/* * Copyright 2016-2021 The Brenwill Workshop Ltd. * SPDX-License-Identifier: Apache-2.0 OR MIT * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * At your option, you may choose to accept this material under either: * 1. The Apache License, Version 2.0, found at , or * 2. The MIT License, found at . */ #ifndef SPIRV_CROSS_MSL_HPP #define SPIRV_CROSS_MSL_HPP #include "spirv_glsl.hpp" #include #include #include #include #include namespace SPIRV_CROSS_NAMESPACE { // Indicates the format of a shader input. Currently limited to specifying // if the input is an 8-bit unsigned integer, 16-bit unsigned integer, or // some other format. enum MSLShaderInputFormat { MSL_SHADER_INPUT_FORMAT_OTHER = 0, MSL_SHADER_INPUT_FORMAT_UINT8 = 1, MSL_SHADER_INPUT_FORMAT_UINT16 = 2, MSL_SHADER_INPUT_FORMAT_ANY16 = 3, MSL_SHADER_INPUT_FORMAT_ANY32 = 4, // Deprecated aliases. MSL_VERTEX_FORMAT_OTHER = MSL_SHADER_INPUT_FORMAT_OTHER, MSL_VERTEX_FORMAT_UINT8 = MSL_SHADER_INPUT_FORMAT_UINT8, MSL_VERTEX_FORMAT_UINT16 = MSL_SHADER_INPUT_FORMAT_UINT16, MSL_SHADER_INPUT_FORMAT_INT_MAX = 0x7fffffff }; // Defines MSL characteristics of an input variable at a particular location. // After compilation, it is possible to query whether or not this location was used. // If vecsize is nonzero, it must be greater than or equal to the vecsize declared in the shader, // or behavior is undefined. struct MSLShaderInput { uint32_t location = 0; uint32_t component = 0; MSLShaderInputFormat format = MSL_SHADER_INPUT_FORMAT_OTHER; spv::BuiltIn builtin = spv::BuiltInMax; uint32_t vecsize = 0; }; // Matches the binding index of a MSL resource for a binding within a descriptor set. // Taken together, the stage, desc_set and binding combine to form a reference to a resource // descriptor used in a particular shading stage. The count field indicates the number of // resources consumed by this binding, if the binding represents an array of resources. // If the resource array is a run-time-sized array, which are legal in GLSL or SPIR-V, this value // will be used to declare the array size in MSL, which does not support run-time-sized arrays. // If pad_argument_buffer_resources is enabled, the base_type and count values are used to // specify the base type and array size of the resource in the argument buffer, if that resource // is not defined and used by the shader. With pad_argument_buffer_resources enabled, this // information will be used to pad the argument buffer structure, in order to align that // structure consistently for all uses, across all shaders, of the descriptor set represented // by the arugment buffer. If pad_argument_buffer_resources is disabled, base_type does not // need to be populated, and if the resource is also not a run-time sized array, the count // field does not need to be populated. // If using MSL 2.0 argument buffers, the descriptor set is not marked as a discrete descriptor set, // and (for iOS only) the resource is not a storage image (sampled != 2), the binding reference we // remap to will become an [[id(N)]] attribute within the "descriptor set" argument buffer structure. // For resources which are bound in the "classic" MSL 1.0 way or discrete descriptors, the remap will // become a [[buffer(N)]], [[texture(N)]] or [[sampler(N)]] depending on the resource types used. struct MSLResourceBinding { spv::ExecutionModel stage = spv::ExecutionModelMax; SPIRType::BaseType basetype = SPIRType::Unknown; uint32_t desc_set = 0; uint32_t binding = 0; uint32_t count = 0; uint32_t msl_buffer = 0; uint32_t msl_texture = 0; uint32_t msl_sampler = 0; }; enum MSLSamplerCoord { MSL_SAMPLER_COORD_NORMALIZED = 0, MSL_SAMPLER_COORD_PIXEL = 1, MSL_SAMPLER_INT_MAX = 0x7fffffff }; enum MSLSamplerFilter { MSL_SAMPLER_FILTER_NEAREST = 0, MSL_SAMPLER_FILTER_LINEAR = 1, MSL_SAMPLER_FILTER_INT_MAX = 0x7fffffff }; enum MSLSamplerMipFilter { MSL_SAMPLER_MIP_FILTER_NONE = 0, MSL_SAMPLER_MIP_FILTER_NEAREST = 1, MSL_SAMPLER_MIP_FILTER_LINEAR = 2, MSL_SAMPLER_MIP_FILTER_INT_MAX = 0x7fffffff }; enum MSLSamplerAddress { MSL_SAMPLER_ADDRESS_CLAMP_TO_ZERO = 0, MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE = 1, MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER = 2, MSL_SAMPLER_ADDRESS_REPEAT = 3, MSL_SAMPLER_ADDRESS_MIRRORED_REPEAT = 4, MSL_SAMPLER_ADDRESS_INT_MAX = 0x7fffffff }; enum MSLSamplerCompareFunc { MSL_SAMPLER_COMPARE_FUNC_NEVER = 0, MSL_SAMPLER_COMPARE_FUNC_LESS = 1, MSL_SAMPLER_COMPARE_FUNC_LESS_EQUAL = 2, MSL_SAMPLER_COMPARE_FUNC_GREATER = 3, MSL_SAMPLER_COMPARE_FUNC_GREATER_EQUAL = 4, MSL_SAMPLER_COMPARE_FUNC_EQUAL = 5, MSL_SAMPLER_COMPARE_FUNC_NOT_EQUAL = 6, MSL_SAMPLER_COMPARE_FUNC_ALWAYS = 7, MSL_SAMPLER_COMPARE_FUNC_INT_MAX = 0x7fffffff }; enum MSLSamplerBorderColor { MSL_SAMPLER_BORDER_COLOR_TRANSPARENT_BLACK = 0, MSL_SAMPLER_BORDER_COLOR_OPAQUE_BLACK = 1, MSL_SAMPLER_BORDER_COLOR_OPAQUE_WHITE = 2, MSL_SAMPLER_BORDER_COLOR_INT_MAX = 0x7fffffff }; enum MSLFormatResolution { MSL_FORMAT_RESOLUTION_444 = 0, MSL_FORMAT_RESOLUTION_422, MSL_FORMAT_RESOLUTION_420, MSL_FORMAT_RESOLUTION_INT_MAX = 0x7fffffff }; enum MSLChromaLocation { MSL_CHROMA_LOCATION_COSITED_EVEN = 0, MSL_CHROMA_LOCATION_MIDPOINT, MSL_CHROMA_LOCATION_INT_MAX = 0x7fffffff }; enum MSLComponentSwizzle { MSL_COMPONENT_SWIZZLE_IDENTITY = 0, MSL_COMPONENT_SWIZZLE_ZERO, MSL_COMPONENT_SWIZZLE_ONE, MSL_COMPONENT_SWIZZLE_R, MSL_COMPONENT_SWIZZLE_G, MSL_COMPONENT_SWIZZLE_B, MSL_COMPONENT_SWIZZLE_A, MSL_COMPONENT_SWIZZLE_INT_MAX = 0x7fffffff }; enum MSLSamplerYCbCrModelConversion { MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY = 0, MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY, MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_709, MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_601, MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_2020, MSL_SAMPLER_YCBCR_MODEL_CONVERSION_INT_MAX = 0x7fffffff }; enum MSLSamplerYCbCrRange { MSL_SAMPLER_YCBCR_RANGE_ITU_FULL = 0, MSL_SAMPLER_YCBCR_RANGE_ITU_NARROW, MSL_SAMPLER_YCBCR_RANGE_INT_MAX = 0x7fffffff }; struct MSLConstexprSampler { MSLSamplerCoord coord = MSL_SAMPLER_COORD_NORMALIZED; MSLSamplerFilter min_filter = MSL_SAMPLER_FILTER_NEAREST; MSLSamplerFilter mag_filter = MSL_SAMPLER_FILTER_NEAREST; MSLSamplerMipFilter mip_filter = MSL_SAMPLER_MIP_FILTER_NONE; MSLSamplerAddress s_address = MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE; MSLSamplerAddress t_address = MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE; MSLSamplerAddress r_address = MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE; MSLSamplerCompareFunc compare_func = MSL_SAMPLER_COMPARE_FUNC_NEVER; MSLSamplerBorderColor border_color = MSL_SAMPLER_BORDER_COLOR_TRANSPARENT_BLACK; float lod_clamp_min = 0.0f; float lod_clamp_max = 1000.0f; int max_anisotropy = 1; // Sampler Y'CbCr conversion parameters uint32_t planes = 0; MSLFormatResolution resolution = MSL_FORMAT_RESOLUTION_444; MSLSamplerFilter chroma_filter = MSL_SAMPLER_FILTER_NEAREST; MSLChromaLocation x_chroma_offset = MSL_CHROMA_LOCATION_COSITED_EVEN; MSLChromaLocation y_chroma_offset = MSL_CHROMA_LOCATION_COSITED_EVEN; MSLComponentSwizzle swizzle[4]; // IDENTITY, IDENTITY, IDENTITY, IDENTITY MSLSamplerYCbCrModelConversion ycbcr_model = MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY; MSLSamplerYCbCrRange ycbcr_range = MSL_SAMPLER_YCBCR_RANGE_ITU_FULL; uint32_t bpc = 8; bool compare_enable = false; bool lod_clamp_enable = false; bool anisotropy_enable = false; bool ycbcr_conversion_enable = false; MSLConstexprSampler() { for (uint32_t i = 0; i < 4; i++) swizzle[i] = MSL_COMPONENT_SWIZZLE_IDENTITY; } bool swizzle_is_identity() const { return (swizzle[0] == MSL_COMPONENT_SWIZZLE_IDENTITY && swizzle[1] == MSL_COMPONENT_SWIZZLE_IDENTITY && swizzle[2] == MSL_COMPONENT_SWIZZLE_IDENTITY && swizzle[3] == MSL_COMPONENT_SWIZZLE_IDENTITY); } bool swizzle_has_one_or_zero() const { return (swizzle[0] == MSL_COMPONENT_SWIZZLE_ZERO || swizzle[0] == MSL_COMPONENT_SWIZZLE_ONE || swizzle[1] == MSL_COMPONENT_SWIZZLE_ZERO || swizzle[1] == MSL_COMPONENT_SWIZZLE_ONE || swizzle[2] == MSL_COMPONENT_SWIZZLE_ZERO || swizzle[2] == MSL_COMPONENT_SWIZZLE_ONE || swizzle[3] == MSL_COMPONENT_SWIZZLE_ZERO || swizzle[3] == MSL_COMPONENT_SWIZZLE_ONE); } }; // Special constant used in a MSLResourceBinding desc_set // element to indicate the bindings for the push constants. // Kinda deprecated. Just use ResourceBindingPushConstant{DescriptorSet,Binding} directly. static const uint32_t kPushConstDescSet = ResourceBindingPushConstantDescriptorSet; // Special constant used in a MSLResourceBinding binding // element to indicate the bindings for the push constants. // Kinda deprecated. Just use ResourceBindingPushConstant{DescriptorSet,Binding} directly. static const uint32_t kPushConstBinding = ResourceBindingPushConstantBinding; // Special constant used in a MSLResourceBinding binding // element to indicate the buffer binding for swizzle buffers. static const uint32_t kSwizzleBufferBinding = ~(1u); // Special constant used in a MSLResourceBinding binding // element to indicate the buffer binding for buffer size buffers to support OpArrayLength. static const uint32_t kBufferSizeBufferBinding = ~(2u); // Special constant used in a MSLResourceBinding binding // element to indicate the buffer binding used for the argument buffer itself. // This buffer binding should be kept as small as possible as all automatic bindings for buffers // will start at max(kArgumentBufferBinding) + 1. static const uint32_t kArgumentBufferBinding = ~(3u); static const uint32_t kMaxArgumentBuffers = 8; // The arbitrary maximum for the nesting of array of array copies. static const uint32_t kArrayCopyMultidimMax = 6; // Decompiles SPIR-V to Metal Shading Language class CompilerMSL : public CompilerGLSL { public: // Options for compiling to Metal Shading Language struct Options { typedef enum { iOS = 0, macOS = 1 } Platform; Platform platform = macOS; uint32_t msl_version = make_msl_version(1, 2); uint32_t texel_buffer_texture_width = 4096; // Width of 2D Metal textures used as 1D texel buffers uint32_t r32ui_linear_texture_alignment = 4; uint32_t r32ui_alignment_constant_id = 65535; uint32_t swizzle_buffer_index = 30; uint32_t indirect_params_buffer_index = 29; uint32_t shader_output_buffer_index = 28; uint32_t shader_patch_output_buffer_index = 27; uint32_t shader_tess_factor_buffer_index = 26; uint32_t buffer_size_buffer_index = 25; uint32_t view_mask_buffer_index = 24; uint32_t dynamic_offsets_buffer_index = 23; uint32_t shader_input_buffer_index = 22; uint32_t shader_index_buffer_index = 21; uint32_t shader_input_wg_index = 0; uint32_t device_index = 0; uint32_t enable_frag_output_mask = 0xffffffff; // Metal doesn't allow setting a fixed sample mask directly in the pipeline. // We can evade this restriction by ANDing the internal sample_mask output // of the shader with the additional fixed sample mask. uint32_t additional_fixed_sample_mask = 0xffffffff; bool enable_point_size_builtin = true; bool enable_frag_depth_builtin = true; bool enable_frag_stencil_ref_builtin = true; bool disable_rasterization = false; bool capture_output_to_buffer = false; bool swizzle_texture_samples = false; bool tess_domain_origin_lower_left = false; bool multiview = false; bool multiview_layered_rendering = true; bool view_index_from_device_index = false; bool dispatch_base = false; bool texture_1D_as_2D = false; // Enable use of MSL 2.0 indirect argument buffers. // MSL 2.0 must also be enabled. bool argument_buffers = false; // Ensures vertex and instance indices start at zero. This reflects the behavior of HLSL with SV_VertexID and SV_InstanceID. bool enable_base_index_zero = false; // Fragment output in MSL must have at least as many components as the render pass. // Add support to explicit pad out components. bool pad_fragment_output_components = false; // Specifies whether the iOS target version supports the [[base_vertex]] and [[base_instance]] attributes. bool ios_support_base_vertex_instance = false; // Use Metal's native frame-buffer fetch API for subpass inputs. bool use_framebuffer_fetch_subpasses = false; // Enables use of "fma" intrinsic for invariant float math bool invariant_float_math = false; // Emulate texturecube_array with texture2d_array for iOS where this type is not available bool emulate_cube_array = false; // Allow user to enable decoration binding bool enable_decoration_binding = false; // Requires MSL 2.1, use the native support for texel buffers. bool texture_buffer_native = false; // Forces all resources which are part of an argument buffer to be considered active. // This ensures ABI compatibility between shaders where some resources might be unused, // and would otherwise declare a different IAB. bool force_active_argument_buffer_resources = false; // Aligns each resource in an argument buffer to its assigned index value, id(N), // by adding synthetic padding members in the argument buffer struct for any resources // in the argument buffer that are not defined and used by the shader. This allows // the shader to index into the correct argument in a descriptor set argument buffer // that is shared across shaders, where not all resources in the argument buffer are // defined in each shader. For this to work, an MSLResourceBinding must be provided for // all descriptors in any descriptor set held in an argument buffer in the shader, and // that MSLResourceBinding must have the basetype and count members populated correctly. // The implementation here assumes any inline blocks in the argument buffer is provided // in a Metal buffer, and doesn't take into consideration inline blocks that are // optionally embedded directly into the argument buffer via add_inline_uniform_block(). bool pad_argument_buffer_resources = false; // Forces the use of plain arrays, which works around certain driver bugs on certain versions // of Intel Macbooks. See https://github.com/KhronosGroup/SPIRV-Cross/issues/1210. // May reduce performance in scenarios where arrays are copied around as value-types. bool force_native_arrays = false; // If a shader writes clip distance, also emit user varyings which // can be read in subsequent stages. bool enable_clip_distance_user_varying = true; // In a tessellation control shader, assume that more than one patch can be processed in a // single workgroup. This requires changes to the way the InvocationId and PrimitiveId // builtins are processed, but should result in more efficient usage of the GPU. bool multi_patch_workgroup = false; // If set, a vertex shader will be compiled as part of a tessellation pipeline. // It will be translated as a compute kernel, so it can use the global invocation ID // to index the output buffer. bool vertex_for_tessellation = false; // Assume that SubpassData images have multiple layers. Layered input attachments // are addressed relative to the Layer output from the vertex pipeline. This option // has no effect with multiview, since all input attachments are assumed to be layered // and will be addressed using the current ViewIndex. bool arrayed_subpass_input = false; // Whether to use SIMD-group or quadgroup functions to implement group nnon-uniform // operations. Some GPUs on iOS do not support the SIMD-group functions, only the // quadgroup functions. bool ios_use_simdgroup_functions = false; // If set, the subgroup size will be assumed to be one, and subgroup-related // builtins and operations will be emitted accordingly. This mode is intended to // be used by MoltenVK on hardware/software configurations which do not provide // sufficient support for subgroups. bool emulate_subgroups = false; // If nonzero, a fixed subgroup size to assume. Metal, similarly to VK_EXT_subgroup_size_control, // allows the SIMD-group size (aka thread execution width) to vary depending on // register usage and requirements. In certain circumstances--for example, a pipeline // in MoltenVK without VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT-- // this is undesirable. This fixes the value of the SubgroupSize builtin, instead of // mapping it to the Metal builtin [[thread_execution_width]]. If the thread // execution width is reduced, the extra invocations will appear to be inactive. // If zero, the SubgroupSize will be allowed to vary, and the builtin will be mapped // to the Metal [[thread_execution_width]] builtin. uint32_t fixed_subgroup_size = 0; enum class IndexType { None = 0, UInt16 = 1, UInt32 = 2 }; // The type of index in the index buffer, if present. For a compute shader, Metal // requires specifying the indexing at pipeline creation, rather than at draw time // as with graphics pipelines. This means we must create three different pipelines, // for no indexing, 16-bit indices, and 32-bit indices. Each requires different // handling for the gl_VertexIndex builtin. We may as well, then, create three // different shaders for these three scenarios. IndexType vertex_index_type = IndexType::None; // If set, a dummy [[sample_id]] input is added to a fragment shader if none is present. // This will force the shader to run at sample rate, assuming Metal does not optimize // the extra threads away. bool force_sample_rate_shading = false; bool is_ios() const { return platform == iOS; } bool is_macos() const { return platform == macOS; } void set_msl_version(uint32_t major, uint32_t minor = 0, uint32_t patch = 0) { msl_version = make_msl_version(major, minor, patch); } bool supports_msl_version(uint32_t major, uint32_t minor = 0, uint32_t patch = 0) const { return msl_version >= make_msl_version(major, minor, patch); } static uint32_t make_msl_version(uint32_t major, uint32_t minor = 0, uint32_t patch = 0) { return (major * 10000) + (minor * 100) + patch; } }; const Options &get_msl_options() const { return msl_options; } void set_msl_options(const Options &opts) { msl_options = opts; } // Provide feedback to calling API to allow runtime to disable pipeline // rasterization if vertex shader requires rasterization to be disabled. bool get_is_rasterization_disabled() const { return is_rasterization_disabled && (get_entry_point().model == spv::ExecutionModelVertex || get_entry_point().model == spv::ExecutionModelTessellationControl || get_entry_point().model == spv::ExecutionModelTessellationEvaluation); } // Provide feedback to calling API to allow it to pass an auxiliary // swizzle buffer if the shader needs it. bool needs_swizzle_buffer() const { return used_swizzle_buffer; } // Provide feedback to calling API to allow it to pass a buffer // containing STORAGE_BUFFER buffer sizes to support OpArrayLength. bool needs_buffer_size_buffer() const { return !buffers_requiring_array_length.empty(); } // Provide feedback to calling API to allow it to pass a buffer // containing the view mask for the current multiview subpass. bool needs_view_mask_buffer() const { return msl_options.multiview && !msl_options.view_index_from_device_index; } // Provide feedback to calling API to allow it to pass a buffer // containing the dispatch base workgroup ID. bool needs_dispatch_base_buffer() const { return msl_options.dispatch_base && !msl_options.supports_msl_version(1, 2); } // Provide feedback to calling API to allow it to pass an output // buffer if the shader needs it. bool needs_output_buffer() const { return capture_output_to_buffer && stage_out_var_id != ID(0); } // Provide feedback to calling API to allow it to pass a patch output // buffer if the shader needs it. bool needs_patch_output_buffer() const { return capture_output_to_buffer && patch_stage_out_var_id != ID(0); } // Provide feedback to calling API to allow it to pass an input threadgroup // buffer if the shader needs it. bool needs_input_threadgroup_mem() const { return capture_output_to_buffer && stage_in_var_id != ID(0); } explicit CompilerMSL(std::vector spirv); CompilerMSL(const uint32_t *ir, size_t word_count); explicit CompilerMSL(const ParsedIR &ir); explicit CompilerMSL(ParsedIR &&ir); // input is a shader input description used to fix up shader input variables. // If shader inputs are provided, is_msl_shader_input_used() will return true after // calling ::compile() if the location was used by the MSL code. void add_msl_shader_input(const MSLShaderInput &input); // resource is a resource binding to indicate the MSL buffer, // texture or sampler index to use for a particular SPIR-V description set // and binding. If resource bindings are provided, // is_msl_resource_binding_used() will return true after calling ::compile() if // the set/binding combination was used by the MSL code. void add_msl_resource_binding(const MSLResourceBinding &resource); // desc_set and binding are the SPIR-V descriptor set and binding of a buffer resource // in this shader. index is the index within the dynamic offset buffer to use. This // function marks that resource as using a dynamic offset (VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC // or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC). This function only has any effect if argument buffers // are enabled. If so, the buffer will have its address adjusted at the beginning of the shader with // an offset taken from the dynamic offset buffer. void add_dynamic_buffer(uint32_t desc_set, uint32_t binding, uint32_t index); // desc_set and binding are the SPIR-V descriptor set and binding of a buffer resource // in this shader. This function marks that resource as an inline uniform block // (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT). This function only has any effect if argument buffers // are enabled. If so, the buffer block will be directly embedded into the argument // buffer, instead of being referenced indirectly via pointer. void add_inline_uniform_block(uint32_t desc_set, uint32_t binding); // When using MSL argument buffers, we can force "classic" MSL 1.0 binding schemes for certain descriptor sets. // This corresponds to VK_KHR_push_descriptor in Vulkan. void add_discrete_descriptor_set(uint32_t desc_set); // If an argument buffer is large enough, it may need to be in the device storage space rather than // constant. Opt-in to this behavior here on a per set basis. void set_argument_buffer_device_address_space(uint32_t desc_set, bool device_storage); // Query after compilation is done. This allows you to check if an input location was used by the shader. bool is_msl_shader_input_used(uint32_t location); // If not using add_msl_shader_input, it's possible // that certain builtin attributes need to be automatically assigned locations. // This is typical for tessellation builtin inputs such as tess levels, gl_Position, etc. // This returns k_unknown_location if the location was explicitly assigned with // add_msl_shader_input or the builtin is not used, otherwise returns N in [[attribute(N)]]. uint32_t get_automatic_builtin_input_location(spv::BuiltIn builtin) const; // NOTE: Only resources which are remapped using add_msl_resource_binding will be reported here. // Constexpr samplers are always assumed to be emitted. // No specific MSLResourceBinding remapping is required for constexpr samplers as long as they are remapped // by remap_constexpr_sampler(_by_binding). bool is_msl_resource_binding_used(spv::ExecutionModel model, uint32_t set, uint32_t binding) const; // This must only be called after a successful call to CompilerMSL::compile(). // For a variable resource ID obtained through reflection API, report the automatically assigned resource index. // If the descriptor set was part of an argument buffer, report the [[id(N)]], // or [[buffer/texture/sampler]] binding for other resources. // If the resource was a combined image sampler, report the image binding here, // use the _secondary version of this call to query the sampler half of the resource. // If no binding exists, uint32_t(-1) is returned. uint32_t get_automatic_msl_resource_binding(uint32_t id) const; // Same as get_automatic_msl_resource_binding, but should only be used for combined image samplers, in which case the // sampler's binding is returned instead. For any other resource type, -1 is returned. // Secondary bindings are also used for the auxillary image atomic buffer. uint32_t get_automatic_msl_resource_binding_secondary(uint32_t id) const; // Same as get_automatic_msl_resource_binding, but should only be used for combined image samplers for multiplanar images, // in which case the second plane's binding is returned instead. For any other resource type, -1 is returned. uint32_t get_automatic_msl_resource_binding_tertiary(uint32_t id) const; // Same as get_automatic_msl_resource_binding, but should only be used for combined image samplers for triplanar images, // in which case the third plane's binding is returned instead. For any other resource type, -1 is returned. uint32_t get_automatic_msl_resource_binding_quaternary(uint32_t id) const; // Compiles the SPIR-V code into Metal Shading Language. std::string compile() override; // Remap a sampler with ID to a constexpr sampler. // Older iOS targets must use constexpr samplers in certain cases (PCF), // so a static sampler must be used. // The sampler will not consume a binding, but be declared in the entry point as a constexpr sampler. // This can be used on both combined image/samplers (sampler2D) or standalone samplers. // The remapped sampler must not be an array of samplers. // Prefer remap_constexpr_sampler_by_binding unless you're also doing reflection anyways. void remap_constexpr_sampler(VariableID id, const MSLConstexprSampler &sampler); // Same as remap_constexpr_sampler, except you provide set/binding, rather than variable ID. // Remaps based on ID take priority over set/binding remaps. void remap_constexpr_sampler_by_binding(uint32_t desc_set, uint32_t binding, const MSLConstexprSampler &sampler); // If using CompilerMSL::Options::pad_fragment_output_components, override the number of components we expect // to use for a particular location. The default is 4 if number of components is not overridden. void set_fragment_output_components(uint32_t location, uint32_t components); void set_combined_sampler_suffix(const char *suffix); const char *get_combined_sampler_suffix() const; protected: // An enum of SPIR-V functions that are implemented in additional // source code that is added to the shader if necessary. enum SPVFuncImpl { SPVFuncImplNone, SPVFuncImplMod, SPVFuncImplRadians, SPVFuncImplDegrees, SPVFuncImplFindILsb, SPVFuncImplFindSMsb, SPVFuncImplFindUMsb, SPVFuncImplSSign, SPVFuncImplArrayCopyMultidimBase, // Unfortunately, we cannot use recursive templates in the MSL compiler properly, // so stamp out variants up to some arbitrary maximum. SPVFuncImplArrayCopy = SPVFuncImplArrayCopyMultidimBase + 1, SPVFuncImplArrayOfArrayCopy2Dim = SPVFuncImplArrayCopyMultidimBase + 2, SPVFuncImplArrayOfArrayCopy3Dim = SPVFuncImplArrayCopyMultidimBase + 3, SPVFuncImplArrayOfArrayCopy4Dim = SPVFuncImplArrayCopyMultidimBase + 4, SPVFuncImplArrayOfArrayCopy5Dim = SPVFuncImplArrayCopyMultidimBase + 5, SPVFuncImplArrayOfArrayCopy6Dim = SPVFuncImplArrayCopyMultidimBase + 6, SPVFuncImplTexelBufferCoords, SPVFuncImplImage2DAtomicCoords, // Emulate texture2D atomic operations SPVFuncImplFMul, SPVFuncImplFAdd, SPVFuncImplFSub, SPVFuncImplQuantizeToF16, SPVFuncImplCubemapTo2DArrayFace, SPVFuncImplUnsafeArray, // Allow Metal to use the array template to make arrays a value type SPVFuncImplInverse4x4, SPVFuncImplInverse3x3, SPVFuncImplInverse2x2, // It is very important that this come before *Swizzle and ChromaReconstruct*, to ensure it's // emitted before them. SPVFuncImplForwardArgs, // Likewise, this must come before *Swizzle. SPVFuncImplGetSwizzle, SPVFuncImplTextureSwizzle, SPVFuncImplGatherSwizzle, SPVFuncImplGatherCompareSwizzle, SPVFuncImplSubgroupBroadcast, SPVFuncImplSubgroupBroadcastFirst, SPVFuncImplSubgroupBallot, SPVFuncImplSubgroupBallotBitExtract, SPVFuncImplSubgroupBallotFindLSB, SPVFuncImplSubgroupBallotFindMSB, SPVFuncImplSubgroupBallotBitCount, SPVFuncImplSubgroupAllEqual, SPVFuncImplSubgroupShuffle, SPVFuncImplSubgroupShuffleXor, SPVFuncImplSubgroupShuffleUp, SPVFuncImplSubgroupShuffleDown, SPVFuncImplQuadBroadcast, SPVFuncImplQuadSwap, SPVFuncImplReflectScalar, SPVFuncImplRefractScalar, SPVFuncImplFaceForwardScalar, SPVFuncImplChromaReconstructNearest2Plane, SPVFuncImplChromaReconstructNearest3Plane, SPVFuncImplChromaReconstructLinear422CositedEven2Plane, SPVFuncImplChromaReconstructLinear422CositedEven3Plane, SPVFuncImplChromaReconstructLinear422Midpoint2Plane, SPVFuncImplChromaReconstructLinear422Midpoint3Plane, SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven2Plane, SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven3Plane, SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven2Plane, SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven3Plane, SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint2Plane, SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint3Plane, SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint2Plane, SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane, SPVFuncImplExpandITUFullRange, SPVFuncImplExpandITUNarrowRange, SPVFuncImplConvertYCbCrBT709, SPVFuncImplConvertYCbCrBT601, SPVFuncImplConvertYCbCrBT2020, SPVFuncImplDynamicImageSampler, }; // If the underlying resource has been used for comparison then duplicate loads of that resource must be too // Use Metal's native frame-buffer fetch API for subpass inputs. void emit_texture_op(const Instruction &i, bool sparse) override; void emit_binary_unord_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op); void emit_instruction(const Instruction &instr) override; void emit_glsl_op(uint32_t result_type, uint32_t result_id, uint32_t op, const uint32_t *args, uint32_t count) override; void emit_spv_amd_shader_trinary_minmax_op(uint32_t result_type, uint32_t result_id, uint32_t op, const uint32_t *args, uint32_t count) override; void emit_header() override; void emit_function_prototype(SPIRFunction &func, const Bitset &return_flags) override; void emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id) override; void emit_subgroup_op(const Instruction &i) override; std::string to_texture_op(const Instruction &i, bool sparse, bool *forward, SmallVector &inherited_expressions) override; void emit_fixup() override; std::string to_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index, const std::string &qualifier = ""); void emit_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index, const std::string &qualifier = "", uint32_t base_offset = 0) override; void emit_struct_padding_target(const SPIRType &type) override; std::string type_to_glsl(const SPIRType &type, uint32_t id = 0) override; void emit_block_hints(const SPIRBlock &block) override; // Allow Metal to use the array template to make arrays a value type std::string type_to_array_glsl(const SPIRType &type) override; std::string constant_op_expression(const SPIRConstantOp &cop) override; // Threadgroup arrays can't have a wrapper type std::string variable_decl(const SPIRVariable &variable) override; bool variable_decl_is_remapped_storage(const SPIRVariable &variable, spv::StorageClass storage) const override; // GCC workaround of lambdas calling protected functions (for older GCC versions) std::string variable_decl(const SPIRType &type, const std::string &name, uint32_t id = 0) override; std::string image_type_glsl(const SPIRType &type, uint32_t id = 0) override; std::string sampler_type(const SPIRType &type, uint32_t id); std::string builtin_to_glsl(spv::BuiltIn builtin, spv::StorageClass storage) override; std::string to_func_call_arg(const SPIRFunction::Parameter &arg, uint32_t id) override; std::string to_name(uint32_t id, bool allow_alias = true) const override; std::string to_function_name(const TextureFunctionNameArguments &args) override; std::string to_function_args(const TextureFunctionArguments &args, bool *p_forward) override; std::string to_initializer_expression(const SPIRVariable &var) override; std::string to_zero_initialized_expression(uint32_t type_id) override; std::string unpack_expression_type(std::string expr_str, const SPIRType &type, uint32_t physical_type_id, bool is_packed, bool row_major) override; // Returns true for BuiltInSampleMask because gl_SampleMask[] is an array in SPIR-V, but [[sample_mask]] is a scalar in Metal. bool builtin_translates_to_nonarray(spv::BuiltIn builtin) const override; std::string bitcast_glsl_op(const SPIRType &result_type, const SPIRType &argument_type) override; bool emit_complex_bitcast(uint32_t result_id, uint32_t id, uint32_t op0) override; bool skip_argument(uint32_t id) const override; std::string to_member_reference(uint32_t base, const SPIRType &type, uint32_t index, bool ptr_chain) override; std::string to_qualifiers_glsl(uint32_t id) override; void replace_illegal_names() override; void declare_undefined_values() override; void declare_constant_arrays(); void replace_illegal_entry_point_names(); void sync_entry_point_aliases_and_names(); static const std::unordered_set &get_reserved_keyword_set(); static const std::unordered_set &get_illegal_func_names(); // Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries void declare_complex_constant_arrays(); bool is_patch_block(const SPIRType &type); bool is_non_native_row_major_matrix(uint32_t id) override; bool member_is_non_native_row_major_matrix(const SPIRType &type, uint32_t index) override; std::string convert_row_major_matrix(std::string exp_str, const SPIRType &exp_type, uint32_t physical_type_id, bool is_packed) override; void preprocess_op_codes(); void localize_global_variables(); void extract_global_variables_from_functions(); void mark_packable_structs(); void mark_as_packable(SPIRType &type); std::unordered_map> function_global_vars; void extract_global_variables_from_function(uint32_t func_id, std::set &added_arg_ids, std::unordered_set &global_var_ids, std::unordered_set &processed_func_ids); uint32_t add_interface_block(spv::StorageClass storage, bool patch = false); uint32_t add_interface_block_pointer(uint32_t ib_var_id, spv::StorageClass storage); struct InterfaceBlockMeta { struct LocationMeta { uint32_t base_type_id = 0; uint32_t num_components = 0; bool flat = false; bool noperspective = false; bool centroid = false; bool sample = false; }; std::unordered_map location_meta; bool strip_array = false; bool allow_local_declaration = false; }; std::string to_tesc_invocation_id(); void emit_local_masked_variable(const SPIRVariable &masked_var, bool strip_array); void add_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref, SPIRType &ib_type, SPIRVariable &var, InterfaceBlockMeta &meta); void add_composite_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref, SPIRType &ib_type, SPIRVariable &var, InterfaceBlockMeta &meta); void add_plain_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref, SPIRType &ib_type, SPIRVariable &var, InterfaceBlockMeta &meta); bool add_component_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref, SPIRVariable &var, const SPIRType &type, InterfaceBlockMeta &meta); void add_plain_member_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref, SPIRType &ib_type, SPIRVariable &var, uint32_t index, InterfaceBlockMeta &meta); void add_composite_member_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref, SPIRType &ib_type, SPIRVariable &var, uint32_t index, InterfaceBlockMeta &meta); void add_tess_level_input_to_interface_block(const std::string &ib_var_ref, SPIRType &ib_type, SPIRVariable &var); void fix_up_interface_member_indices(spv::StorageClass storage, uint32_t ib_type_id); void mark_location_as_used_by_shader(uint32_t location, const SPIRType &type, spv::StorageClass storage, bool fallback = false); uint32_t ensure_correct_builtin_type(uint32_t type_id, spv::BuiltIn builtin); uint32_t ensure_correct_input_type(uint32_t type_id, uint32_t location, uint32_t component, uint32_t num_components, bool strip_array); void emit_custom_templates(); void emit_custom_functions(); void emit_resources(); void emit_specialization_constants_and_structs(); void emit_interface_block(uint32_t ib_var_id); bool maybe_emit_array_assignment(uint32_t id_lhs, uint32_t id_rhs); uint32_t get_resource_array_size(uint32_t id) const; void fix_up_shader_inputs_outputs(); std::string func_type_decl(SPIRType &type); std::string entry_point_args_classic(bool append_comma); std::string entry_point_args_argument_buffer(bool append_comma); std::string entry_point_arg_stage_in(); void entry_point_args_builtin(std::string &args); void entry_point_args_discrete_descriptors(std::string &args); std::string to_qualified_member_name(const SPIRType &type, uint32_t index); std::string ensure_valid_name(std::string name, std::string pfx); std::string to_sampler_expression(uint32_t id); std::string to_swizzle_expression(uint32_t id); std::string to_buffer_size_expression(uint32_t id); bool is_sample_rate() const; bool is_intersection_query() const; bool is_direct_input_builtin(spv::BuiltIn builtin); std::string builtin_qualifier(spv::BuiltIn builtin); std::string builtin_type_decl(spv::BuiltIn builtin, uint32_t id = 0); std::string built_in_func_arg(spv::BuiltIn builtin, bool prefix_comma); std::string member_attribute_qualifier(const SPIRType &type, uint32_t index); std::string member_location_attribute_qualifier(const SPIRType &type, uint32_t index); std::string argument_decl(const SPIRFunction::Parameter &arg); std::string round_fp_tex_coords(std::string tex_coords, bool coord_is_fp); uint32_t get_metal_resource_index(SPIRVariable &var, SPIRType::BaseType basetype, uint32_t plane = 0); uint32_t get_member_location(uint32_t type_id, uint32_t index, uint32_t *comp = nullptr) const; uint32_t get_or_allocate_builtin_input_member_location(spv::BuiltIn builtin, uint32_t type_id, uint32_t index, uint32_t *comp = nullptr); uint32_t get_physical_tess_level_array_size(spv::BuiltIn builtin) const; // MSL packing rules. These compute the effective packing rules as observed by the MSL compiler in the MSL output. // These values can change depending on various extended decorations which control packing rules. // We need to make these rules match up with SPIR-V declared rules. uint32_t get_declared_type_size_msl(const SPIRType &type, bool packed, bool row_major) const; uint32_t get_declared_type_array_stride_msl(const SPIRType &type, bool packed, bool row_major) const; uint32_t get_declared_type_matrix_stride_msl(const SPIRType &type, bool packed, bool row_major) const; uint32_t get_declared_type_alignment_msl(const SPIRType &type, bool packed, bool row_major) const; uint32_t get_declared_struct_member_size_msl(const SPIRType &struct_type, uint32_t index) const; uint32_t get_declared_struct_member_array_stride_msl(const SPIRType &struct_type, uint32_t index) const; uint32_t get_declared_struct_member_matrix_stride_msl(const SPIRType &struct_type, uint32_t index) const; uint32_t get_declared_struct_member_alignment_msl(const SPIRType &struct_type, uint32_t index) const; uint32_t get_declared_input_size_msl(const SPIRType &struct_type, uint32_t index) const; uint32_t get_declared_input_array_stride_msl(const SPIRType &struct_type, uint32_t index) const; uint32_t get_declared_input_matrix_stride_msl(const SPIRType &struct_type, uint32_t index) const; uint32_t get_declared_input_alignment_msl(const SPIRType &struct_type, uint32_t index) const; const SPIRType &get_physical_member_type(const SPIRType &struct_type, uint32_t index) const; SPIRType get_presumed_input_type(const SPIRType &struct_type, uint32_t index) const; uint32_t get_declared_struct_size_msl(const SPIRType &struct_type, bool ignore_alignment = false, bool ignore_padding = false) const; std::string to_component_argument(uint32_t id); void align_struct(SPIRType &ib_type, std::unordered_set &aligned_structs); void mark_scalar_layout_structs(const SPIRType &ib_type); void mark_struct_members_packed(const SPIRType &type); void ensure_member_packing_rules_msl(SPIRType &ib_type, uint32_t index); bool validate_member_packing_rules_msl(const SPIRType &type, uint32_t index) const; std::string get_argument_address_space(const SPIRVariable &argument); std::string get_type_address_space(const SPIRType &type, uint32_t id, bool argument = false); const char *to_restrict(uint32_t id, bool space = true); SPIRType &get_stage_in_struct_type(); SPIRType &get_stage_out_struct_type(); SPIRType &get_patch_stage_in_struct_type(); SPIRType &get_patch_stage_out_struct_type(); std::string get_tess_factor_struct_name(); SPIRType &get_uint_type(); uint32_t get_uint_type_id(); void emit_atomic_func_op(uint32_t result_type, uint32_t result_id, const char *op, uint32_t mem_order_1, uint32_t mem_order_2, bool has_mem_order_2, uint32_t op0, uint32_t op1 = 0, bool op1_is_pointer = false, bool op1_is_literal = false, uint32_t op2 = 0); const char *get_memory_order(uint32_t spv_mem_sem); void add_pragma_line(const std::string &line); void add_typedef_line(const std::string &line); void emit_barrier(uint32_t id_exe_scope, uint32_t id_mem_scope, uint32_t id_mem_sem); void emit_array_copy(const std::string &lhs, uint32_t lhs_id, uint32_t rhs_id, spv::StorageClass lhs_storage, spv::StorageClass rhs_storage) override; void build_implicit_builtins(); uint32_t build_constant_uint_array_pointer(); void emit_entry_point_declarations() override; bool uses_explicit_early_fragment_test(); uint32_t builtin_frag_coord_id = 0; uint32_t builtin_sample_id_id = 0; uint32_t builtin_sample_mask_id = 0; uint32_t builtin_vertex_idx_id = 0; uint32_t builtin_base_vertex_id = 0; uint32_t builtin_instance_idx_id = 0; uint32_t builtin_base_instance_id = 0; uint32_t builtin_view_idx_id = 0; uint32_t builtin_layer_id = 0; uint32_t builtin_invocation_id_id = 0; uint32_t builtin_primitive_id_id = 0; uint32_t builtin_subgroup_invocation_id_id = 0; uint32_t builtin_subgroup_size_id = 0; uint32_t builtin_dispatch_base_id = 0; uint32_t builtin_stage_input_size_id = 0; uint32_t builtin_local_invocation_index_id = 0; uint32_t builtin_workgroup_size_id = 0; uint32_t swizzle_buffer_id = 0; uint32_t buffer_size_buffer_id = 0; uint32_t view_mask_buffer_id = 0; uint32_t dynamic_offsets_buffer_id = 0; uint32_t uint_type_id = 0; uint32_t argument_buffer_padding_buffer_type_id = 0; uint32_t argument_buffer_padding_image_type_id = 0; uint32_t argument_buffer_padding_sampler_type_id = 0; bool does_shader_write_sample_mask = false; void cast_to_variable_store(uint32_t target_id, std::string &expr, const SPIRType &expr_type) override; void cast_from_variable_load(uint32_t source_id, std::string &expr, const SPIRType &expr_type) override; void emit_store_statement(uint32_t lhs_expression, uint32_t rhs_expression) override; void analyze_sampled_image_usage(); bool access_chain_needs_stage_io_builtin_translation(uint32_t base) override; void prepare_access_chain_for_scalar_access(std::string &expr, const SPIRType &type, spv::StorageClass storage, bool &is_packed) override; void fix_up_interpolant_access_chain(const uint32_t *ops, uint32_t length); bool emit_tessellation_access_chain(const uint32_t *ops, uint32_t length); bool emit_tessellation_io_load(uint32_t result_type, uint32_t id, uint32_t ptr); bool is_out_of_bounds_tessellation_level(uint32_t id_lhs); void ensure_builtin(spv::StorageClass storage, spv::BuiltIn builtin); void mark_implicit_builtin(spv::StorageClass storage, spv::BuiltIn builtin, uint32_t id); std::string convert_to_f32(const std::string &expr, uint32_t components); Options msl_options; std::set spv_function_implementations; // Must be ordered to ensure declarations are in a specific order. std::map inputs_by_location; std::unordered_map inputs_by_builtin; std::unordered_set location_inputs_in_use; std::unordered_set location_inputs_in_use_fallback; std::unordered_map fragment_output_components; std::unordered_map builtin_to_automatic_input_location; std::set pragma_lines; std::set typedef_lines; SmallVector vars_needing_early_declaration; std::unordered_map, InternalHasher> resource_bindings; std::unordered_map resource_arg_buff_idx_to_binding_number; uint32_t next_metal_resource_index_buffer = 0; uint32_t next_metal_resource_index_texture = 0; uint32_t next_metal_resource_index_sampler = 0; // Intentionally uninitialized, works around MSVC 2013 bug. uint32_t next_metal_resource_ids[kMaxArgumentBuffers]; VariableID stage_in_var_id = 0; VariableID stage_out_var_id = 0; VariableID patch_stage_in_var_id = 0; VariableID patch_stage_out_var_id = 0; VariableID stage_in_ptr_var_id = 0; VariableID stage_out_ptr_var_id = 0; VariableID stage_out_masked_builtin_type_id = 0; // Handle HLSL-style 0-based vertex/instance index. enum class TriState { Neutral, No, Yes }; TriState needs_base_vertex_arg = TriState::Neutral; TriState needs_base_instance_arg = TriState::Neutral; bool has_sampled_images = false; bool builtin_declaration = false; // Handle HLSL-style 0-based vertex/instance index. bool is_using_builtin_array = false; // Force the use of C style array declaration. bool using_builtin_array() const; bool is_rasterization_disabled = false; bool capture_output_to_buffer = false; bool needs_swizzle_buffer_def = false; bool used_swizzle_buffer = false; bool added_builtin_tess_level = false; bool needs_subgroup_invocation_id = false; bool needs_subgroup_size = false; bool needs_sample_id = false; std::string qual_pos_var_name; std::string stage_in_var_name = "in"; std::string stage_out_var_name = "out"; std::string patch_stage_in_var_name = "patchIn"; std::string patch_stage_out_var_name = "patchOut"; std::string sampler_name_suffix = "Smplr"; std::string swizzle_name_suffix = "Swzl"; std::string buffer_size_name_suffix = "BufferSize"; std::string plane_name_suffix = "Plane"; std::string input_wg_var_name = "gl_in"; std::string input_buffer_var_name = "spvIn"; std::string output_buffer_var_name = "spvOut"; std::string patch_output_buffer_var_name = "spvPatchOut"; std::string tess_factor_buffer_var_name = "spvTessLevel"; std::string index_buffer_var_name = "spvIndices"; spv::Op previous_instruction_opcode = spv::OpNop; // Must be ordered since declaration is in a specific order. std::map constexpr_samplers_by_id; std::unordered_map constexpr_samplers_by_binding; const MSLConstexprSampler *find_constexpr_sampler(uint32_t id) const; std::unordered_set buffers_requiring_array_length; SmallVector buffer_arrays; std::unordered_set atomic_image_vars; // Emulate texture2D atomic operations std::unordered_set pull_model_inputs; // Must be ordered since array is in a specific order. std::map> buffers_requiring_dynamic_offset; SmallVector disabled_frag_outputs; std::unordered_set inline_uniform_blocks; uint32_t argument_buffer_ids[kMaxArgumentBuffers]; uint32_t argument_buffer_discrete_mask = 0; uint32_t argument_buffer_device_storage_mask = 0; void analyze_argument_buffers(); bool descriptor_set_is_argument_buffer(uint32_t desc_set) const; MSLResourceBinding &get_argument_buffer_resource(uint32_t desc_set, uint32_t arg_idx); void add_argument_buffer_padding_buffer_type(SPIRType &struct_type, uint32_t &mbr_idx, uint32_t &arg_buff_index, MSLResourceBinding &rez_bind); void add_argument_buffer_padding_image_type(SPIRType &struct_type, uint32_t &mbr_idx, uint32_t &arg_buff_index, MSLResourceBinding &rez_bind); void add_argument_buffer_padding_sampler_type(SPIRType &struct_type, uint32_t &mbr_idx, uint32_t &arg_buff_index, MSLResourceBinding &rez_bind); void add_argument_buffer_padding_type(uint32_t mbr_type_id, SPIRType &struct_type, uint32_t &mbr_idx, uint32_t &arg_buff_index, uint32_t count); uint32_t get_target_components_for_fragment_location(uint32_t location) const; uint32_t build_extended_vector_type(uint32_t type_id, uint32_t components, SPIRType::BaseType basetype = SPIRType::Unknown); uint32_t build_msl_interpolant_type(uint32_t type_id, bool is_noperspective); bool suppress_missing_prototypes = false; void add_spv_func_and_recompile(SPVFuncImpl spv_func); void activate_argument_buffer_resources(); bool type_is_msl_framebuffer_fetch(const SPIRType &type) const; bool type_is_pointer(const SPIRType &type) const; bool type_is_pointer_to_pointer(const SPIRType &type) const; bool is_supported_argument_buffer_type(const SPIRType &type) const; bool variable_storage_requires_stage_io(spv::StorageClass storage) const; bool has_additional_fixed_sample_mask() const { return msl_options.additional_fixed_sample_mask != 0xffffffff; } std::string additional_fixed_sample_mask_str() const; // OpcodeHandler that handles several MSL preprocessing operations. struct OpCodePreprocessor : OpcodeHandler { OpCodePreprocessor(CompilerMSL &compiler_) : compiler(compiler_) { } bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; CompilerMSL::SPVFuncImpl get_spv_func_impl(spv::Op opcode, const uint32_t *args); void check_resource_write(uint32_t var_id); CompilerMSL &compiler; std::unordered_map result_types; std::unordered_map image_pointers; // Emulate texture2D atomic operations bool suppress_missing_prototypes = false; bool uses_atomics = false; bool uses_resource_write = false; bool needs_subgroup_invocation_id = false; bool needs_subgroup_size = false; bool needs_sample_id = false; }; // OpcodeHandler that scans for uses of sampled images struct SampledImageScanner : OpcodeHandler { SampledImageScanner(CompilerMSL &compiler_) : compiler(compiler_) { } bool handle(spv::Op opcode, const uint32_t *args, uint32_t) override; CompilerMSL &compiler; }; // Sorts the members of a SPIRType and associated Meta info based on a settable sorting // aspect, which defines which aspect of the struct members will be used to sort them. // Regardless of the sorting aspect, built-in members always appear at the end of the struct. struct MemberSorter { enum SortAspect { LocationThenBuiltInType, Offset }; void sort(); bool operator()(uint32_t mbr_idx1, uint32_t mbr_idx2); MemberSorter(SPIRType &t, Meta &m, SortAspect sa); SPIRType &type; Meta &meta; SortAspect sort_aspect; }; }; } // namespace SPIRV_CROSS_NAMESPACE #endif