124 lines
5.5 KiB
Plaintext
124 lines
5.5 KiB
Plaintext
#pragma clang diagnostic ignored "-Wmissing-prototypes"
|
|
|
|
#include <metal_stdlib>
|
|
#include <simd/simd.h>
|
|
|
|
using namespace metal;
|
|
|
|
struct MatrixOut
|
|
{
|
|
float2x2 m2out;
|
|
float3x3 m3out;
|
|
float4x4 m4out;
|
|
};
|
|
|
|
struct MatrixIn
|
|
{
|
|
float2x2 m2in;
|
|
float3x3 m3in;
|
|
float4x4 m4in;
|
|
};
|
|
|
|
// Returns the determinant of a 2x2 matrix.
|
|
inline float spvDet2x2(float a1, float a2, float b1, float b2)
|
|
{
|
|
return a1 * b2 - b1 * a2;
|
|
}
|
|
|
|
// Returns the determinant of a 3x3 matrix.
|
|
inline float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3)
|
|
{
|
|
return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, b2, b3);
|
|
}
|
|
|
|
// Returns the inverse of a matrix, by using the algorithm of calculating the classical
|
|
// adjoint and dividing by the determinant. The contents of the matrix are changed.
|
|
float4x4 spvInverse4x4(float4x4 m)
|
|
{
|
|
float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)
|
|
|
|
// Create the transpose of the cofactors, as the classical adjoint of the matrix.
|
|
adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]);
|
|
adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]);
|
|
adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], m[3][3]);
|
|
adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3]);
|
|
|
|
adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]);
|
|
adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]);
|
|
adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], m[3][3]);
|
|
adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3]);
|
|
|
|
adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]);
|
|
adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]);
|
|
adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], m[3][3]);
|
|
adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3]);
|
|
|
|
adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]);
|
|
adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]);
|
|
adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], m[3][2]);
|
|
adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2]);
|
|
|
|
// Calculate the determinant as a combination of the cofactors of the first row.
|
|
float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] * m[3][0]);
|
|
|
|
// Divide the classical adjoint matrix by the determinant.
|
|
// If determinant is zero, matrix is not invertable, so leave it unchanged.
|
|
return (det != 0.0f) ? (adj * (1.0f / det)) : m;
|
|
}
|
|
|
|
// Returns the inverse of a matrix, by using the algorithm of calculating the classical
|
|
// adjoint and dividing by the determinant. The contents of the matrix are changed.
|
|
float3x3 spvInverse3x3(float3x3 m)
|
|
{
|
|
float3x3 adj; // The adjoint matrix (inverse after dividing by determinant)
|
|
|
|
// Create the transpose of the cofactors, as the classical adjoint of the matrix.
|
|
adj[0][0] = spvDet2x2(m[1][1], m[1][2], m[2][1], m[2][2]);
|
|
adj[0][1] = -spvDet2x2(m[0][1], m[0][2], m[2][1], m[2][2]);
|
|
adj[0][2] = spvDet2x2(m[0][1], m[0][2], m[1][1], m[1][2]);
|
|
|
|
adj[1][0] = -spvDet2x2(m[1][0], m[1][2], m[2][0], m[2][2]);
|
|
adj[1][1] = spvDet2x2(m[0][0], m[0][2], m[2][0], m[2][2]);
|
|
adj[1][2] = -spvDet2x2(m[0][0], m[0][2], m[1][0], m[1][2]);
|
|
|
|
adj[2][0] = spvDet2x2(m[1][0], m[1][1], m[2][0], m[2][1]);
|
|
adj[2][1] = -spvDet2x2(m[0][0], m[0][1], m[2][0], m[2][1]);
|
|
adj[2][2] = spvDet2x2(m[0][0], m[0][1], m[1][0], m[1][1]);
|
|
|
|
// Calculate the determinant as a combination of the cofactors of the first row.
|
|
float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]);
|
|
|
|
// Divide the classical adjoint matrix by the determinant.
|
|
// If determinant is zero, matrix is not invertable, so leave it unchanged.
|
|
return (det != 0.0f) ? (adj * (1.0f / det)) : m;
|
|
}
|
|
|
|
// Returns the inverse of a matrix, by using the algorithm of calculating the classical
|
|
// adjoint and dividing by the determinant. The contents of the matrix are changed.
|
|
float2x2 spvInverse2x2(float2x2 m)
|
|
{
|
|
float2x2 adj; // The adjoint matrix (inverse after dividing by determinant)
|
|
|
|
// Create the transpose of the cofactors, as the classical adjoint of the matrix.
|
|
adj[0][0] = m[1][1];
|
|
adj[0][1] = -m[0][1];
|
|
|
|
adj[1][0] = -m[1][0];
|
|
adj[1][1] = m[0][0];
|
|
|
|
// Calculate the determinant as a combination of the cofactors of the first row.
|
|
float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]);
|
|
|
|
// Divide the classical adjoint matrix by the determinant.
|
|
// If determinant is zero, matrix is not invertable, so leave it unchanged.
|
|
return (det != 0.0f) ? (adj * (1.0f / det)) : m;
|
|
}
|
|
|
|
kernel void main0(device MatrixOut& _15 [[buffer(0)]], const device MatrixIn& _20 [[buffer(1)]])
|
|
{
|
|
_15.m2out = spvInverse2x2(_20.m2in);
|
|
_15.m3out = spvInverse3x3(_20.m3in);
|
|
_15.m4out = spvInverse4x4(_20.m4in);
|
|
}
|
|
|