/* * Copyright 2015-2016 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "spirv_cross.hpp" #include "GLSL.std.450.h" #include "spirv_cfg.hpp" #include #include #include using namespace std; using namespace spv; using namespace spirv_cross; #define log(...) fprintf(stderr, __VA_ARGS__) Instruction::Instruction(const vector &spirv, uint32_t &index) { op = spirv[index] & 0xffff; count = (spirv[index] >> 16) & 0xffff; if (count == 0) SPIRV_CROSS_THROW("SPIR-V instructions cannot consume 0 words. Invalid SPIR-V file."); offset = index + 1; length = count - 1; index += count; if (index > spirv.size()) SPIRV_CROSS_THROW("SPIR-V instruction goes out of bounds."); } Compiler::Compiler(vector ir) : spirv(move(ir)) { parse(); } string Compiler::compile() { // Force a classic "C" locale, reverts when function returns ClassicLocale classic_locale; return ""; } bool Compiler::variable_storage_is_aliased(const SPIRVariable &v) { auto &type = get(v.basetype); bool ssbo = (meta[type.self].decoration.decoration_flags & (1ull << DecorationBufferBlock)) != 0; bool image = type.basetype == SPIRType::Image; bool counter = type.basetype == SPIRType::AtomicCounter; bool is_restrict = (meta[v.self].decoration.decoration_flags & (1ull << DecorationRestrict)) != 0; return !is_restrict && (ssbo || image || counter); } bool Compiler::block_is_pure(const SPIRBlock &block) { for (auto &i : block.ops) { auto ops = stream(i); auto op = static_cast(i.op); switch (op) { case OpFunctionCall: { uint32_t func = ops[2]; if (!function_is_pure(get(func))) return false; break; } case OpCopyMemory: case OpStore: { auto &type = expression_type(ops[0]); if (type.storage != StorageClassFunction) return false; break; } case OpImageWrite: return false; // Atomics are impure. case OpAtomicLoad: case OpAtomicStore: case OpAtomicExchange: case OpAtomicCompareExchange: case OpAtomicIIncrement: case OpAtomicIDecrement: case OpAtomicIAdd: case OpAtomicISub: case OpAtomicSMin: case OpAtomicUMin: case OpAtomicSMax: case OpAtomicUMax: case OpAtomicAnd: case OpAtomicOr: case OpAtomicXor: return false; // Geometry shader builtins modify global state. case OpEndPrimitive: case OpEmitStreamVertex: case OpEndStreamPrimitive: case OpEmitVertex: return false; // Barriers disallow any reordering, so we should treat blocks with barrier as writing. case OpControlBarrier: case OpMemoryBarrier: return false; // OpExtInst is potentially impure depending on extension, but GLSL builtins are at least pure. default: break; } } return true; } string Compiler::to_name(uint32_t id, bool allow_alias) { if (allow_alias && ids.at(id).get_type() == TypeType) { // If this type is a simple alias, emit the // name of the original type instead. // We don't want to override the meta alias // as that can be overridden by the reflection APIs after parse. auto &type = get(id); if (type.type_alias) return to_name(type.type_alias); } if (meta[id].decoration.alias.empty()) return join("_", id); else return meta.at(id).decoration.alias; } bool Compiler::function_is_pure(const SPIRFunction &func) { for (auto block : func.blocks) { if (!block_is_pure(get(block))) { //fprintf(stderr, "Function %s is impure!\n", to_name(func.self).c_str()); return false; } } //fprintf(stderr, "Function %s is pure!\n", to_name(func.self).c_str()); return true; } void Compiler::register_global_read_dependencies(const SPIRBlock &block, uint32_t id) { for (auto &i : block.ops) { auto ops = stream(i); auto op = static_cast(i.op); switch (op) { case OpFunctionCall: { uint32_t func = ops[2]; register_global_read_dependencies(get(func), id); break; } case OpLoad: case OpImageRead: { // If we're in a storage class which does not get invalidated, adding dependencies here is no big deal. auto *var = maybe_get_backing_variable(ops[2]); if (var && var->storage != StorageClassFunction) { auto &type = get(var->basetype); // InputTargets are immutable. if (type.basetype != SPIRType::Image && type.image.dim != DimSubpassData) var->dependees.push_back(id); } break; } default: break; } } } void Compiler::register_global_read_dependencies(const SPIRFunction &func, uint32_t id) { for (auto block : func.blocks) register_global_read_dependencies(get(block), id); } SPIRVariable *Compiler::maybe_get_backing_variable(uint32_t chain) { auto *var = maybe_get(chain); if (!var) { auto *cexpr = maybe_get(chain); if (cexpr) var = maybe_get(cexpr->loaded_from); } return var; } void Compiler::register_read(uint32_t expr, uint32_t chain, bool forwarded) { auto &e = get(expr); auto *var = maybe_get_backing_variable(chain); if (var) { e.loaded_from = var->self; // If the backing variable is immutable, we do not need to depend on the variable. if (forwarded && !is_immutable(var->self)) var->dependees.push_back(e.self); // If we load from a parameter, make sure we create "inout" if we also write to the parameter. // The default is "in" however, so we never invalidate our compilation by reading. if (var && var->parameter) var->parameter->read_count++; } } void Compiler::register_write(uint32_t chain) { auto *var = maybe_get(chain); if (!var) { // If we're storing through an access chain, invalidate the backing variable instead. auto *expr = maybe_get(chain); if (expr && expr->loaded_from) var = maybe_get(expr->loaded_from); } if (var) { // If our variable is in a storage class which can alias with other buffers, // invalidate all variables which depend on aliased variables. if (variable_storage_is_aliased(*var)) flush_all_aliased_variables(); else if (var) flush_dependees(*var); // We tried to write to a parameter which is not marked with out qualifier, force a recompile. if (var->parameter && var->parameter->write_count == 0) { var->parameter->write_count++; force_recompile = true; } } } void Compiler::flush_dependees(SPIRVariable &var) { for (auto expr : var.dependees) invalid_expressions.insert(expr); var.dependees.clear(); } void Compiler::flush_all_aliased_variables() { for (auto aliased : aliased_variables) flush_dependees(get(aliased)); } void Compiler::flush_all_atomic_capable_variables() { for (auto global : global_variables) flush_dependees(get(global)); flush_all_aliased_variables(); } void Compiler::flush_all_active_variables() { // Invalidate all temporaries we read from variables in this block since they were forwarded. // Invalidate all temporaries we read from globals. for (auto &v : current_function->local_variables) flush_dependees(get(v)); for (auto &arg : current_function->arguments) flush_dependees(get(arg.id)); for (auto global : global_variables) flush_dependees(get(global)); flush_all_aliased_variables(); } const SPIRType &Compiler::expression_type(uint32_t id) const { switch (ids[id].get_type()) { case TypeVariable: return get(get(id).basetype); case TypeExpression: return get(get(id).expression_type); case TypeConstant: return get(get(id).constant_type); case TypeConstantOp: return get(get(id).basetype); case TypeUndef: return get(get(id).basetype); default: SPIRV_CROSS_THROW("Cannot resolve expression type."); } } bool Compiler::expression_is_lvalue(uint32_t id) const { auto &type = expression_type(id); switch (type.basetype) { case SPIRType::SampledImage: case SPIRType::Image: case SPIRType::Sampler: return false; default: return true; } } bool Compiler::is_immutable(uint32_t id) const { if (ids[id].get_type() == TypeVariable) { auto &var = get(id); // Anything we load from the UniformConstant address space is guaranteed to be immutable. bool pointer_to_const = var.storage == StorageClassUniformConstant; return pointer_to_const || var.phi_variable || !expression_is_lvalue(id); } else if (ids[id].get_type() == TypeExpression) return get(id).immutable; else if (ids[id].get_type() == TypeConstant || ids[id].get_type() == TypeConstantOp || ids[id].get_type() == TypeUndef) return true; else return false; } static inline bool storage_class_is_interface(spv::StorageClass storage) { switch (storage) { case StorageClassInput: case StorageClassOutput: case StorageClassUniform: case StorageClassUniformConstant: case StorageClassAtomicCounter: case StorageClassPushConstant: return true; default: return false; } } bool Compiler::is_hidden_variable(const SPIRVariable &var, bool include_builtins) const { if ((is_builtin_variable(var) && !include_builtins) || var.remapped_variable) return true; // Combined image samplers are always considered active as they are "magic" variables. if (find_if(begin(combined_image_samplers), end(combined_image_samplers), [&var](const CombinedImageSampler &samp) { return samp.combined_id == var.self; }) != end(combined_image_samplers)) { return false; } bool hidden = false; if (check_active_interface_variables && storage_class_is_interface(var.storage)) hidden = active_interface_variables.find(var.self) == end(active_interface_variables); return hidden; } bool Compiler::is_builtin_variable(const SPIRVariable &var) const { if (var.compat_builtin || meta[var.self].decoration.builtin) return true; // We can have builtin structs as well. If one member of a struct is builtin, the struct must also be builtin. for (auto &m : meta[get(var.basetype).self].members) if (m.builtin) return true; return false; } bool Compiler::is_member_builtin(const SPIRType &type, uint32_t index, BuiltIn *builtin) const { auto &memb = meta[type.self].members; if (index < memb.size() && memb[index].builtin) { if (builtin) *builtin = memb[index].builtin_type; return true; } return false; } bool Compiler::is_scalar(const SPIRType &type) const { return type.vecsize == 1 && type.columns == 1; } bool Compiler::is_vector(const SPIRType &type) const { return type.vecsize > 1 && type.columns == 1; } bool Compiler::is_matrix(const SPIRType &type) const { return type.vecsize > 1 && type.columns > 1; } ShaderResources Compiler::get_shader_resources() const { return get_shader_resources(nullptr); } ShaderResources Compiler::get_shader_resources(const unordered_set &active_variables) const { return get_shader_resources(&active_variables); } bool Compiler::InterfaceVariableAccessHandler::handle(Op opcode, const uint32_t *args, uint32_t length) { uint32_t variable = 0; switch (opcode) { // Need this first, otherwise, GCC complains about unhandled switch statements. default: break; case OpFunctionCall: { // Invalid SPIR-V. if (length < 3) return false; uint32_t count = length - 3; args += 3; for (uint32_t i = 0; i < count; i++) { auto *var = compiler.maybe_get(args[i]); if (var && storage_class_is_interface(var->storage)) variables.insert(args[i]); } break; } case OpAtomicStore: case OpStore: // Invalid SPIR-V. if (length < 1) return false; variable = args[0]; break; case OpCopyMemory: { if (length < 3) return false; auto *var = compiler.maybe_get(args[0]); if (var && storage_class_is_interface(var->storage)) variables.insert(variable); var = compiler.maybe_get(args[1]); if (var && storage_class_is_interface(var->storage)) variables.insert(variable); break; } case OpAccessChain: case OpInBoundsAccessChain: case OpLoad: case OpCopyObject: case OpImageTexelPointer: case OpAtomicLoad: case OpAtomicExchange: case OpAtomicCompareExchange: case OpAtomicIIncrement: case OpAtomicIDecrement: case OpAtomicIAdd: case OpAtomicISub: case OpAtomicSMin: case OpAtomicUMin: case OpAtomicSMax: case OpAtomicUMax: case OpAtomicAnd: case OpAtomicOr: case OpAtomicXor: // Invalid SPIR-V. if (length < 3) return false; variable = args[2]; break; } if (variable) { auto *var = compiler.maybe_get(variable); if (var && storage_class_is_interface(var->storage)) variables.insert(variable); } return true; } unordered_set Compiler::get_active_interface_variables() const { // Traverse the call graph and find all interface variables which are in use. unordered_set variables; InterfaceVariableAccessHandler handler(*this, variables); traverse_all_reachable_opcodes(get(entry_point), handler); return variables; } void Compiler::set_enabled_interface_variables(std::unordered_set active_variables) { active_interface_variables = move(active_variables); check_active_interface_variables = true; } ShaderResources Compiler::get_shader_resources(const unordered_set *active_variables) const { ShaderResources res; for (auto &id : ids) { if (id.get_type() != TypeVariable) continue; auto &var = id.get(); auto &type = get(var.basetype); // It is possible for uniform storage classes to be passed as function parameters, so detect // that. To detect function parameters, check of StorageClass of variable is function scope. if (var.storage == StorageClassFunction || !type.pointer || is_builtin_variable(var)) continue; if (active_variables && active_variables->find(var.self) == end(*active_variables)) continue; // Input if (var.storage == StorageClassInput && interface_variable_exists_in_entry_point(var.self)) { if (meta[type.self].decoration.decoration_flags & (1ull << DecorationBlock)) res.stage_inputs.push_back({ var.self, var.basetype, type.self, meta[type.self].decoration.alias }); else res.stage_inputs.push_back({ var.self, var.basetype, type.self, meta[var.self].decoration.alias }); } // Subpass inputs else if (var.storage == StorageClassUniformConstant && type.image.dim == DimSubpassData) { res.subpass_inputs.push_back({ var.self, var.basetype, type.self, meta[var.self].decoration.alias }); } // Outputs else if (var.storage == StorageClassOutput && interface_variable_exists_in_entry_point(var.self)) { if (meta[type.self].decoration.decoration_flags & (1ull << DecorationBlock)) res.stage_outputs.push_back({ var.self, var.basetype, type.self, meta[type.self].decoration.alias }); else res.stage_outputs.push_back({ var.self, var.basetype, type.self, meta[var.self].decoration.alias }); } // UBOs else if (type.storage == StorageClassUniform && (meta[type.self].decoration.decoration_flags & (1ull << DecorationBlock))) { res.uniform_buffers.push_back({ var.self, var.basetype, type.self, meta[type.self].decoration.alias }); } // SSBOs else if (type.storage == StorageClassUniform && (meta[type.self].decoration.decoration_flags & (1ull << DecorationBufferBlock))) { res.storage_buffers.push_back({ var.self, var.basetype, type.self, meta[type.self].decoration.alias }); } // Push constant blocks else if (type.storage == StorageClassPushConstant) { // There can only be one push constant block, but keep the vector in case this restriction is lifted // in the future. res.push_constant_buffers.push_back({ var.self, var.basetype, type.self, meta[var.self].decoration.alias }); } // Images else if (type.storage == StorageClassUniformConstant && type.basetype == SPIRType::Image && type.image.sampled == 2) { res.storage_images.push_back({ var.self, var.basetype, type.self, meta[var.self].decoration.alias }); } // Separate images else if (type.storage == StorageClassUniformConstant && type.basetype == SPIRType::Image && type.image.sampled == 1) { res.separate_images.push_back({ var.self, var.basetype, type.self, meta[var.self].decoration.alias }); } // Separate samplers else if (type.storage == StorageClassUniformConstant && type.basetype == SPIRType::Sampler) { res.separate_samplers.push_back({ var.self, var.basetype, type.self, meta[var.self].decoration.alias }); } // Textures else if (type.storage == StorageClassUniformConstant && type.basetype == SPIRType::SampledImage) { res.sampled_images.push_back({ var.self, var.basetype, type.self, meta[var.self].decoration.alias }); } // Atomic counters else if (type.storage == StorageClassAtomicCounter) { res.atomic_counters.push_back({ var.self, var.basetype, type.self, meta[var.self].decoration.alias }); } } return res; } static inline uint32_t swap_endian(uint32_t v) { return ((v >> 24) & 0x000000ffu) | ((v >> 8) & 0x0000ff00u) | ((v << 8) & 0x00ff0000u) | ((v << 24) & 0xff000000u); } static string extract_string(const vector &spirv, uint32_t offset) { string ret; for (uint32_t i = offset; i < spirv.size(); i++) { uint32_t w = spirv[i]; for (uint32_t j = 0; j < 4; j++, w >>= 8) { char c = w & 0xff; if (c == '\0') return ret; ret += c; } } SPIRV_CROSS_THROW("String was not terminated before EOF"); } static bool is_valid_spirv_version(uint32_t version) { switch (version) { // Allow v99 since it tends to just work. case 99: case 0x10000: // SPIR-V 1.0 case 0x10100: // SPIR-V 1.1 return true; default: return false; } } void Compiler::parse() { auto len = spirv.size(); if (len < 5) SPIRV_CROSS_THROW("SPIRV file too small."); auto s = spirv.data(); // Endian-swap if we need to. if (s[0] == swap_endian(MagicNumber)) transform(begin(spirv), end(spirv), begin(spirv), [](uint32_t c) { return swap_endian(c); }); if (s[0] != MagicNumber || !is_valid_spirv_version(s[1])) SPIRV_CROSS_THROW("Invalid SPIRV format."); uint32_t bound = s[3]; ids.resize(bound); meta.resize(bound); uint32_t offset = 5; while (offset < len) inst.emplace_back(spirv, offset); for (auto &i : inst) parse(i); if (current_function) SPIRV_CROSS_THROW("Function was not terminated."); if (current_block) SPIRV_CROSS_THROW("Block was not terminated."); } void Compiler::flatten_interface_block(uint32_t id) { auto &var = get(id); auto &type = get(var.basetype); auto flags = meta.at(type.self).decoration.decoration_flags; if (!type.array.empty()) SPIRV_CROSS_THROW("Type is array of UBOs."); if (type.basetype != SPIRType::Struct) SPIRV_CROSS_THROW("Type is not a struct."); if ((flags & (1ull << DecorationBlock)) == 0) SPIRV_CROSS_THROW("Type is not a block."); if (type.member_types.empty()) SPIRV_CROSS_THROW("Member list of struct is empty."); uint32_t t = type.member_types[0]; for (auto &m : type.member_types) if (t != m) SPIRV_CROSS_THROW("Types in block differ."); auto &mtype = get(t); if (!mtype.array.empty()) SPIRV_CROSS_THROW("Member type cannot be arrays."); if (mtype.basetype == SPIRType::Struct) SPIRV_CROSS_THROW("Member type cannot be struct."); // Inherit variable name from interface block name. meta.at(var.self).decoration.alias = meta.at(type.self).decoration.alias; auto storage = var.storage; if (storage == StorageClassUniform) storage = StorageClassUniformConstant; // Change type definition in-place into an array instead. // Access chains will still work as-is. uint32_t array_size = uint32_t(type.member_types.size()); type = mtype; type.array.push_back(array_size); type.pointer = true; type.storage = storage; var.storage = storage; } void Compiler::update_name_cache(unordered_set &cache, string &name) { if (name.empty()) return; if (cache.find(name) == end(cache)) { cache.insert(name); return; } uint32_t counter = 0; auto tmpname = name; // If there is a collision (very rare), // keep tacking on extra identifier until it's unique. do { counter++; name = tmpname + "_" + convert_to_string(counter); } while (cache.find(name) != end(cache)); cache.insert(name); } void Compiler::set_name(uint32_t id, const std::string &name) { auto &str = meta.at(id).decoration.alias; str.clear(); if (name.empty()) return; // Reserved for temporaries. if (name[0] == '_' && name.size() >= 2 && isdigit(name[1])) return; // Functions in glslangValidator are mangled with name( stuff. // Normally, we would never see '(' in any legal identifiers, so just strip them out. str = name.substr(0, name.find('(')); for (uint32_t i = 0; i < str.size(); i++) { auto &c = str[i]; // _ variables are reserved by the internal implementation, // otherwise, make sure the name is a valid identifier. if (i == 0 || (str[0] == '_' && i == 1)) c = isalpha(c) ? c : '_'; else c = isalnum(c) ? c : '_'; } } const SPIRType &Compiler::get_type(uint32_t id) const { return get(id); } void Compiler::set_member_decoration(uint32_t id, uint32_t index, Decoration decoration, uint32_t argument) { meta.at(id).members.resize(max(meta[id].members.size(), size_t(index) + 1)); auto &dec = meta.at(id).members[index]; dec.decoration_flags |= 1ull << decoration; switch (decoration) { case DecorationBuiltIn: dec.builtin = true; dec.builtin_type = static_cast(argument); break; case DecorationLocation: dec.location = argument; break; case DecorationOffset: dec.offset = argument; break; case DecorationSpecId: dec.spec_id = argument; break; default: break; } } void Compiler::set_member_name(uint32_t id, uint32_t index, const std::string &name) { meta.at(id).members.resize(max(meta[id].members.size(), size_t(index) + 1)); meta.at(id).members[index].alias = name; } const std::string &Compiler::get_member_name(uint32_t id, uint32_t index) const { auto &m = meta.at(id); if (index >= m.members.size()) { static string empty; return empty; } return m.members[index].alias; } void Compiler::set_member_qualified_name(uint32_t id, uint32_t index, const std::string &name) { meta.at(id).members.resize(max(meta[id].members.size(), size_t(index) + 1)); meta.at(id).members[index].qualified_alias = name; } uint32_t Compiler::get_member_decoration(uint32_t id, uint32_t index, Decoration decoration) const { auto &m = meta.at(id); if (index >= m.members.size()) return 0; auto &dec = m.members[index]; if (!(dec.decoration_flags & (1ull << decoration))) return 0; switch (decoration) { case DecorationBuiltIn: return dec.builtin_type; case DecorationLocation: return dec.location; case DecorationOffset: return dec.offset; case DecorationSpecId: return dec.spec_id; default: return 1; } } uint64_t Compiler::get_member_decoration_mask(uint32_t id, uint32_t index) const { auto &m = meta.at(id); if (index >= m.members.size()) return 0; return m.members[index].decoration_flags; } void Compiler::unset_member_decoration(uint32_t id, uint32_t index, Decoration decoration) { auto &m = meta.at(id); if (index >= m.members.size()) return; auto &dec = m.members[index]; dec.decoration_flags &= ~(1ull << decoration); switch (decoration) { case DecorationBuiltIn: dec.builtin = false; break; case DecorationLocation: dec.location = 0; break; case DecorationOffset: dec.offset = 0; break; case DecorationSpecId: dec.spec_id = 0; break; default: break; } } void Compiler::set_decoration(uint32_t id, Decoration decoration, uint32_t argument) { auto &dec = meta.at(id).decoration; dec.decoration_flags |= 1ull << decoration; switch (decoration) { case DecorationBuiltIn: dec.builtin = true; dec.builtin_type = static_cast(argument); break; case DecorationLocation: dec.location = argument; break; case DecorationOffset: dec.offset = argument; break; case DecorationArrayStride: dec.array_stride = argument; break; case DecorationBinding: dec.binding = argument; break; case DecorationDescriptorSet: dec.set = argument; break; case DecorationInputAttachmentIndex: dec.input_attachment = argument; break; case DecorationSpecId: dec.spec_id = argument; break; default: break; } } StorageClass Compiler::get_storage_class(uint32_t id) const { return get(id).storage; } const std::string &Compiler::get_name(uint32_t id) const { return meta.at(id).decoration.alias; } uint64_t Compiler::get_decoration_mask(uint32_t id) const { auto &dec = meta.at(id).decoration; return dec.decoration_flags; } uint32_t Compiler::get_decoration(uint32_t id, Decoration decoration) const { auto &dec = meta.at(id).decoration; if (!(dec.decoration_flags & (1ull << decoration))) return 0; switch (decoration) { case DecorationBuiltIn: return dec.builtin_type; case DecorationLocation: return dec.location; case DecorationOffset: return dec.offset; case DecorationBinding: return dec.binding; case DecorationDescriptorSet: return dec.set; case DecorationInputAttachmentIndex: return dec.input_attachment; case DecorationSpecId: return dec.spec_id; default: return 1; } } void Compiler::unset_decoration(uint32_t id, Decoration decoration) { auto &dec = meta.at(id).decoration; dec.decoration_flags &= ~(1ull << decoration); switch (decoration) { case DecorationBuiltIn: dec.builtin = false; break; case DecorationLocation: dec.location = 0; break; case DecorationOffset: dec.offset = 0; break; case DecorationBinding: dec.binding = 0; break; case DecorationDescriptorSet: dec.set = 0; break; case DecorationInputAttachmentIndex: dec.input_attachment = 0; break; case DecorationSpecId: dec.spec_id = 0; break; default: break; } } void Compiler::parse(const Instruction &instruction) { auto ops = stream(instruction); auto op = static_cast(instruction.op); uint32_t length = instruction.length; switch (op) { case OpMemoryModel: case OpSourceExtension: case OpNop: case OpLine: break; case OpSource: { auto lang = static_cast(ops[0]); switch (lang) { case SourceLanguageESSL: source.es = true; source.version = ops[1]; source.known = true; break; case SourceLanguageGLSL: source.es = false; source.version = ops[1]; source.known = true; break; default: source.known = false; break; } break; } case OpUndef: { uint32_t result_type = ops[0]; uint32_t id = ops[1]; set(id, result_type); break; } case OpCapability: { uint32_t cap = ops[0]; if (cap == CapabilityKernel) SPIRV_CROSS_THROW("Kernel capability not supported."); break; } case OpExtInstImport: { uint32_t id = ops[0]; auto ext = extract_string(spirv, instruction.offset + 1); if (ext == "GLSL.std.450") set(id, SPIRExtension::GLSL); else SPIRV_CROSS_THROW("Only GLSL.std.450 extension interface supported."); break; } case OpEntryPoint: { auto itr = entry_points.insert(make_pair(ops[1], SPIREntryPoint(ops[1], static_cast(ops[0]), extract_string(spirv, instruction.offset + 2)))); auto &e = itr.first->second; // Strings need nul-terminator and consume the whole word. uint32_t strlen_words = uint32_t((e.name.size() + 1 + 3) >> 2); e.interface_variables.insert(end(e.interface_variables), ops + strlen_words + 2, ops + instruction.length); // Set the name of the entry point in case OpName is not provided later set_name(ops[1], e.name); // If we don't have an entry, make the first one our "default". if (!entry_point) entry_point = ops[1]; break; } case OpExecutionMode: { auto &execution = entry_points[ops[0]]; auto mode = static_cast(ops[1]); execution.flags |= 1ull << mode; switch (mode) { case ExecutionModeInvocations: execution.invocations = ops[2]; break; case ExecutionModeLocalSize: execution.workgroup_size.x = ops[2]; execution.workgroup_size.y = ops[3]; execution.workgroup_size.z = ops[4]; break; case ExecutionModeOutputVertices: execution.output_vertices = ops[2]; break; default: break; } break; } case OpName: { uint32_t id = ops[0]; set_name(id, extract_string(spirv, instruction.offset + 1)); break; } case OpMemberName: { uint32_t id = ops[0]; uint32_t member = ops[1]; set_member_name(id, member, extract_string(spirv, instruction.offset + 2)); break; } case OpDecorate: { uint32_t id = ops[0]; auto decoration = static_cast(ops[1]); if (length >= 3) set_decoration(id, decoration, ops[2]); else set_decoration(id, decoration); break; } case OpMemberDecorate: { uint32_t id = ops[0]; uint32_t member = ops[1]; auto decoration = static_cast(ops[2]); if (length >= 4) set_member_decoration(id, member, decoration, ops[3]); else set_member_decoration(id, member, decoration); break; } // Build up basic types. case OpTypeVoid: { uint32_t id = ops[0]; auto &type = set(id); type.basetype = SPIRType::Void; break; } case OpTypeBool: { uint32_t id = ops[0]; auto &type = set(id); type.basetype = SPIRType::Boolean; type.width = 1; break; } case OpTypeFloat: { uint32_t id = ops[0]; uint32_t width = ops[1]; auto &type = set(id); type.basetype = width > 32 ? SPIRType::Double : SPIRType::Float; type.width = width; break; } case OpTypeInt: { uint32_t id = ops[0]; uint32_t width = ops[1]; auto &type = set(id); type.basetype = ops[2] ? (width > 32 ? SPIRType::Int64 : SPIRType::Int) : (width > 32 ? SPIRType::UInt64 : SPIRType::UInt); type.width = width; break; } // Build composite types by "inheriting". // NOTE: The self member is also copied! For pointers and array modifiers this is a good thing // since we can refer to decorations on pointee classes which is needed for UBO/SSBO, I/O blocks in geometry/tess etc. case OpTypeVector: { uint32_t id = ops[0]; uint32_t vecsize = ops[2]; auto &base = get(ops[1]); auto &vecbase = set(id); vecbase = base; vecbase.vecsize = vecsize; vecbase.self = id; break; } case OpTypeMatrix: { uint32_t id = ops[0]; uint32_t colcount = ops[2]; auto &base = get(ops[1]); auto &matrixbase = set(id); matrixbase = base; matrixbase.columns = colcount; matrixbase.self = id; break; } case OpTypeArray: { uint32_t id = ops[0]; auto &base = get(ops[1]); auto &arraybase = set(id); arraybase = base; auto *c = maybe_get(ops[2]); bool literal = c && !c->specialization; arraybase.array_size_literal.push_back(literal); arraybase.array.push_back(literal ? c->scalar() : ops[2]); // Do NOT set arraybase.self! break; } case OpTypeRuntimeArray: { uint32_t id = ops[0]; auto &base = get(ops[1]); auto &arraybase = set(id); arraybase = base; arraybase.array.push_back(0); arraybase.array_size_literal.push_back(true); // Do NOT set arraybase.self! break; } case OpTypeImage: { uint32_t id = ops[0]; auto &type = set(id); type.basetype = SPIRType::Image; type.image.type = ops[1]; type.image.dim = static_cast(ops[2]); type.image.depth = ops[3] != 0; type.image.arrayed = ops[4] != 0; type.image.ms = ops[5] != 0; type.image.sampled = ops[6]; type.image.format = static_cast(ops[7]); break; } case OpTypeSampledImage: { uint32_t id = ops[0]; uint32_t imagetype = ops[1]; auto &type = set(id); type = get(imagetype); type.basetype = SPIRType::SampledImage; type.self = id; break; } // Not really used. case OpTypeSampler: { uint32_t id = ops[0]; auto &type = set(id); type.basetype = SPIRType::Sampler; break; } case OpTypePointer: { uint32_t id = ops[0]; auto &base = get(ops[2]); auto &ptrbase = set(id); ptrbase = base; if (ptrbase.pointer) SPIRV_CROSS_THROW("Cannot make pointer-to-pointer type."); ptrbase.pointer = true; ptrbase.storage = static_cast(ops[1]); if (ptrbase.storage == StorageClassAtomicCounter) ptrbase.basetype = SPIRType::AtomicCounter; // Do NOT set ptrbase.self! break; } case OpTypeStruct: { uint32_t id = ops[0]; auto &type = set(id); type.basetype = SPIRType::Struct; for (uint32_t i = 1; i < length; i++) type.member_types.push_back(ops[i]); // Check if we have seen this struct type before, with just different // decorations. // // Add workaround for issue #17 as well by looking at OpName for the struct // types, which we shouldn't normally do. // We should not normally have to consider type aliases like this to begin with // however ... glslang issues #304, #307 cover this. for (auto &other : global_struct_cache) { if (get_name(type.self) == get_name(other) && types_are_logically_equivalent(type, get(other))) { type.type_alias = other; break; } } if (type.type_alias == 0) global_struct_cache.push_back(id); break; } case OpTypeFunction: { uint32_t id = ops[0]; uint32_t ret = ops[1]; auto &func = set(id, ret); for (uint32_t i = 2; i < length; i++) func.parameter_types.push_back(ops[i]); break; } // Variable declaration // All variables are essentially pointers with a storage qualifier. case OpVariable: { uint32_t type = ops[0]; uint32_t id = ops[1]; auto storage = static_cast(ops[2]); uint32_t initializer = length == 4 ? ops[3] : 0; if (storage == StorageClassFunction) { if (!current_function) SPIRV_CROSS_THROW("No function currently in scope"); current_function->add_local_variable(id); } else if (storage == StorageClassPrivate || storage == StorageClassWorkgroup || storage == StorageClassOutput) { global_variables.push_back(id); } auto &var = set(id, type, storage, initializer); if (variable_storage_is_aliased(var)) aliased_variables.push_back(var.self); break; } // OpPhi // OpPhi is a fairly magical opcode. // It selects temporary variables based on which parent block we *came from*. // In high-level languages we can "de-SSA" by creating a function local, and flush out temporaries to this function-local // variable to emulate SSA Phi. case OpPhi: { if (!current_function) SPIRV_CROSS_THROW("No function currently in scope"); if (!current_block) SPIRV_CROSS_THROW("No block currently in scope"); uint32_t result_type = ops[0]; uint32_t id = ops[1]; // Instead of a temporary, create a new function-wide temporary with this ID instead. auto &var = set(id, result_type, spv::StorageClassFunction); var.phi_variable = true; current_function->add_local_variable(id); for (uint32_t i = 2; i + 2 <= length; i += 2) current_block->phi_variables.push_back({ ops[i], ops[i + 1], id }); break; } // Constants case OpSpecConstant: case OpConstant: { uint32_t id = ops[1]; auto &type = get(ops[0]); if (type.width > 32) set(id, ops[0], ops[2] | (uint64_t(ops[3]) << 32)).specialization = op == OpSpecConstant; else set(id, ops[0], ops[2]).specialization = op == OpSpecConstant; break; } case OpSpecConstantFalse: case OpConstantFalse: { uint32_t id = ops[1]; set(id, ops[0], uint32_t(0)).specialization = op == OpSpecConstantFalse; break; } case OpSpecConstantTrue: case OpConstantTrue: { uint32_t id = ops[1]; set(id, ops[0], uint32_t(1)).specialization = op == OpSpecConstantTrue; break; } case OpSpecConstantComposite: case OpConstantComposite: { uint32_t id = ops[1]; uint32_t type = ops[0]; auto &ctype = get(type); SPIRConstant *constant = nullptr; // We can have constants which are structs and arrays. // In this case, our SPIRConstant will be a list of other SPIRConstant ids which we // can refer to. if (ctype.basetype == SPIRType::Struct || !ctype.array.empty()) { constant = &set(id, type, ops + 2, length - 2); constant->specialization = op == OpSpecConstantComposite; break; } bool type_64bit = ctype.width > 32; bool matrix = ctype.columns > 1; if (matrix) { switch (length - 2) { case 1: constant = &set(id, type, get(ops[2]).vector()); break; case 2: constant = &set(id, type, get(ops[2]).vector(), get(ops[3]).vector()); break; case 3: constant = &set(id, type, get(ops[2]).vector(), get(ops[3]).vector(), get(ops[4]).vector()); break; case 4: constant = &set(id, type, get(ops[2]).vector(), get(ops[3]).vector(), get(ops[4]).vector(), get(ops[5]).vector()); break; default: SPIRV_CROSS_THROW("OpConstantComposite only supports 1, 2, 3 and 4 columns."); } } else { switch (length - 2) { case 1: if (type_64bit) constant = &set(id, type, get(ops[2]).scalar_u64()); else constant = &set(id, type, get(ops[2]).scalar()); break; case 2: if (type_64bit) { constant = &set(id, type, get(ops[2]).scalar_u64(), get(ops[3]).scalar_u64()); } else { constant = &set(id, type, get(ops[2]).scalar(), get(ops[3]).scalar()); } break; case 3: if (type_64bit) { constant = &set(id, type, get(ops[2]).scalar_u64(), get(ops[3]).scalar_u64(), get(ops[4]).scalar_u64()); } else { constant = &set(id, type, get(ops[2]).scalar(), get(ops[3]).scalar(), get(ops[4]).scalar()); } break; case 4: if (type_64bit) { constant = &set( id, type, get(ops[2]).scalar_u64(), get(ops[3]).scalar_u64(), get(ops[4]).scalar_u64(), get(ops[5]).scalar_u64()); } else { constant = &set( id, type, get(ops[2]).scalar(), get(ops[3]).scalar(), get(ops[4]).scalar(), get(ops[5]).scalar()); } break; default: SPIRV_CROSS_THROW("OpConstantComposite only supports 1, 2, 3 and 4 components."); } } constant->specialization = op == OpSpecConstantComposite; break; } // Functions case OpFunction: { uint32_t res = ops[0]; uint32_t id = ops[1]; // Control uint32_t type = ops[3]; if (current_function) SPIRV_CROSS_THROW("Must end a function before starting a new one!"); current_function = &set(id, res, type); break; } case OpFunctionParameter: { uint32_t type = ops[0]; uint32_t id = ops[1]; if (!current_function) SPIRV_CROSS_THROW("Must be in a function!"); current_function->add_parameter(type, id); set(id, type, StorageClassFunction); break; } case OpFunctionEnd: { if (current_block) { // Very specific error message, but seems to come up quite often. SPIRV_CROSS_THROW( "Cannot end a function before ending the current block.\n" "Likely cause: If this SPIR-V was created from glslang HLSL, make sure the entry point is valid."); } current_function = nullptr; break; } // Blocks case OpLabel: { // OpLabel always starts a block. if (!current_function) SPIRV_CROSS_THROW("Blocks cannot exist outside functions!"); uint32_t id = ops[0]; current_function->blocks.push_back(id); if (!current_function->entry_block) current_function->entry_block = id; if (current_block) SPIRV_CROSS_THROW("Cannot start a block before ending the current block."); current_block = &set(id); break; } // Branch instructions end blocks. case OpBranch: { if (!current_block) SPIRV_CROSS_THROW("Trying to end a non-existing block."); uint32_t target = ops[0]; current_block->terminator = SPIRBlock::Direct; current_block->next_block = target; current_block = nullptr; break; } case OpBranchConditional: { if (!current_block) SPIRV_CROSS_THROW("Trying to end a non-existing block."); current_block->condition = ops[0]; current_block->true_block = ops[1]; current_block->false_block = ops[2]; current_block->terminator = SPIRBlock::Select; current_block = nullptr; break; } case OpSwitch: { if (!current_block) SPIRV_CROSS_THROW("Trying to end a non-existing block."); if (current_block->merge == SPIRBlock::MergeNone) SPIRV_CROSS_THROW("Switch statement is not structured"); current_block->terminator = SPIRBlock::MultiSelect; current_block->condition = ops[0]; current_block->default_block = ops[1]; for (uint32_t i = 2; i + 2 <= length; i += 2) current_block->cases.push_back({ ops[i], ops[i + 1] }); // If we jump to next block, make it break instead since we're inside a switch case block at that point. multiselect_merge_targets.insert(current_block->next_block); current_block = nullptr; break; } case OpKill: { if (!current_block) SPIRV_CROSS_THROW("Trying to end a non-existing block."); current_block->terminator = SPIRBlock::Kill; current_block = nullptr; break; } case OpReturn: { if (!current_block) SPIRV_CROSS_THROW("Trying to end a non-existing block."); current_block->terminator = SPIRBlock::Return; current_block = nullptr; break; } case OpReturnValue: { if (!current_block) SPIRV_CROSS_THROW("Trying to end a non-existing block."); current_block->terminator = SPIRBlock::Return; current_block->return_value = ops[0]; current_block = nullptr; break; } case OpUnreachable: { if (!current_block) SPIRV_CROSS_THROW("Trying to end a non-existing block."); current_block->terminator = SPIRBlock::Unreachable; current_block = nullptr; break; } case OpSelectionMerge: { if (!current_block) SPIRV_CROSS_THROW("Trying to modify a non-existing block."); current_block->next_block = ops[0]; current_block->merge = SPIRBlock::MergeSelection; selection_merge_targets.insert(current_block->next_block); break; } case OpLoopMerge: { if (!current_block) SPIRV_CROSS_THROW("Trying to modify a non-existing block."); current_block->merge_block = ops[0]; current_block->continue_block = ops[1]; current_block->merge = SPIRBlock::MergeLoop; loop_blocks.insert(current_block->self); loop_merge_targets.insert(current_block->merge_block); // Don't add loop headers to continue blocks, // which would make it impossible branch into the loop header since // they are treated as continues. if (current_block->continue_block != current_block->self) continue_blocks.insert(current_block->continue_block); break; } case OpSpecConstantOp: { if (length < 3) SPIRV_CROSS_THROW("OpSpecConstantOp not enough arguments."); uint32_t result_type = ops[0]; uint32_t id = ops[1]; auto spec_op = static_cast(ops[2]); set(id, result_type, spec_op, ops + 3, length - 3); break; } // Actual opcodes. default: { if (!current_block) SPIRV_CROSS_THROW("Currently no block to insert opcode."); current_block->ops.push_back(instruction); break; } } } bool Compiler::block_is_loop_candidate(const SPIRBlock &block, SPIRBlock::Method method) const { // Tried and failed. if (block.disable_block_optimization || block.complex_continue) return false; if (method == SPIRBlock::MergeToSelectForLoop) { // Try to detect common for loop pattern // which the code backend can use to create cleaner code. // for(;;) { if (cond) { some_body; } else { break; } } // is the pattern we're looking for. bool ret = block.terminator == SPIRBlock::Select && block.merge == SPIRBlock::MergeLoop && block.true_block != block.merge_block && block.true_block != block.self && block.false_block == block.merge_block; // If we have OpPhi which depends on branches which came from our own block, // we need to flush phi variables in else block instead of a trivial break, // so we cannot assume this is a for loop candidate. if (ret) { for (auto &phi : block.phi_variables) if (phi.parent == block.self) return false; auto *merge = maybe_get(block.merge_block); if (merge) for (auto &phi : merge->phi_variables) if (phi.parent == block.self) return false; } return ret; } else if (method == SPIRBlock::MergeToDirectForLoop) { // Empty loop header that just sets up merge target // and branches to loop body. bool ret = block.terminator == SPIRBlock::Direct && block.merge == SPIRBlock::MergeLoop && block.ops.empty(); if (!ret) return false; auto &child = get(block.next_block); ret = child.terminator == SPIRBlock::Select && child.merge == SPIRBlock::MergeNone && child.false_block == block.merge_block && child.true_block != block.merge_block && child.true_block != block.self; // If we have OpPhi which depends on branches which came from our own block, // we need to flush phi variables in else block instead of a trivial break, // so we cannot assume this is a for loop candidate. if (ret) { for (auto &phi : block.phi_variables) if (phi.parent == block.self || phi.parent == child.self) return false; for (auto &phi : child.phi_variables) if (phi.parent == block.self) return false; auto *merge = maybe_get(block.merge_block); if (merge) for (auto &phi : merge->phi_variables) if (phi.parent == block.self || phi.parent == child.false_block) return false; } return ret; } else return false; } bool Compiler::block_is_outside_flow_control_from_block(const SPIRBlock &from, const SPIRBlock &to) { auto *start = &from; if (start->self == to.self) return true; // Break cycles. if (is_continue(start->self)) return false; // If our select block doesn't merge, we must break or continue in these blocks, // so if continues occur branchless within these blocks, consider them branchless as well. // This is typically used for loop control. if (start->terminator == SPIRBlock::Select && start->merge == SPIRBlock::MergeNone && (block_is_outside_flow_control_from_block(get(start->true_block), to) || block_is_outside_flow_control_from_block(get(start->false_block), to))) { return true; } else if (start->merge_block && block_is_outside_flow_control_from_block(get(start->merge_block), to)) { return true; } else if (start->next_block && block_is_outside_flow_control_from_block(get(start->next_block), to)) { return true; } else return false; } bool Compiler::execution_is_noop(const SPIRBlock &from, const SPIRBlock &to) const { if (!execution_is_branchless(from, to)) return false; auto *start = &from; for (;;) { if (start->self == to.self) return true; if (!start->ops.empty()) return false; start = &get(start->next_block); } } bool Compiler::execution_is_branchless(const SPIRBlock &from, const SPIRBlock &to) const { auto *start = &from; for (;;) { if (start->self == to.self) return true; if (start->terminator == SPIRBlock::Direct && start->merge == SPIRBlock::MergeNone) start = &get(start->next_block); else return false; } } SPIRBlock::ContinueBlockType Compiler::continue_block_type(const SPIRBlock &block) const { // The block was deemed too complex during code emit, pick conservative fallback paths. if (block.complex_continue) return SPIRBlock::ComplexLoop; // In older glslang output continue block can be equal to the loop header. // In this case, execution is clearly branchless, so just assume a while loop header here. if (block.merge == SPIRBlock::MergeLoop) return SPIRBlock::WhileLoop; auto &dominator = get(block.loop_dominator); if (execution_is_noop(block, dominator)) return SPIRBlock::WhileLoop; else if (execution_is_branchless(block, dominator)) return SPIRBlock::ForLoop; else { if (block.merge == SPIRBlock::MergeNone && block.terminator == SPIRBlock::Select && block.true_block == dominator.self && block.false_block == dominator.merge_block) { return SPIRBlock::DoWhileLoop; } else return SPIRBlock::ComplexLoop; } } bool Compiler::traverse_all_reachable_opcodes(const SPIRBlock &block, OpcodeHandler &handler) const { handler.set_current_block(block); // Ideally, perhaps traverse the CFG instead of all blocks in order to eliminate dead blocks, // but this shouldn't be a problem in practice unless the SPIR-V is doing insane things like recursing // inside dead blocks ... for (auto &i : block.ops) { auto ops = stream(i); auto op = static_cast(i.op); if (!handler.handle(op, ops, i.length)) return false; if (op == OpFunctionCall) { auto &func = get(ops[2]); if (handler.follow_function_call(func)) { if (!handler.begin_function_scope(ops, i.length)) return false; if (!traverse_all_reachable_opcodes(get(ops[2]), handler)) return false; if (!handler.end_function_scope(ops, i.length)) return false; } } } return true; } bool Compiler::traverse_all_reachable_opcodes(const SPIRFunction &func, OpcodeHandler &handler) const { for (auto block : func.blocks) if (!traverse_all_reachable_opcodes(get(block), handler)) return false; return true; } uint32_t Compiler::type_struct_member_offset(const SPIRType &type, uint32_t index) const { // Decoration must be set in valid SPIR-V, otherwise throw. auto &dec = meta[type.self].members.at(index); if (dec.decoration_flags & (1ull << DecorationOffset)) return dec.offset; else SPIRV_CROSS_THROW("Struct member does not have Offset set."); } uint32_t Compiler::type_struct_member_array_stride(const SPIRType &type, uint32_t index) const { // Decoration must be set in valid SPIR-V, otherwise throw. // ArrayStride is part of the array type not OpMemberDecorate. auto &dec = meta[type.member_types[index]].decoration; if (dec.decoration_flags & (1ull << DecorationArrayStride)) return dec.array_stride; else SPIRV_CROSS_THROW("Struct member does not have ArrayStride set."); } size_t Compiler::get_declared_struct_size(const SPIRType &type) const { uint32_t last = uint32_t(type.member_types.size() - 1); size_t offset = type_struct_member_offset(type, last); size_t size = get_declared_struct_member_size(type, last); return offset + size; } size_t Compiler::get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const { auto flags = get_member_decoration_mask(struct_type.self, index); auto &type = get(struct_type.member_types[index]); if (type.basetype != SPIRType::Struct) { switch (type.basetype) { case SPIRType::Unknown: case SPIRType::Void: case SPIRType::Boolean: // Bools are purely logical, and cannot be used for externally visible types. case SPIRType::AtomicCounter: case SPIRType::Image: case SPIRType::SampledImage: case SPIRType::Sampler: SPIRV_CROSS_THROW("Querying size for object with opaque size.\n"); default: break; } size_t component_size = type.width / 8; unsigned vecsize = type.vecsize; unsigned columns = type.columns; if (type.array.empty()) { // Vectors. if (columns == 1) return vecsize * component_size; else { // Per SPIR-V spec, matrices must be tightly packed and aligned up for vec3 accesses. if ((flags & (1ull << DecorationRowMajor)) && columns == 3) columns = 4; else if ((flags & (1ull << DecorationColMajor)) && vecsize == 3) vecsize = 4; return vecsize * columns * component_size; } } else { // For arrays, we can use ArrayStride to get an easy check. return type_struct_member_array_stride(struct_type, index) * type.array.back(); } } else { // Recurse. uint32_t last = uint32_t(struct_type.member_types.size() - 1); uint32_t offset = type_struct_member_offset(struct_type, last); size_t size; // If we have an array of structs inside our struct, handle that with array strides instead. auto &last_type = get(struct_type.member_types.back()); if (last_type.array.empty()) size = get_declared_struct_size(last_type); else size = type_struct_member_array_stride(struct_type, last) * last_type.array.back(); return offset + size; } } bool Compiler::BufferAccessHandler::handle(Op opcode, const uint32_t *args, uint32_t length) { if (opcode != OpAccessChain && opcode != OpInBoundsAccessChain) return true; // Invalid SPIR-V. if (length < 4) return false; if (args[2] != id) return true; // Don't bother traversing the entire access chain tree yet. // If we access a struct member, assume we access the entire member. uint32_t index = compiler.get(args[3]).scalar(); // Seen this index already. if (seen.find(index) != end(seen)) return true; seen.insert(index); auto &type = compiler.expression_type(id); uint32_t offset = compiler.type_struct_member_offset(type, index); size_t range; // If we have another member in the struct, deduce the range by looking at the next member. // This is okay since structs in SPIR-V can have padding, but Offset decoration must be // monotonically increasing. // Of course, this doesn't take into account if the SPIR-V for some reason decided to add // very large amounts of padding, but that's not really a big deal. if (index + 1 < type.member_types.size()) { range = compiler.type_struct_member_offset(type, index + 1) - offset; } else { // No padding, so just deduce it from the size of the member directly. range = compiler.get_declared_struct_member_size(type, index); } ranges.push_back({ index, offset, range }); return true; } std::vector Compiler::get_active_buffer_ranges(uint32_t id) const { std::vector ranges; BufferAccessHandler handler(*this, ranges, id); traverse_all_reachable_opcodes(get(entry_point), handler); return ranges; } // Increase the number of IDs by the specified incremental amount. // Returns the value of the first ID available for use in the expanded bound. uint32_t Compiler::increase_bound_by(uint32_t incr_amount) { auto curr_bound = ids.size(); auto new_bound = curr_bound + incr_amount; ids.resize(new_bound); meta.resize(new_bound); return uint32_t(curr_bound); } bool Compiler::types_are_logically_equivalent(const SPIRType &a, const SPIRType &b) const { if (a.basetype != b.basetype) return false; if (a.width != b.width) return false; if (a.vecsize != b.vecsize) return false; if (a.columns != b.columns) return false; if (a.array.size() != b.array.size()) return false; size_t array_count = a.array.size(); if (array_count && memcmp(a.array.data(), b.array.data(), array_count * sizeof(uint32_t)) != 0) return false; if (a.basetype == SPIRType::Image || a.basetype == SPIRType::SampledImage) { if (memcmp(&a.image, &b.image, sizeof(SPIRType::Image)) != 0) return false; } if (a.member_types.size() != b.member_types.size()) return false; size_t member_types = a.member_types.size(); for (size_t i = 0; i < member_types; i++) { if (!types_are_logically_equivalent(get(a.member_types[i]), get(b.member_types[i]))) return false; } return true; } uint64_t Compiler::get_execution_mode_mask() const { return get_entry_point().flags; } void Compiler::set_execution_mode(ExecutionMode mode, uint32_t arg0, uint32_t arg1, uint32_t arg2) { auto &execution = get_entry_point(); execution.flags |= 1ull << mode; switch (mode) { case ExecutionModeLocalSize: execution.workgroup_size.x = arg0; execution.workgroup_size.y = arg1; execution.workgroup_size.z = arg2; break; case ExecutionModeInvocations: execution.invocations = arg0; break; case ExecutionModeOutputVertices: execution.output_vertices = arg0; break; default: break; } } void Compiler::unset_execution_mode(ExecutionMode mode) { auto &execution = get_entry_point(); execution.flags &= ~(1ull << mode); } uint32_t Compiler::get_execution_mode_argument(spv::ExecutionMode mode, uint32_t index) const { auto &execution = get_entry_point(); switch (mode) { case ExecutionModeLocalSize: switch (index) { case 0: return execution.workgroup_size.x; case 1: return execution.workgroup_size.y; case 2: return execution.workgroup_size.z; default: return 0; } case ExecutionModeInvocations: return execution.invocations; case ExecutionModeOutputVertices: return execution.output_vertices; default: return 0; } } ExecutionModel Compiler::get_execution_model() const { auto &execution = get_entry_point(); return execution.model; } void Compiler::set_remapped_variable_state(uint32_t id, bool remap_enable) { get(id).remapped_variable = remap_enable; } bool Compiler::get_remapped_variable_state(uint32_t id) const { return get(id).remapped_variable; } void Compiler::set_subpass_input_remapped_components(uint32_t id, uint32_t components) { get(id).remapped_components = components; } uint32_t Compiler::get_subpass_input_remapped_components(uint32_t id) const { return get(id).remapped_components; } void Compiler::inherit_expression_dependencies(uint32_t dst, uint32_t source_expression) { auto &e = get(dst); auto *s = maybe_get(source_expression); if (!s) return; auto &e_deps = e.expression_dependencies; auto &s_deps = s->expression_dependencies; // If we depend on a expression, we also depend on all sub-dependencies from source. e_deps.push_back(source_expression); e_deps.insert(end(e_deps), begin(s_deps), end(s_deps)); // Eliminate duplicated dependencies. e_deps.erase(unique(begin(e_deps), end(e_deps)), end(e_deps)); } vector Compiler::get_entry_points() const { vector entries; for (auto &entry : entry_points) entries.push_back(entry.second.name); return entries; } void Compiler::set_entry_point(const std::string &name) { auto &entry = get_entry_point(name); entry_point = entry.self; } SPIREntryPoint &Compiler::get_entry_point(const std::string &name) { auto itr = find_if(begin(entry_points), end(entry_points), [&](const std::pair &entry) -> bool { return entry.second.name == name; }); if (itr == end(entry_points)) SPIRV_CROSS_THROW("Entry point does not exist."); return itr->second; } const SPIREntryPoint &Compiler::get_entry_point(const std::string &name) const { auto itr = find_if(begin(entry_points), end(entry_points), [&](const std::pair &entry) -> bool { return entry.second.name == name; }); if (itr == end(entry_points)) SPIRV_CROSS_THROW("Entry point does not exist."); return itr->second; } const SPIREntryPoint &Compiler::get_entry_point() const { return entry_points.find(entry_point)->second; } SPIREntryPoint &Compiler::get_entry_point() { return entry_points.find(entry_point)->second; } bool Compiler::interface_variable_exists_in_entry_point(uint32_t id) const { auto &var = get(id); if (var.storage != StorageClassInput && var.storage != StorageClassOutput) SPIRV_CROSS_THROW("Only Input and Output variables are part of a shader linking interface."); // This is to avoid potential problems with very old glslang versions which did // not emit input/output interfaces properly. // We can assume they only had a single entry point, and single entry point // shaders could easily be assumed to use every interface variable anyways. if (entry_points.size() <= 1) return true; auto &execution = get_entry_point(); return find(begin(execution.interface_variables), end(execution.interface_variables), id) != end(execution.interface_variables); } void Compiler::CombinedImageSamplerHandler::push_remap_parameters(const SPIRFunction &func, const uint32_t *args, uint32_t length) { // If possible, pipe through a remapping table so that parameters know // which variables they actually bind to in this scope. unordered_map remapping; for (uint32_t i = 0; i < length; i++) remapping[func.arguments[i].id] = remap_parameter(args[i]); parameter_remapping.push(move(remapping)); } void Compiler::CombinedImageSamplerHandler::pop_remap_parameters() { parameter_remapping.pop(); } uint32_t Compiler::CombinedImageSamplerHandler::remap_parameter(uint32_t id) { auto *var = compiler.maybe_get_backing_variable(id); if (var) id = var->self; if (parameter_remapping.empty()) return id; auto &remapping = parameter_remapping.top(); auto itr = remapping.find(id); if (itr != end(remapping)) return itr->second; else return id; } bool Compiler::CombinedImageSamplerHandler::begin_function_scope(const uint32_t *args, uint32_t length) { if (length < 3) return false; auto &callee = compiler.get(args[2]); args += 3; length -= 3; push_remap_parameters(callee, args, length); functions.push(&callee); return true; } bool Compiler::CombinedImageSamplerHandler::end_function_scope(const uint32_t *args, uint32_t length) { if (length < 3) return false; auto &callee = compiler.get(args[2]); args += 3; length -= 3; // There are two types of cases we have to handle, // a callee might call sampler2D(texture2D, sampler) directly where // one or more parameters originate from parameters. // Alternatively, we need to provide combined image samplers to our callees, // and in this case we need to add those as well. pop_remap_parameters(); // Our callee has now been processed at least once. // No point in doing it again. callee.do_combined_parameters = false; auto ¶ms = functions.top()->combined_parameters; functions.pop(); if (functions.empty()) return true; auto &caller = *functions.top(); if (caller.do_combined_parameters) { for (auto ¶m : params) { uint32_t image_id = param.global_image ? param.image_id : args[param.image_id]; uint32_t sampler_id = param.global_sampler ? param.sampler_id : args[param.sampler_id]; auto *i = compiler.maybe_get_backing_variable(image_id); auto *s = compiler.maybe_get_backing_variable(sampler_id); if (i) image_id = i->self; if (s) sampler_id = s->self; register_combined_image_sampler(caller, image_id, sampler_id); } } return true; } void Compiler::CombinedImageSamplerHandler::register_combined_image_sampler(SPIRFunction &caller, uint32_t image_id, uint32_t sampler_id) { // We now have a texture ID and a sampler ID which will either be found as a global // or a parameter in our own function. If both are global, they will not need a parameter, // otherwise, add it to our list. SPIRFunction::CombinedImageSamplerParameter param = { 0u, image_id, sampler_id, true, true, }; auto texture_itr = find_if(begin(caller.arguments), end(caller.arguments), [image_id](const SPIRFunction::Parameter &p) { return p.id == image_id; }); auto sampler_itr = find_if(begin(caller.arguments), end(caller.arguments), [sampler_id](const SPIRFunction::Parameter &p) { return p.id == sampler_id; }); if (texture_itr != end(caller.arguments)) { param.global_image = false; param.image_id = uint32_t(texture_itr - begin(caller.arguments)); } if (sampler_itr != end(caller.arguments)) { param.global_sampler = false; param.sampler_id = uint32_t(sampler_itr - begin(caller.arguments)); } if (param.global_image && param.global_sampler) return; auto itr = find_if(begin(caller.combined_parameters), end(caller.combined_parameters), [¶m](const SPIRFunction::CombinedImageSamplerParameter &p) { return param.image_id == p.image_id && param.sampler_id == p.sampler_id && param.global_image == p.global_image && param.global_sampler == p.global_sampler; }); if (itr == end(caller.combined_parameters)) { uint32_t id = compiler.increase_bound_by(3); auto type_id = id + 0; auto ptr_type_id = id + 1; auto combined_id = id + 2; auto &base = compiler.expression_type(image_id); auto &type = compiler.set(type_id); auto &ptr_type = compiler.set(ptr_type_id); type = base; type.self = type_id; type.basetype = SPIRType::SampledImage; type.pointer = false; type.storage = StorageClassGeneric; ptr_type = type; ptr_type.pointer = true; ptr_type.storage = StorageClassUniformConstant; // Build new variable. compiler.set(combined_id, ptr_type_id, StorageClassFunction, 0); // Inherit RelaxedPrecision (and potentially other useful flags if deemed relevant). auto &new_flags = compiler.meta[combined_id].decoration.decoration_flags; auto old_flags = compiler.meta[sampler_id].decoration.decoration_flags; new_flags = old_flags & (1ull << DecorationRelaxedPrecision); param.id = combined_id; compiler.set_name(combined_id, join("SPIRV_Cross_Combined", compiler.to_name(image_id), compiler.to_name(sampler_id))); caller.combined_parameters.push_back(param); caller.shadow_arguments.push_back({ ptr_type_id, combined_id, 0u, 0u }); } } bool Compiler::CombinedImageSamplerHandler::handle(Op opcode, const uint32_t *args, uint32_t length) { // We need to figure out where samplers and images are loaded from, so do only the bare bones compilation we need. switch (opcode) { case OpLoad: { if (length < 3) return false; uint32_t result_type = args[0]; auto &type = compiler.get(result_type); bool separate_image = type.basetype == SPIRType::Image && type.image.sampled == 1; bool separate_sampler = type.basetype == SPIRType::Sampler; // If not separate image or sampler, don't bother. if (!separate_image && !separate_sampler) return true; uint32_t id = args[1]; uint32_t ptr = args[2]; compiler.set(id, "", result_type, true); compiler.register_read(id, ptr, true); return true; } case OpInBoundsAccessChain: case OpAccessChain: { if (length < 3) return false; // Technically, it is possible to have arrays of textures and arrays of samplers and combine them, but this becomes essentially // impossible to implement, since we don't know which concrete sampler we are accessing. // One potential way is to create a combinatorial explosion where N textures and M samplers are combined into N * M sampler2Ds, // but this seems ridiculously complicated for a problem which is easy to work around. // Checking access chains like this assumes we don't have samplers or textures inside uniform structs, but this makes no sense. auto &type = compiler.get(args[0]); bool separate_image = type.basetype == SPIRType::Image && type.image.sampled == 1; bool separate_sampler = type.basetype == SPIRType::Sampler; if (separate_image) SPIRV_CROSS_THROW( "Attempting to use arrays of separate images. This is not possible to statically remap to plain GLSL."); if (separate_sampler) SPIRV_CROSS_THROW("Attempting to use arrays of separate samplers. This is not possible to statically " "remap to plain GLSL."); return true; } case OpSampledImage: // Do it outside. break; default: return true; } if (length < 4) return false; // Registers sampler2D calls used in case they are parameters so // that their callees know which combined image samplers to propagate down the call stack. if (!functions.empty()) { auto &callee = *functions.top(); if (callee.do_combined_parameters) { uint32_t image_id = args[2]; auto *image = compiler.maybe_get_backing_variable(image_id); if (image) image_id = image->self; uint32_t sampler_id = args[3]; auto *sampler = compiler.maybe_get_backing_variable(sampler_id); if (sampler) sampler_id = sampler->self; register_combined_image_sampler(callee, image_id, sampler_id); } } // For function calls, we need to remap IDs which are function parameters into global variables. // This information is statically known from the current place in the call stack. // Function parameters are not necessarily pointers, so if we don't have a backing variable, remapping will know // which backing variable the image/sample came from. uint32_t image_id = remap_parameter(args[2]); uint32_t sampler_id = remap_parameter(args[3]); auto itr = find_if(begin(compiler.combined_image_samplers), end(compiler.combined_image_samplers), [image_id, sampler_id](const CombinedImageSampler &combined) { return combined.image_id == image_id && combined.sampler_id == sampler_id; }); if (itr == end(compiler.combined_image_samplers)) { auto id = compiler.increase_bound_by(2); auto type_id = id + 0; auto combined_id = id + 1; auto sampled_type = args[0]; // Make a new type, pointer to OpTypeSampledImage, so we can make a variable of this type. // We will probably have this type lying around, but it doesn't hurt to make duplicates for internal purposes. auto &type = compiler.set(type_id); auto &base = compiler.get(sampled_type); type = base; type.pointer = true; type.storage = StorageClassUniformConstant; // Build new variable. compiler.set(combined_id, type_id, StorageClassUniformConstant, 0); // Inherit RelaxedPrecision (and potentially other useful flags if deemed relevant). auto &new_flags = compiler.meta[combined_id].decoration.decoration_flags; auto old_flags = compiler.meta[sampler_id].decoration.decoration_flags; new_flags = old_flags & (1ull << DecorationRelaxedPrecision); compiler.combined_image_samplers.push_back({ combined_id, image_id, sampler_id }); } return true; } void Compiler::build_combined_image_samplers() { for (auto &id : ids) { if (id.get_type() == TypeFunction) { auto &func = id.get(); func.combined_parameters.clear(); func.shadow_arguments.clear(); func.do_combined_parameters = true; } } combined_image_samplers.clear(); CombinedImageSamplerHandler handler(*this); traverse_all_reachable_opcodes(get(entry_point), handler); } vector Compiler::get_specialization_constants() const { vector spec_consts; for (auto &id : ids) { if (id.get_type() == TypeConstant) { auto &c = id.get(); if (c.specialization) { spec_consts.push_back({ c.self, get_decoration(c.self, DecorationSpecId) }); } } } return spec_consts; } SPIRConstant &Compiler::get_constant(uint32_t id) { return get(id); } const SPIRConstant &Compiler::get_constant(uint32_t id) const { return get(id); } void Compiler::analyze_variable_scope(SPIRFunction &entry) { struct AccessHandler : OpcodeHandler { public: AccessHandler(Compiler &compiler_) : compiler(compiler_) { } bool follow_function_call(const SPIRFunction &) { // Only analyze within this function. return false; } void set_current_block(const SPIRBlock &block) { current_block = █ // If we're branching to a block which uses OpPhi, in GLSL // this will be a variable write when we branch, // so we need to track access to these variables as well to // have a complete picture. const auto test_phi = [this, &block](uint32_t to) { auto &next = compiler.get(to); for (auto &phi : next.phi_variables) if (phi.parent == block.self) accessed_variables_to_block[phi.function_variable].insert(block.self); }; switch (block.terminator) { case SPIRBlock::Direct: test_phi(block.next_block); break; case SPIRBlock::Select: test_phi(block.true_block); test_phi(block.false_block); break; case SPIRBlock::MultiSelect: for (auto &target : block.cases) test_phi(target.block); if (block.default_block) test_phi(block.default_block); break; default: break; } } bool handle(spv::Op op, const uint32_t *args, uint32_t length) { switch (op) { case OpStore: { if (length < 2) return false; uint32_t ptr = args[0]; auto *var = compiler.maybe_get_backing_variable(ptr); if (var && var->storage == StorageClassFunction) accessed_variables_to_block[var->self].insert(current_block->self); break; } case OpAccessChain: case OpInBoundsAccessChain: { if (length < 3) return false; uint32_t ptr = args[2]; auto *var = compiler.maybe_get(ptr); if (var && var->storage == StorageClassFunction) accessed_variables_to_block[var->self].insert(current_block->self); break; } case OpCopyMemory: { if (length < 3) return false; uint32_t lhs = args[0]; uint32_t rhs = args[1]; auto *var = compiler.maybe_get_backing_variable(lhs); if (var && var->storage == StorageClassFunction) accessed_variables_to_block[var->self].insert(current_block->self); var = compiler.maybe_get_backing_variable(rhs); if (var && var->storage == StorageClassFunction) accessed_variables_to_block[var->self].insert(current_block->self); break; } case OpCopyObject: { if (length < 3) return false; auto *var = compiler.maybe_get_backing_variable(args[2]); if (var && var->storage == StorageClassFunction) accessed_variables_to_block[var->self].insert(current_block->self); break; } case OpLoad: { if (length < 3) return false; uint32_t ptr = args[2]; auto *var = compiler.maybe_get_backing_variable(ptr); if (var && var->storage == StorageClassFunction) accessed_variables_to_block[var->self].insert(current_block->self); break; } case OpFunctionCall: { if (length < 3) return false; length -= 3; args += 3; for (uint32_t i = 0; i < length; i++) { auto *var = compiler.maybe_get_backing_variable(args[i]); if (var && var->storage == StorageClassFunction) accessed_variables_to_block[var->self].insert(current_block->self); } break; } case OpPhi: { if (length < 2) return false; // Phi nodes are implemented as function variables, so register an access here. accessed_variables_to_block[args[1]].insert(current_block->self); break; } // Atomics shouldn't be able to access function-local variables. // Some GLSL builtins access a pointer. default: break; } return true; } Compiler &compiler; std::unordered_map> accessed_variables_to_block; const SPIRBlock *current_block = nullptr; } handler(*this); // First, we map out all variable access within a function. // Essentially a map of block -> { variables accessed in the basic block } this->traverse_all_reachable_opcodes(entry, handler); // Compute the control flow graph for this function. CFG cfg(*this, entry); unordered_map potential_loop_variables; // For each variable which is statically accessed. for (auto &var : handler.accessed_variables_to_block) { DominatorBuilder builder(cfg); auto &blocks = var.second; auto &type = this->expression_type(var.first); // Figure out which block is dominating all accesses of those variables. for (auto &block : blocks) { // If we're accessing a variable inside a continue block, this variable might be a loop variable. // We can only use loop variables with scalars, as we cannot track static expressions for vectors. if (this->is_continue(block) && type.vecsize == 1 && type.columns == 1) { // The variable is used in multiple continue blocks, this is not a loop // candidate, signal that by setting block to -1u. auto &potential = potential_loop_variables[var.first]; if (potential == 0) potential = block; else potential = ~(0u); } builder.add_block(block); } builder.lift_continue_block_dominator(); // Add it to a per-block list of variables. uint32_t dominating_block = builder.get_dominator(); // If all blocks here are dead code, this will be 0, so the variable in question // will be completely eliminated. if (dominating_block) { auto &block = this->get(dominating_block); block.dominated_variables.push_back(var.first); this->get(var.first).dominator = dominating_block; } } // Now, try to analyze whether or not these variables are actually loop variables. for (auto &loop_variable : potential_loop_variables) { auto &var = this->get(loop_variable.first); auto dominator = var.dominator; auto block = loop_variable.second; // The variable was accessed in multiple continue blocks, ignore. if (block == ~(0u) || block == 0) continue; // Dead code. if (dominator == 0) continue; uint32_t header = 0; // Find the loop header for this block. for (auto b : this->loop_blocks) { auto &potential_header = this->get(b); if (potential_header.continue_block == block) { header = b; break; } } assert(header); auto &header_block = this->get(header); // Now, there are two conditions we need to meet for the variable to be a loop variable. // 1. The dominating block must have a branch-free path to the loop header, // this way we statically know which expression should be part of the loop variable initializer. // Walk from the dominator, if there is one straight edge connecting // dominator and loop header, we statically know the loop initializer. bool static_loop_init = true; while (dominator != header) { auto &succ = cfg.get_succeeding_edges(dominator); if (succ.size() != 1) { static_loop_init = false; break; } auto &pred = cfg.get_preceding_edges(succ.front()); if (pred.size() != 1 || pred.front() != dominator) { static_loop_init = false; break; } dominator = succ.front(); } if (!static_loop_init) continue; // The second condition we need to meet is that no access after the loop // merge can occur. Walk the CFG to see if we find anything. auto &blocks = handler.accessed_variables_to_block[loop_variable.first]; cfg.walk_from(header_block.merge_block, [&](uint32_t walk_block) { // We found a block which accesses the variable outside the loop. if (blocks.find(walk_block) != end(blocks)) static_loop_init = false; }); if (!static_loop_init) continue; // We have a loop variable. header_block.loop_variables.push_back(loop_variable.first); // Need to sort here as variables come from an unordered container, and pushing stuff in wrong order // will break reproducability in regression runs. sort(begin(header_block.loop_variables), end(header_block.loop_variables)); this->get(loop_variable.first).loop_variable = true; } }