#pragma clang diagnostic ignored "-Wmissing-prototypes" #include #include using namespace metal; struct SSBO { float res; int ires; uint ures; float4 f32; int4 s32; uint4 u32; float2x2 m2; float3x3 m3; float4x4 m4; }; struct ResType { float _m0; int _m1; }; constant uint3 gl_WorkGroupSize [[maybe_unused]] = uint3(1u); // Implementation of the GLSL radians() function template inline T radians(T d) { return d * T(0.01745329251); } // Implementation of the GLSL degrees() function template inline T degrees(T r) { return r * T(57.2957795131); } // Implementation of the GLSL findLSB() function template inline T spvFindLSB(T x) { return select(ctz(x), T(-1), x == T(0)); } // Implementation of the signed GLSL findMSB() function template inline T spvFindSMSB(T x) { T v = select(x, T(-1) - x, x < T(0)); return select(clz(T(0)) - (clz(v) + T(1)), T(-1), v == T(0)); } // Implementation of the unsigned GLSL findMSB() function template inline T spvFindUMSB(T x) { return select(clz(T(0)) - (clz(x) + T(1)), T(-1), x == T(0)); } // Implementation of the GLSL sign() function for integer types template::value>::type> inline T sign(T x) { return select(select(select(x, T(0), x == T(0)), T(1), x > T(0)), T(-1), x < T(0)); } // Returns the determinant of a 2x2 matrix. static inline __attribute__((always_inline)) float spvDet2x2(float a1, float a2, float b1, float b2) { return a1 * b2 - b1 * a2; } // Returns the determinant of a 3x3 matrix. static inline __attribute__((always_inline)) float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3) { return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, b2, b3); } // Returns the inverse of a matrix, by using the algorithm of calculating the classical // adjoint and dividing by the determinant. The contents of the matrix are changed. static inline __attribute__((always_inline)) float4x4 spvInverse4x4(float4x4 m) { float4x4 adj; // The adjoint matrix (inverse after dividing by determinant) // Create the transpose of the cofactors, as the classical adjoint of the matrix. adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]); adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]); adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], m[3][3]); adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3]); adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]); adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]); adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], m[3][3]); adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3]); adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]); adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]); adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], m[3][3]); adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3]); adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]); adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]); adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], m[3][2]); adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2]); // Calculate the determinant as a combination of the cofactors of the first row. float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] * m[3][0]); // Divide the classical adjoint matrix by the determinant. // If determinant is zero, matrix is not invertable, so leave it unchanged. return (det != 0.0f) ? (adj * (1.0f / det)) : m; } // Returns the inverse of a matrix, by using the algorithm of calculating the classical // adjoint and dividing by the determinant. The contents of the matrix are changed. static inline __attribute__((always_inline)) float3x3 spvInverse3x3(float3x3 m) { float3x3 adj; // The adjoint matrix (inverse after dividing by determinant) // Create the transpose of the cofactors, as the classical adjoint of the matrix. adj[0][0] = spvDet2x2(m[1][1], m[1][2], m[2][1], m[2][2]); adj[0][1] = -spvDet2x2(m[0][1], m[0][2], m[2][1], m[2][2]); adj[0][2] = spvDet2x2(m[0][1], m[0][2], m[1][1], m[1][2]); adj[1][0] = -spvDet2x2(m[1][0], m[1][2], m[2][0], m[2][2]); adj[1][1] = spvDet2x2(m[0][0], m[0][2], m[2][0], m[2][2]); adj[1][2] = -spvDet2x2(m[0][0], m[0][2], m[1][0], m[1][2]); adj[2][0] = spvDet2x2(m[1][0], m[1][1], m[2][0], m[2][1]); adj[2][1] = -spvDet2x2(m[0][0], m[0][1], m[2][0], m[2][1]); adj[2][2] = spvDet2x2(m[0][0], m[0][1], m[1][0], m[1][1]); // Calculate the determinant as a combination of the cofactors of the first row. float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]); // Divide the classical adjoint matrix by the determinant. // If determinant is zero, matrix is not invertable, so leave it unchanged. return (det != 0.0f) ? (adj * (1.0f / det)) : m; } // Returns the inverse of a matrix, by using the algorithm of calculating the classical // adjoint and dividing by the determinant. The contents of the matrix are changed. static inline __attribute__((always_inline)) float2x2 spvInverse2x2(float2x2 m) { float2x2 adj; // The adjoint matrix (inverse after dividing by determinant) // Create the transpose of the cofactors, as the classical adjoint of the matrix. adj[0][0] = m[1][1]; adj[0][1] = -m[0][1]; adj[1][0] = -m[1][0]; adj[1][1] = m[0][0]; // Calculate the determinant as a combination of the cofactors of the first row. float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]); // Divide the classical adjoint matrix by the determinant. // If determinant is zero, matrix is not invertable, so leave it unchanged. return (det != 0.0f) ? (adj * (1.0f / det)) : m; } template inline T spvReflect(T i, T n) { return i - T(2) * i * n * n; } template inline T spvRefract(T i, T n, T eta) { T NoI = n * i; T NoI2 = NoI * NoI; T k = T(1) - eta * eta * (T(1) - NoI2); if (k < T(0)) { return T(0); } else { return eta * i - (eta * NoI + sqrt(k)) * n; } } template inline T spvFaceForward(T n, T i, T nref) { return i * nref < T(0) ? n : -n; } kernel void main0(device SSBO& _19 [[buffer(0)]]) { _19.res = round(_19.f32.x); _19.res = rint(_19.f32.x); _19.res = trunc(_19.f32.x); _19.res = abs(_19.f32.x); _19.ires = abs(_19.s32.x); _19.res = sign(_19.f32.x); _19.ires = sign(_19.s32.x); _19.res = floor(_19.f32.x); _19.res = ceil(_19.f32.x); _19.res = fract(_19.f32.x); _19.res = radians(_19.f32.x); _19.res = degrees(_19.f32.x); _19.res = sin(_19.f32.x); _19.res = cos(_19.f32.x); _19.res = tan(_19.f32.x); _19.res = asin(_19.f32.x); _19.res = acos(_19.f32.x); _19.res = atan(_19.f32.x); _19.res = sinh(_19.f32.x); _19.res = cosh(_19.f32.x); _19.res = tanh(_19.f32.x); _19.res = asinh(_19.f32.x); _19.res = acosh(_19.f32.x); _19.res = atanh(_19.f32.x); _19.res = atan2(_19.f32.x, _19.f32.y); _19.res = pow(_19.f32.x, _19.f32.y); _19.res = exp(_19.f32.x); _19.res = log(_19.f32.x); _19.res = exp2(_19.f32.x); _19.res = log2(_19.f32.x); _19.res = sqrt(_19.f32.x); _19.res = rsqrt(_19.f32.x); _19.res = abs(_19.f32.x); _19.res = abs(_19.f32.x - _19.f32.y); _19.res = sign(_19.f32.x); _19.res = spvFaceForward(_19.f32.x, _19.f32.y, _19.f32.z); _19.res = spvReflect(_19.f32.x, _19.f32.y); _19.res = spvRefract(_19.f32.x, _19.f32.y, _19.f32.z); _19.res = length(_19.f32.xy); _19.res = distance(_19.f32.xy, _19.f32.zw); float2 v2 = normalize(_19.f32.xy); v2 = faceforward(_19.f32.xy, _19.f32.yz, _19.f32.zw); v2 = reflect(_19.f32.xy, _19.f32.zw); v2 = refract(_19.f32.xy, _19.f32.yz, _19.f32.w); float3 v3 = cross(_19.f32.xyz, _19.f32.yzw); _19.res = determinant(_19.m2); _19.res = determinant(_19.m3); _19.res = determinant(_19.m4); _19.m2 = spvInverse2x2(_19.m2); _19.m3 = spvInverse3x3(_19.m3); _19.m4 = spvInverse4x4(_19.m4); float tmp; float _287 = modf(_19.f32.x, tmp); _19.res = _287; _19.res = fast::min(_19.f32.x, _19.f32.y); _19.ures = min(_19.u32.x, _19.u32.y); _19.ires = min(_19.s32.x, _19.s32.y); _19.res = fast::max(_19.f32.x, _19.f32.y); _19.ures = max(_19.u32.x, _19.u32.y); _19.ires = max(_19.s32.x, _19.s32.y); _19.res = fast::clamp(_19.f32.x, _19.f32.y, _19.f32.z); _19.ures = clamp(_19.u32.x, _19.u32.y, _19.u32.z); _19.ires = clamp(_19.s32.x, _19.s32.y, _19.s32.z); _19.res = mix(_19.f32.x, _19.f32.y, _19.f32.z); _19.res = step(_19.f32.x, _19.f32.y); _19.res = smoothstep(_19.f32.x, _19.f32.y, _19.f32.z); _19.res = fma(_19.f32.x, _19.f32.y, _19.f32.z); ResType _387; _387._m0 = frexp(_19.f32.x, _387._m1); int itmp = _387._m1; _19.res = _387._m0; _19.res = ldexp(_19.f32.x, itmp); _19.ures = pack_float_to_snorm4x8(_19.f32); _19.ures = pack_float_to_unorm4x8(_19.f32); _19.ures = pack_float_to_snorm2x16(_19.f32.xy); _19.ures = pack_float_to_unorm2x16(_19.f32.xy); _19.ures = as_type(half2(_19.f32.xy)); v2 = unpack_snorm2x16_to_float(_19.u32.x); v2 = unpack_unorm2x16_to_float(_19.u32.x); v2 = float2(as_type(_19.u32.x)); float4 v4 = unpack_snorm4x8_to_float(_19.u32.x); v4 = unpack_unorm4x8_to_float(_19.u32.x); _19.s32 = spvFindLSB(_19.s32); _19.s32 = int4(spvFindLSB(_19.u32)); _19.s32 = spvFindSMSB(_19.s32); _19.s32 = int4(spvFindUMSB(_19.u32)); }