RWByteAddressBuffer _15 : register(u0); ByteAddressBuffer _20 : register(t1); // Returns the inverse of a matrix, by using the algorithm of calculating the classical // adjoint and dividing by the determinant. The contents of the matrix are changed. float2x2 SPIRV_Cross_Inverse(float2x2 m) { float2x2 adj; // The adjoint matrix (inverse after dividing by determinant) // Create the transpose of the cofactors, as the classical adjoint of the matrix. adj[0][0] = m[1][1]; adj[0][1] = -m[0][1]; adj[1][0] = -m[1][0]; adj[1][1] = m[0][0]; // Calculate the determinant as a combination of the cofactors of the first row. float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]); // Divide the classical adjoint matrix by the determinant. // If determinant is zero, matrix is not invertable, so leave it unchanged. return (det != 0.0f) ? (adj * (1.0f / det)) : m; } // Returns the determinant of a 2x2 matrix. float SPIRV_Cross_Det2x2(float a1, float a2, float b1, float b2) { return a1 * b2 - b1 * a2; } // Returns the inverse of a matrix, by using the algorithm of calculating the classical // adjoint and dividing by the determinant. The contents of the matrix are changed. float3x3 SPIRV_Cross_Inverse(float3x3 m) { float3x3 adj; // The adjoint matrix (inverse after dividing by determinant) // Create the transpose of the cofactors, as the classical adjoint of the matrix. adj[0][0] = SPIRV_Cross_Det2x2(m[1][1], m[1][2], m[2][1], m[2][2]); adj[0][1] = -SPIRV_Cross_Det2x2(m[0][1], m[0][2], m[2][1], m[2][2]); adj[0][2] = SPIRV_Cross_Det2x2(m[0][1], m[0][2], m[1][1], m[1][2]); adj[1][0] = -SPIRV_Cross_Det2x2(m[1][0], m[1][2], m[2][0], m[2][2]); adj[1][1] = SPIRV_Cross_Det2x2(m[0][0], m[0][2], m[2][0], m[2][2]); adj[1][2] = -SPIRV_Cross_Det2x2(m[0][0], m[0][2], m[1][0], m[1][2]); adj[2][0] = SPIRV_Cross_Det2x2(m[1][0], m[1][1], m[2][0], m[2][1]); adj[2][1] = -SPIRV_Cross_Det2x2(m[0][0], m[0][1], m[2][0], m[2][1]); adj[2][2] = SPIRV_Cross_Det2x2(m[0][0], m[0][1], m[1][0], m[1][1]); // Calculate the determinant as a combination of the cofactors of the first row. float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]); // Divide the classical adjoint matrix by the determinant. // If determinant is zero, matrix is not invertable, so leave it unchanged. return (det != 0.0f) ? (adj * (1.0f / det)) : m; } // Returns the determinant of a 3x3 matrix. float SPIRV_Cross_Det3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3) { return a1 * SPIRV_Cross_Det2x2(b2, b3, c2, c3) - b1 * SPIRV_Cross_Det2x2(a2, a3, c2, c3) + c1 * SPIRV_Cross_Det2x2(a2, a3, b2, b3); } // Returns the inverse of a matrix, by using the algorithm of calculating the classical // adjoint and dividing by the determinant. The contents of the matrix are changed. float4x4 SPIRV_Cross_Inverse(float4x4 m) { float4x4 adj; // The adjoint matrix (inverse after dividing by determinant) // Create the transpose of the cofactors, as the classical adjoint of the matrix. adj[0][0] = SPIRV_Cross_Det3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]); adj[0][1] = -SPIRV_Cross_Det3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]); adj[0][2] = SPIRV_Cross_Det3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], m[3][3]); adj[0][3] = -SPIRV_Cross_Det3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3]); adj[1][0] = -SPIRV_Cross_Det3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]); adj[1][1] = SPIRV_Cross_Det3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]); adj[1][2] = -SPIRV_Cross_Det3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], m[3][3]); adj[1][3] = SPIRV_Cross_Det3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3]); adj[2][0] = SPIRV_Cross_Det3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]); adj[2][1] = -SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]); adj[2][2] = SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], m[3][3]); adj[2][3] = -SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3]); adj[3][0] = -SPIRV_Cross_Det3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]); adj[3][1] = SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]); adj[3][2] = -SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], m[3][2]); adj[3][3] = SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2]); // Calculate the determinant as a combination of the cofactors of the first row. float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] * m[3][0]); // Divide the classical adjoint matrix by the determinant. // If determinant is zero, matrix is not invertable, so leave it unchanged. return (det != 0.0f) ? (adj * (1.0f / det)) : m; } void comp_main() { float2x2 _23 = asfloat(uint2x2(_20.Load2(0), _20.Load2(8))); float2x2 _24 = SPIRV_Cross_Inverse(_23); _15.Store2(0, asuint(_24[0])); _15.Store2(8, asuint(_24[1])); float3x3 _29 = asfloat(uint3x3(_20.Load3(16), _20.Load3(32), _20.Load3(48))); float3x3 _30 = SPIRV_Cross_Inverse(_29); _15.Store3(16, asuint(_30[0])); _15.Store3(32, asuint(_30[1])); _15.Store3(48, asuint(_30[2])); float4x4 _35 = asfloat(uint4x4(_20.Load4(64), _20.Load4(80), _20.Load4(96), _20.Load4(112))); float4x4 _36 = SPIRV_Cross_Inverse(_35); _15.Store4(64, asuint(_36[0])); _15.Store4(80, asuint(_36[1])); _15.Store4(96, asuint(_36[2])); _15.Store4(112, asuint(_36[3])); } [numthreads(1, 1, 1)] void main() { comp_main(); }