SPIRV-Cross/reference/opt/shaders-msl/tesc/load-control-point-array-of-struct.multi-patch.tesc
Hans-Kristian Arntzen 46c48ee6b5 MSL: Rewrite how IO blocks are emitted in multi-patch mode.
Firstly, never flatten inputs or outputs in multi-patch mode.
The main scenario where we do need to care is Block IO.
In this case, we should only flatten the top-level member, and after
that we use access chains as normal.

Using structs in Input storage class is now possible as well. We don't
need to consider per-location fixups at all here. In Vulkan, IO structs
must match exactly. Only plain vectors can have smaller vector sizes as
a special case.
2021-04-19 12:10:49 +02:00

77 lines
2.7 KiB
GLSL

#pragma clang diagnostic ignored "-Wmissing-prototypes"
#pragma clang diagnostic ignored "-Wmissing-braces"
#include <metal_stdlib>
#include <simd/simd.h>
using namespace metal;
template<typename T, size_t Num>
struct spvUnsafeArray
{
T elements[Num ? Num : 1];
thread T& operator [] (size_t pos) thread
{
return elements[pos];
}
constexpr const thread T& operator [] (size_t pos) const thread
{
return elements[pos];
}
device T& operator [] (size_t pos) device
{
return elements[pos];
}
constexpr const device T& operator [] (size_t pos) const device
{
return elements[pos];
}
constexpr const constant T& operator [] (size_t pos) const constant
{
return elements[pos];
}
threadgroup T& operator [] (size_t pos) threadgroup
{
return elements[pos];
}
constexpr const threadgroup T& operator [] (size_t pos) const threadgroup
{
return elements[pos];
}
};
struct VertexData
{
float4x4 a;
spvUnsafeArray<float4, 2> b;
float4 c;
};
struct main0_out
{
float4 vOutputs;
};
struct main0_in
{
VertexData vInputs;
};
kernel void main0(uint3 gl_GlobalInvocationID [[thread_position_in_grid]], device main0_out* spvOut [[buffer(28)]], constant uint* spvIndirectParams [[buffer(29)]], device MTLQuadTessellationFactorsHalf* spvTessLevel [[buffer(26)]], device main0_in* spvIn [[buffer(22)]])
{
device main0_out* gl_out = &spvOut[gl_GlobalInvocationID.x - gl_GlobalInvocationID.x % 4];
device main0_in* gl_in = &spvIn[min(gl_GlobalInvocationID.x / 4, spvIndirectParams[1] - 1) * spvIndirectParams[0]];
uint gl_InvocationID = gl_GlobalInvocationID.x % 4;
uint gl_PrimitiveID = min(gl_GlobalInvocationID.x / 4, spvIndirectParams[1]);
spvUnsafeArray<VertexData, 32> _19 = spvUnsafeArray<VertexData, 32>({ gl_in[0].vInputs, gl_in[1].vInputs, gl_in[2].vInputs, gl_in[3].vInputs, gl_in[4].vInputs, gl_in[5].vInputs, gl_in[6].vInputs, gl_in[7].vInputs, gl_in[8].vInputs, gl_in[9].vInputs, gl_in[10].vInputs, gl_in[11].vInputs, gl_in[12].vInputs, gl_in[13].vInputs, gl_in[14].vInputs, gl_in[15].vInputs, gl_in[16].vInputs, gl_in[17].vInputs, gl_in[18].vInputs, gl_in[19].vInputs, gl_in[20].vInputs, gl_in[21].vInputs, gl_in[22].vInputs, gl_in[23].vInputs, gl_in[24].vInputs, gl_in[25].vInputs, gl_in[26].vInputs, gl_in[27].vInputs, gl_in[28].vInputs, gl_in[29].vInputs, gl_in[30].vInputs, gl_in[31].vInputs });
spvUnsafeArray<VertexData, 32> tmp;
tmp = _19;
int _27 = gl_InvocationID ^ 1;
gl_out[gl_InvocationID].vOutputs = ((tmp[gl_InvocationID].a[1] + tmp[gl_InvocationID].b[1]) + tmp[gl_InvocationID].c) + gl_in[_27].vInputs.c;
}