/* * Copyright 2018-2021 Arm Limited * SPDX-License-Identifier: Apache-2.0 OR MIT * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * At your option, you may choose to accept this material under either: * 1. The Apache License, Version 2.0, found at , or * 2. The MIT License, found at . */ #ifndef SPIRV_CROSS_PARSED_IR_HPP #define SPIRV_CROSS_PARSED_IR_HPP #include "spirv_common.hpp" #include #include namespace SPIRV_CROSS_NAMESPACE { // This data structure holds all information needed to perform cross-compilation and reflection. // It is the output of the Parser, but any implementation could create this structure. // It is intentionally very "open" and struct-like with some helper functions to deal with decorations. // Parser is the reference implementation of how this data structure should be filled in. class ParsedIR { private: // This must be destroyed after the "ids" vector. std::unique_ptr pool_group; public: ParsedIR(); // Due to custom allocations from object pools, we cannot use a default copy constructor. ParsedIR(const ParsedIR &other); ParsedIR &operator=(const ParsedIR &other); // Moves are unproblematic, but we need to implement it anyways, since MSVC 2013 does not understand // how to default-implement these. ParsedIR(ParsedIR &&other) SPIRV_CROSS_NOEXCEPT; ParsedIR &operator=(ParsedIR &&other) SPIRV_CROSS_NOEXCEPT; // Resizes ids, meta and block_meta. void set_id_bounds(uint32_t bounds); // The raw SPIR-V, instructions and opcodes refer to this by offset + count. std::vector spirv; // Holds various data structures which inherit from IVariant. SmallVector ids; // Various meta data for IDs, decorations, names, etc. std::unordered_map meta; // Holds all IDs which have a certain type. // This is needed so we can iterate through a specific kind of resource quickly, // and in-order of module declaration. SmallVector ids_for_type[TypeCount]; // Special purpose lists which contain a union of types. // This is needed so we can declare specialization constants and structs in an interleaved fashion, // among other things. // Constants can be undef or of struct type, and struct array sizes can use specialization constants. SmallVector ids_for_constant_undef_or_type; SmallVector ids_for_constant_or_variable; // We need to keep track of the width the Ops that contains a type for the // OpSwitch instruction, since this one doesn't contains the type in the // instruction itself. And in some case we need to cast the condition to // wider types. We only need the width to do the branch fixup since the // type check itself can be done at runtime std::unordered_map load_type_width; // Declared capabilities and extensions in the SPIR-V module. // Not really used except for reflection at the moment. SmallVector declared_capabilities; SmallVector declared_extensions; // Meta data about blocks. The cross-compiler needs to query if a block is either of these types. // It is a bitset as there can be more than one tag per block. enum BlockMetaFlagBits { BLOCK_META_LOOP_HEADER_BIT = 1 << 0, BLOCK_META_CONTINUE_BIT = 1 << 1, BLOCK_META_LOOP_MERGE_BIT = 1 << 2, BLOCK_META_SELECTION_MERGE_BIT = 1 << 3, BLOCK_META_MULTISELECT_MERGE_BIT = 1 << 4 }; using BlockMetaFlags = uint8_t; SmallVector block_meta; std::unordered_map continue_block_to_loop_header; // Normally, we'd stick SPIREntryPoint in ids array, but it conflicts with SPIRFunction. // Entry points can therefore be seen as some sort of meta structure. std::unordered_map entry_points; FunctionID default_entry_point = 0; struct Source { uint32_t version = 0; bool es = false; bool known = false; bool hlsl = false; Source() = default; }; Source source; spv::AddressingModel addressing_model = spv::AddressingModelMax; spv::MemoryModel memory_model = spv::MemoryModelMax; // Decoration handling methods. // Can be useful for simple "raw" reflection. // However, most members are here because the Parser needs most of these, // and might as well just have the whole suite of decoration/name handling in one place. void set_name(ID id, const std::string &name); const std::string &get_name(ID id) const; void set_decoration(ID id, spv::Decoration decoration, uint32_t argument = 0); void set_decoration_string(ID id, spv::Decoration decoration, const std::string &argument); bool has_decoration(ID id, spv::Decoration decoration) const; uint32_t get_decoration(ID id, spv::Decoration decoration) const; const std::string &get_decoration_string(ID id, spv::Decoration decoration) const; const Bitset &get_decoration_bitset(ID id) const; void unset_decoration(ID id, spv::Decoration decoration); // Decoration handling methods (for members of a struct). void set_member_name(TypeID id, uint32_t index, const std::string &name); const std::string &get_member_name(TypeID id, uint32_t index) const; void set_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration, uint32_t argument = 0); void set_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration, const std::string &argument); uint32_t get_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const; const std::string &get_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration) const; bool has_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const; const Bitset &get_member_decoration_bitset(TypeID id, uint32_t index) const; void unset_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration); void mark_used_as_array_length(ID id); uint32_t increase_bound_by(uint32_t count); Bitset get_buffer_block_flags(const SPIRVariable &var) const; Bitset get_buffer_block_type_flags(const SPIRType &type) const; void add_typed_id(Types type, ID id); void remove_typed_id(Types type, ID id); class LoopLock { public: explicit LoopLock(uint32_t *counter); LoopLock(const LoopLock &) = delete; void operator=(const LoopLock &) = delete; LoopLock(LoopLock &&other) SPIRV_CROSS_NOEXCEPT; LoopLock &operator=(LoopLock &&other) SPIRV_CROSS_NOEXCEPT; ~LoopLock(); private: uint32_t *lock = nullptr; }; // This must be held while iterating over a type ID array. // It is undefined if someone calls set<>() while we're iterating over a data structure, so we must // make sure that this case is avoided. // If we have a hard lock, it is an error to call set<>(), and an exception is thrown. // If we have a soft lock, we silently ignore any additions to the typed arrays. // This should only be used for physical ID remapping where we need to create an ID, but we will never // care about iterating over them. LoopLock create_loop_hard_lock() const; LoopLock create_loop_soft_lock() const; template void for_each_typed_id(const Op &op) { auto loop_lock = create_loop_hard_lock(); for (auto &id : ids_for_type[T::type]) { if (ids[id].get_type() == static_cast(T::type)) op(id, get(id)); } } template void for_each_typed_id(const Op &op) const { auto loop_lock = create_loop_hard_lock(); for (auto &id : ids_for_type[T::type]) { if (ids[id].get_type() == static_cast(T::type)) op(id, get(id)); } } template void reset_all_of_type() { reset_all_of_type(static_cast(T::type)); } void reset_all_of_type(Types type); Meta *find_meta(ID id); const Meta *find_meta(ID id) const; const std::string &get_empty_string() const { return empty_string; } void make_constant_null(uint32_t id, uint32_t type, bool add_to_typed_id_set); void fixup_reserved_names(); static void sanitize_underscores(std::string &str); static void sanitize_identifier(std::string &str, bool member, bool allow_reserved_prefixes); static bool is_globally_reserved_identifier(std::string &str, bool allow_reserved_prefixes); uint32_t get_spirv_version() const; private: template T &get(uint32_t id) { return variant_get(ids[id]); } template const T &get(uint32_t id) const { return variant_get(ids[id]); } mutable uint32_t loop_iteration_depth_hard = 0; mutable uint32_t loop_iteration_depth_soft = 0; std::string empty_string; Bitset cleared_bitset; std::unordered_set meta_needing_name_fixup; }; } // namespace SPIRV_CROSS_NAMESPACE #endif