This avoids a lot of huge code changes.
Arrays generally cannot be copied in and out of buffers, at least no
compiler frontend seems to do it.
Also avoids a lot of issues surrounding packed vectors and matrices.
Avoids ugly warnings on nearly every compute shader.
We could do analysis to detect whether we need to emit this constant,
but it's a bit tedious to figure out if an OpConstantComponent is
actually used by opcodes, so just make it simple.
This is a fairly fundamental change on how IDs are handled.
It serves many purposes:
- Improve performance. We only need to iterate over IDs which are
relevant at any one time.
- Makes sure we iterate through IDs in SPIR-V module declaration order
rather than ID space. IDs don't have to be monotonically increasing,
which was an assumption SPIRV-Cross used to have. It has apparently
never been a problem until now.
- Support LUTs of structs. We do this by interleaving declaration of
constants and struct types in SPIR-V module order.
To support this, the ParsedIR interface needed to change slightly.
Before setting any ID with variant_set<T> we let ParsedIR know
that an ID with a specific type has been added. The surface for change
should be minimal.
ParsedIR will maintain a per-type list of IDs which the cross-compiler
will need to consider for later.
Instead of looping over ir.ids[] (which can be extremely large), we loop
over types now, using:
ir.for_each_typed_id<SPIRVariable>([&](uint32_t id, SPIRVariable &var) {
handle_variable(var);
});
Now we make sure that we're never looking at irrelevant types.