#pragma clang diagnostic ignored "-Wmissing-prototypes" #include #include using namespace metal; // Returns the determinant of a 2x2 matrix. static inline __attribute__((always_inline)) float spvDet2x2(float a1, float a2, float b1, float b2) { return a1 * b2 - b1 * a2; } // Returns the determinant of a 3x3 matrix. static inline __attribute__((always_inline)) float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3) { return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, b2, b3); } // Returns the inverse of a matrix, by using the algorithm of calculating the classical // adjoint and dividing by the determinant. The contents of the matrix are changed. static inline __attribute__((always_inline)) float4x4 spvInverse4x4(float4x4 m) { float4x4 adj; // The adjoint matrix (inverse after dividing by determinant) // Create the transpose of the cofactors, as the classical adjoint of the matrix. adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]); adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]); adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], m[3][3]); adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3]); adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]); adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]); adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], m[3][3]); adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3]); adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]); adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]); adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], m[3][3]); adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3]); adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]); adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]); adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], m[3][2]); adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2]); // Calculate the determinant as a combination of the cofactors of the first row. float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] * m[3][0]); // Divide the classical adjoint matrix by the determinant. // If determinant is zero, matrix is not invertable, so leave it unchanged. return (det != 0.0f) ? (adj * (1.0f / det)) : m; } // Returns the inverse of a matrix, by using the algorithm of calculating the classical // adjoint and dividing by the determinant. The contents of the matrix are changed. static inline __attribute__((always_inline)) float3x3 spvInverse3x3(float3x3 m) { float3x3 adj; // The adjoint matrix (inverse after dividing by determinant) // Create the transpose of the cofactors, as the classical adjoint of the matrix. adj[0][0] = spvDet2x2(m[1][1], m[1][2], m[2][1], m[2][2]); adj[0][1] = -spvDet2x2(m[0][1], m[0][2], m[2][1], m[2][2]); adj[0][2] = spvDet2x2(m[0][1], m[0][2], m[1][1], m[1][2]); adj[1][0] = -spvDet2x2(m[1][0], m[1][2], m[2][0], m[2][2]); adj[1][1] = spvDet2x2(m[0][0], m[0][2], m[2][0], m[2][2]); adj[1][2] = -spvDet2x2(m[0][0], m[0][2], m[1][0], m[1][2]); adj[2][0] = spvDet2x2(m[1][0], m[1][1], m[2][0], m[2][1]); adj[2][1] = -spvDet2x2(m[0][0], m[0][1], m[2][0], m[2][1]); adj[2][2] = spvDet2x2(m[0][0], m[0][1], m[1][0], m[1][1]); // Calculate the determinant as a combination of the cofactors of the first row. float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]); // Divide the classical adjoint matrix by the determinant. // If determinant is zero, matrix is not invertable, so leave it unchanged. return (det != 0.0f) ? (adj * (1.0f / det)) : m; } // Returns the inverse of a matrix, by using the algorithm of calculating the classical // adjoint and dividing by the determinant. The contents of the matrix are changed. static inline __attribute__((always_inline)) float2x2 spvInverse2x2(float2x2 m) { float2x2 adj; // The adjoint matrix (inverse after dividing by determinant) // Create the transpose of the cofactors, as the classical adjoint of the matrix. adj[0][0] = m[1][1]; adj[0][1] = -m[0][1]; adj[1][0] = -m[1][0]; adj[1][1] = m[0][0]; // Calculate the determinant as a combination of the cofactors of the first row. float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]); // Divide the classical adjoint matrix by the determinant. // If determinant is zero, matrix is not invertable, so leave it unchanged. return (det != 0.0f) ? (adj * (1.0f / det)) : m; } struct MatrixOut { float2x2 m2out; float3x3 m3out; float4x4 m4out; }; struct MatrixIn { float2x2 m2in; float3x3 m3in; float4x4 m4in; }; constant uint3 gl_WorkGroupSize [[maybe_unused]] = uint3(1u); kernel void main0(device MatrixOut& _15 [[buffer(0)]], const device MatrixIn& _20 [[buffer(1)]]) { _15.m2out = spvInverse2x2(_20.m2in); _15.m3out = spvInverse3x3(_20.m3in); _15.m4out = spvInverse4x4(_20.m4in); }