part of that analysis.
int tmp2 = tmp * tmp;
}
Fixing this case means complex CFG traversal *everywhere*, and it feels like overkill.
Fixing this exposed a bug with access chains, so fix a bug where expression dependencies were not
inherited properly in access chains. Access chains are now considered forwarded if there
is at least one dependency which is also forwarded.
Previously, we would generate parentheses proactively when generating
binary ops, however, this leads to uglier code and hits warnings in
compilers when used as a conditional.
There was a potential problem if variables were invalidated and SPIR-V
read expressions which depended on other expression which in turn depended on the
invalidated variable.
Also fixes issue where variables were considered immutable if they were
forwardable. This allowed some incorrect optimizations to slip through.