#pragma clang diagnostic ignored "-Wmissing-prototypes" #include #include using namespace metal; struct UBO { float4x4 uMVP; float3 rotDeg; float3 rotRad; int2 bits; }; struct main0_in { float3 aNormal [[attribute(1)]]; float4 aVertex [[attribute(0)]]; }; struct main0_out { float3 vNormal [[user(locn0)]]; float3 vRotDeg [[user(locn1)]]; float3 vRotRad [[user(locn2)]]; int2 vLSB [[user(locn3)]]; int2 vMSB [[user(locn4)]]; float4 gl_Position [[position]]; }; // Implementation of the GLSL radians() function template T radians(T d) { return d * 0.01745329251; } // Implementation of the GLSL degrees() function template T degrees(T r) { return r * 57.2957795131; } // Implementation of the GLSL findLSB() function template T findLSB(T x) { return select(ctz(x), -1, x == 0); } // Implementation of the signed GLSL findMSB() function template T findSMSB(T x) { T v = select(x, -1 - x, x < 0); return select(clz(0) - (clz(v) + 1), -1, v == 0); } // Returns the determinant of a 2x2 matrix. inline float spvDet2x2(float a1, float a2, float b1, float b2) { return a1 * b2 - b1 * a2; } // Returns the determinant of a 3x3 matrix. inline float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3) { return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, b2, b3); } // Returns the inverse of a matrix, by using the algorithm of calculating the classical // adjoint and dividing by the determinant. The contents of the matrix are changed. float4x4 spvInverse4x4(float4x4 m) { float4x4 adj; // The adjoint matrix (inverse after dividing by determinant) // Create the transpose of the cofactors, as the classical adjoint of the matrix. adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]); adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]); adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], m[3][3]); adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3]); adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]); adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]); adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], m[3][3]); adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3]); adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]); adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]); adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], m[3][3]); adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3]); adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]); adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]); adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], m[3][2]); adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2]); // Calculate the determinant as a combination of the cofactors of the first row. float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] * m[3][0]); // Divide the classical adjoint matrix by the determinant. // If determinant is zero, matrix is not invertable, so leave it unchanged. return (det != 0.0f) ? (adj * (1.0f / det)) : m; } vertex main0_out main0(main0_in in [[stage_in]], constant UBO& _18 [[buffer(0)]]) { main0_out out = {}; out.gl_Position = spvInverse4x4(_18.uMVP) * in.aVertex; out.vNormal = in.aNormal; out.vRotDeg = degrees(_18.rotRad); out.vRotRad = radians(_18.rotDeg); out.vLSB = findLSB(_18.bits); out.vMSB = findSMSB(_18.bits); return out; }