SPIRV-Cross/spirv_hlsl.cpp
2017-01-23 14:41:34 +01:00

973 lines
23 KiB
C++

/*
* Copyright 2016 Robert Konrad
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "spirv_hlsl.hpp"
#include "GLSL.std.450.h"
#include <algorithm>
using namespace spv;
using namespace spirv_cross;
using namespace std;
namespace
{
struct VariableComparator {
VariableComparator(const std::vector<Meta>& meta) : meta(meta) { }
bool operator () (SPIRVariable* var1, SPIRVariable* var2)
{
return meta[var1->self].decoration.alias.compare(meta[var2->self].decoration.alias) < 0;
}
const std::vector<Meta>& meta;
};
}
string CompilerHLSL::type_to_glsl(const SPIRType &type)
{
// Ignore the pointer type since GLSL doesn't have pointers.
switch (type.basetype)
{
case SPIRType::Struct:
// Need OpName lookup here to get a "sensible" name for a struct.
if (backend.explicit_struct_type)
return join("struct ", to_name(type.self));
else
return to_name(type.self);
case SPIRType::Image:
case SPIRType::SampledImage:
return image_type_glsl(type);
case SPIRType::Sampler:
// Not really used.
return "sampler";
case SPIRType::Void:
return "void";
default:
break;
}
if (type.vecsize == 1 && type.columns == 1) // Scalar builtin
{
switch (type.basetype)
{
case SPIRType::Boolean:
return "bool";
case SPIRType::Int:
return backend.basic_int_type;
case SPIRType::UInt:
return backend.basic_uint_type;
case SPIRType::AtomicCounter:
return "atomic_uint";
case SPIRType::Float:
return "float";
case SPIRType::Double:
return "double";
case SPIRType::Int64:
return "int64_t";
case SPIRType::UInt64:
return "uint64_t";
default:
return "???";
}
}
else if (type.vecsize > 1 && type.columns == 1) // Vector builtin
{
switch (type.basetype)
{
case SPIRType::Boolean:
return join("bfloat", type.vecsize);
case SPIRType::Int:
return join("ifloat", type.vecsize);
case SPIRType::UInt:
return join("ufloat", type.vecsize);
case SPIRType::Float:
return join("float", type.vecsize);
case SPIRType::Double:
return join("double", type.vecsize);
case SPIRType::Int64:
return join("i64vec", type.vecsize);
case SPIRType::UInt64:
return join("u64vec", type.vecsize);
default:
return "???";
}
}
else
{
switch (type.basetype)
{
case SPIRType::Boolean:
return join("bool", type.columns, "x", type.vecsize);
case SPIRType::Int:
return join("int", type.columns, "x", type.vecsize);
case SPIRType::UInt:
return join("uint", type.columns, "x", type.vecsize);
case SPIRType::Float:
return join("float", type.columns, "x", type.vecsize);
case SPIRType::Double:
return join("double", type.columns, "x", type.vecsize);
// Matrix types not supported for int64/uint64.
default:
return "???";
}
}
}
void CompilerHLSL::emit_header()
{
auto &execution = get_entry_point();
for (auto &header : header_lines)
statement(header);
if (header_lines.size() > 0)
{
statement("");
}
}
void CompilerHLSL::emit_interface_block_globally(const SPIRVariable &var)
{
auto &execution = get_entry_point();
auto &type = get<SPIRType>(var.basetype);
add_resource_name(var.self);
if (execution.model == ExecutionModelVertex && var.storage == StorageClassInput && is_builtin_variable(var)) {
}
else if (execution.model == ExecutionModelVertex && var.storage == StorageClassOutput && is_builtin_variable(var)) {
statement("static float4 gl_Position;");
}
else {
statement("static ", variable_decl(var), ";");
}
}
void CompilerHLSL::emit_interface_block_in_struct(const SPIRVariable &var, uint32_t &binding_number, bool builtins)
{
auto &execution = get_entry_point();
auto &type = get<SPIRType>(var.basetype);
const char *binding = "TEXCOORD";
bool use_binding_number = true;
if (execution.model == ExecutionModelFragment && var.storage == StorageClassOutput)
{
binding = "COLOR";
use_binding_number = false;
}
else if (execution.model == ExecutionModelVertex && var.storage == StorageClassOutput && is_builtin_variable(var))
{
if (options.shader_model <= 30)
{
binding = "POSITION";
}
else
{
binding = "SV_POSITION";
}
use_binding_number = false;
}
bool is_no_builtin = !is_builtin_variable(var) && !var.remapped_variable;
if ((is_no_builtin && !builtins) || (!is_no_builtin && builtins))
{
auto &m = meta[var.self].decoration;
if (use_binding_number)
{
if (type.vecsize == 4 && type.columns == 4)
{
for (int i = 0; i < 4; ++i) {
char name[101];
strcpy(name, m.alias.c_str());
strcat(name, "_");
size_t length = strlen(name);
sprintf(&name[length], "%d", i);
name[length + 1] = 0;
SPIRType newtype = type;
newtype.columns = 1;
statement(variable_decl(newtype, name), " : ", binding, binding_number++, ";");
}
--binding_number;
}
else
{
statement(variable_decl(type, m.alias), " : ", binding, binding_number, ";");
}
}
else
{
if (execution.model == ExecutionModelVertex) {
statement("float4 gl_Position", " : ", binding, ";");
}
else {
statement(variable_decl(type, m.alias), " : ", binding, ";");
}
}
}
if (is_no_builtin)
{
++binding_number;
}
}
void CompilerHLSL::emit_resources()
{
auto &execution = get_entry_point();
// Emit PLS blocks if we have such variables.
if (!pls_inputs.empty() || !pls_outputs.empty())
emit_pls();
// Output all basic struct types which are not Block or BufferBlock as these are declared inplace
// when such variables are instantiated.
for (auto &id : ids)
{
if (id.get_type() == TypeType)
{
auto &type = id.get<SPIRType>();
if (type.basetype == SPIRType::Struct && type.array.empty() && !type.pointer &&
(meta[type.self].decoration.decoration_flags &
((1ull << DecorationBlock) | (1ull << DecorationBufferBlock))) == 0)
{
emit_struct(type);
}
}
}
bool emitted = false;
if (execution.model == ExecutionModelVertex && options.shader_model <= 30)
{
statement("uniform float4 gl_HalfPixel;");
emitted = true;
}
// Output Uniform Constants (values, samplers, images, etc).
for (auto &id : ids)
{
if (id.get_type() == TypeVariable)
{
auto &var = id.get<SPIRVariable>();
auto &type = get<SPIRType>(var.basetype);
if (var.storage != StorageClassFunction && !is_builtin_variable(var) && !var.remapped_variable &&
type.pointer &&
(type.storage == StorageClassUniformConstant || type.storage == StorageClassAtomicCounter))
{
emit_uniform(var);
emitted = true;
}
}
}
if (emitted)
statement("");
emitted = false;
for (auto &id : ids)
{
if (id.get_type() == TypeVariable)
{
auto &var = id.get<SPIRVariable>();
auto &type = get<SPIRType>(var.basetype);
if (var.storage != StorageClassFunction && !var.remapped_variable && type.pointer &&
(var.storage == StorageClassInput || var.storage == StorageClassOutput) &&
interface_variable_exists_in_entry_point(var.self))
{
emit_interface_block_globally(var);
emitted = true;
}
}
}
if (emitted)
statement("");
emitted = false;
if (execution.model == ExecutionModelVertex)
{
statement("struct InputVert");
}
else
{
statement("struct InputFrag");
}
begin_scope();
uint32_t binding_number = 0;
std::vector<SPIRVariable*> variables;
for (auto &id : ids)
{
if (id.get_type() == TypeVariable)
{
auto &var = id.get<SPIRVariable>();
auto &type = get<SPIRType>(var.basetype);
if (var.storage != StorageClassFunction && !var.remapped_variable && type.pointer &&
var.storage == StorageClassInput && interface_variable_exists_in_entry_point(var.self))
{
if (execution.model == ExecutionModelVertex && is_builtin_variable(var)) continue;
variables.push_back(&var);
}
}
}
sort(variables.begin(), variables.end(), VariableComparator(meta));
for (auto var : variables)
{
emit_interface_block_in_struct(*var, binding_number, false);
}
for (auto var : variables)
{
emit_interface_block_in_struct(*var, binding_number, true);
}
end_scope_decl();
statement("");
if (execution.model == ExecutionModelVertex)
{
statement("struct OutputVert");
}
else
{
statement("struct OutputFrag");
}
begin_scope();
binding_number = 0;
variables.clear();
for (auto &id : ids)
{
if (id.get_type() == TypeVariable)
{
auto &var = id.get<SPIRVariable>();
auto &type = get<SPIRType>(var.basetype);
if (var.storage != StorageClassFunction && !var.remapped_variable && type.pointer &&
var.storage == StorageClassOutput && interface_variable_exists_in_entry_point(var.self))
{
variables.push_back(&var);
}
}
}
sort(variables.begin(), variables.end(), VariableComparator(meta));
for (auto var : variables)
{
emit_interface_block_in_struct(*var, binding_number, false);
}
for (auto var : variables)
{
emit_interface_block_in_struct(*var, binding_number, true);
}
end_scope_decl();
statement("");
// Global variables.
for (auto global : global_variables)
{
auto &var = get<SPIRVariable>(global);
if (var.storage != StorageClassOutput)
{
add_resource_name(var.self);
statement("static ", variable_decl(var), ";");
emitted = true;
}
}
if (emitted)
statement("");
if (requires_op_fmod)
{
statement("float mod(float x, float y)");
begin_scope();
statement("return x - y * floor(x / y);");
end_scope();
statement("");
}
}
void CompilerHLSL::emit_function_prototype(SPIRFunction &func, uint64_t return_flags)
{
auto &execution = get_entry_point();
// Avoid shadow declarations.
local_variable_names = resource_names;
string decl;
auto &type = get<SPIRType>(func.return_type);
decl += flags_to_precision_qualifiers_glsl(type, return_flags);
decl += type_to_glsl(type);
decl += " ";
if (func.self == entry_point)
{
if (execution.model == ExecutionModelVertex)
{
decl += "vert_main";
}
else
{
decl += "frag_main";
}
processing_entry_point = true;
}
else
decl += to_name(func.self);
decl += "(";
for (auto &arg : func.arguments)
{
// Might change the variable name if it already exists in this function.
// SPIRV OpName doesn't have any semantic effect, so it's valid for an implementation
// to use same name for variables.
// Since we want to make the GLSL debuggable and somewhat sane, use fallback names for variables which are duplicates.
add_local_variable_name(arg.id);
decl += argument_decl(arg);
if (&arg != &func.arguments.back())
decl += ", ";
// Hold a pointer to the parameter so we can invalidate the readonly field if needed.
auto *var = maybe_get<SPIRVariable>(arg.id);
if (var)
var->parameter = &arg;
}
decl += ")";
statement(decl);
}
void CompilerHLSL::emit_hlsl_entry_point()
{
auto &execution = get_entry_point();
const char *post = "Frag";
if (execution.model == ExecutionModelVertex)
{
post = "Vert";
}
statement("Output", post, " main(Input", post, " input)");
begin_scope();
for (auto &id : ids)
{
if (id.get_type() == TypeVariable)
{
auto &var = id.get<SPIRVariable>();
auto &type = get<SPIRType>(var.basetype);
if (var.storage != StorageClassFunction && !var.remapped_variable && type.pointer &&
var.storage == StorageClassInput && interface_variable_exists_in_entry_point(var.self))
{
if (execution.model == ExecutionModelVertex && is_builtin_variable(var)) continue;
auto &m = meta[var.self].decoration;
auto &type = get<SPIRType>(var.basetype);
if (type.vecsize == 4 && type.columns == 4)
{
statement(m.alias, "[0] = input.", m.alias, "_0;");
statement(m.alias, "[1] = input.", m.alias, "_1;");
statement(m.alias, "[2] = input.", m.alias, "_2;");
statement(m.alias, "[3] = input.", m.alias, "_3;");
}
else
{
statement(m.alias, " = input.", m.alias, ";");
}
}
}
}
if (execution.model == ExecutionModelVertex)
{
statement("vert_main();");
}
else
{
statement("frag_main();");
}
statement("Output", post, " output;");
for (auto &id : ids)
{
if (id.get_type() == TypeVariable)
{
auto &var = id.get<SPIRVariable>();
auto &type = get<SPIRType>(var.basetype);
if (var.storage != StorageClassFunction && !var.remapped_variable && type.pointer &&
var.storage == StorageClassOutput && interface_variable_exists_in_entry_point(var.self))
{
auto &m = meta[var.self].decoration;
bool is_no_builtin = !is_builtin_variable(var) && !var.remapped_variable;
if (is_no_builtin) statement("output.", m.alias, " = ", m.alias, ";");
else if (execution.model == ExecutionModelVertex) {
statement("output.gl_Position = gl_Position;");
}
}
}
}
if (execution.model == ExecutionModelVertex)
{
if (options.shader_model <= 30)
{
statement("output.gl_Position.x = output.gl_Position.x - gl_HalfPixel.x * output.gl_Position.w;");
statement("output.gl_Position.y = output.gl_Position.y + gl_HalfPixel.y * output.gl_Position.w;");
}
statement("output.gl_Position.z = (output.gl_Position.z + output.gl_Position.w) * 0.5;");
}
statement("return output;");
end_scope();
}
void CompilerHLSL::emit_texture_op(const Instruction &i)
{
auto ops = stream(i);
auto op = static_cast<Op>(i.op);
uint32_t length = i.length;
if (i.offset + length > spirv.size())
throw CompilerError("Compiler::parse() opcode out of range.");
uint32_t result_type = ops[0];
uint32_t id = ops[1];
uint32_t img = ops[2];
uint32_t coord = ops[3];
uint32_t dref = 0;
uint32_t comp = 0;
bool gather = false;
bool proj = false;
const uint32_t *opt = nullptr;
switch (op)
{
case OpImageSampleDrefImplicitLod:
case OpImageSampleDrefExplicitLod:
dref = ops[4];
opt = &ops[5];
length -= 5;
break;
case OpImageSampleProjDrefImplicitLod:
case OpImageSampleProjDrefExplicitLod:
dref = ops[4];
proj = true;
opt = &ops[5];
length -= 5;
break;
case OpImageDrefGather:
dref = ops[4];
opt = &ops[5];
gather = true;
length -= 5;
break;
case OpImageGather:
comp = ops[4];
opt = &ops[5];
gather = true;
length -= 5;
break;
case OpImageSampleProjImplicitLod:
case OpImageSampleProjExplicitLod:
opt = &ops[4];
length -= 4;
proj = true;
break;
default:
opt = &ops[4];
length -= 4;
break;
}
auto &imgtype = expression_type(img);
uint32_t coord_components = 0;
switch (imgtype.image.dim)
{
case spv::Dim1D:
coord_components = 1;
break;
case spv::Dim2D:
coord_components = 2;
break;
case spv::Dim3D:
coord_components = 3;
break;
case spv::DimCube:
coord_components = 3;
break;
case spv::DimBuffer:
coord_components = 1;
break;
default:
coord_components = 2;
break;
}
if (proj)
coord_components++;
if (imgtype.image.arrayed)
coord_components++;
uint32_t bias = 0;
uint32_t lod = 0;
uint32_t grad_x = 0;
uint32_t grad_y = 0;
uint32_t coffset = 0;
uint32_t offset = 0;
uint32_t coffsets = 0;
uint32_t sample = 0;
uint32_t flags = 0;
if (length)
{
flags = opt[0];
opt++;
length--;
}
auto test = [&](uint32_t &v, uint32_t flag) {
if (length && (flags & flag))
{
v = *opt++;
length--;
}
};
test(bias, ImageOperandsBiasMask);
test(lod, ImageOperandsLodMask);
test(grad_x, ImageOperandsGradMask);
test(grad_y, ImageOperandsGradMask);
test(coffset, ImageOperandsConstOffsetMask);
test(offset, ImageOperandsOffsetMask);
test(coffsets, ImageOperandsConstOffsetsMask);
test(sample, ImageOperandsSampleMask);
string expr;
string texop;
if (op == OpImageFetch)
texop += "texelFetch";
else
{
texop += "tex2D";
if (gather)
texop += "Gather";
if (coffsets)
texop += "Offsets";
if (proj)
texop += "Proj";
if (grad_x || grad_y)
texop += "Grad";
if (lod)
texop += "Lod";
}
if (coffset || offset)
texop += "Offset";
if (is_legacy())
texop = legacy_tex_op(texop, imgtype);
expr += texop;
expr += "(";
expr += to_expression(img);
bool swizz_func = backend.swizzle_is_function;
auto swizzle = [swizz_func](uint32_t comps, uint32_t in_comps) -> const char * {
if (comps == in_comps)
return "";
switch (comps)
{
case 1:
return ".x";
case 2:
return swizz_func ? ".xy()" : ".xy";
case 3:
return swizz_func ? ".xyz()" : ".xyz";
default:
return "";
}
};
bool forward = should_forward(coord);
// The IR can give us more components than we need, so chop them off as needed.
auto coord_expr = to_expression(coord) + swizzle(coord_components, expression_type(coord).vecsize);
// TODO: implement rest ... A bit intensive.
if (dref)
{
forward = forward && should_forward(dref);
// SPIR-V splits dref and coordinate.
if (coord_components == 4) // GLSL also splits the arguments in two.
{
expr += ", ";
expr += to_expression(coord);
expr += ", ";
expr += to_expression(dref);
}
else
{
// Create a composite which merges coord/dref into a single vector.
auto type = expression_type(coord);
type.vecsize = coord_components + 1;
expr += ", ";
expr += type_to_glsl_constructor(type);
expr += "(";
expr += coord_expr;
expr += ", ";
expr += to_expression(dref);
expr += ")";
}
}
else
{
expr += ", ";
expr += coord_expr;
}
if (grad_x || grad_y)
{
forward = forward && should_forward(grad_x);
forward = forward && should_forward(grad_y);
expr += ", ";
expr += to_expression(grad_x);
expr += ", ";
expr += to_expression(grad_y);
}
if (lod)
{
forward = forward && should_forward(lod);
expr += ", ";
expr += to_expression(lod);
}
if (coffset)
{
forward = forward && should_forward(coffset);
expr += ", ";
expr += to_expression(coffset);
}
else if (offset)
{
forward = forward && should_forward(offset);
expr += ", ";
expr += to_expression(offset);
}
if (bias)
{
forward = forward && should_forward(bias);
expr += ", ";
expr += to_expression(bias);
}
if (comp)
{
forward = forward && should_forward(comp);
expr += ", ";
expr += to_expression(comp);
}
if (sample)
{
expr += ", ";
expr += to_expression(sample);
}
expr += ")";
emit_op(result_type, id, expr, forward, false);
}
void CompilerHLSL::emit_binary_func_op_transpose_first(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
const char *op)
{
bool forward = should_forward(op0) && should_forward(op1);
emit_op(result_type, result_id, join(op, "(transpose(", to_expression(op0), "), ", to_expression(op1), ")"), forward, false);
if (forward && forced_temporaries.find(result_id) == end(forced_temporaries))
{
inherit_expression_dependencies(result_id, op0);
inherit_expression_dependencies(result_id, op1);
}
}
void CompilerHLSL::emit_binary_func_op_transpose_second(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
const char *op)
{
bool forward = should_forward(op0) && should_forward(op1);
emit_op(result_type, result_id, join(op, "(", to_expression(op0), ", transpose(", to_expression(op1), "))"), forward, false);
if (forward && forced_temporaries.find(result_id) == end(forced_temporaries))
{
inherit_expression_dependencies(result_id, op0);
inherit_expression_dependencies(result_id, op1);
}
}
void CompilerHLSL::emit_binary_func_op_transpose_all(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
const char *op)
{
bool forward = should_forward(op0) && should_forward(op1);
emit_op(result_type, result_id, join("transpose(", op, "(transpose(", to_expression(op0), "), transpose(", to_expression(op1), ")))"), forward, false);
if (forward && forced_temporaries.find(result_id) == end(forced_temporaries))
{
inherit_expression_dependencies(result_id, op0);
inherit_expression_dependencies(result_id, op1);
}
}
void CompilerHLSL::emit_glsl_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args, uint32_t count)
{
GLSLstd450 op = static_cast<GLSLstd450>(eop);
switch (op)
{
case GLSLstd450InverseSqrt:
{
emit_unary_func_op(result_type, id, args[0], "rsqrt");
break;
}
case GLSLstd450Fract:
{
emit_unary_func_op(result_type, id, args[0], "frac");
break;
}
case GLSLstd450FMix:
case GLSLstd450IMix:
{
emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "lerp");
break;
}
case GLSLstd450Atan2:
{
emit_binary_func_op(result_type, id, args[1], args[0], "atan2");
break;
}
default:
CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
break;
}
}
void CompilerHLSL::emit_instruction(const Instruction &instruction)
{
auto ops = stream(instruction);
auto opcode = static_cast<Op>(instruction.op);
uint32_t length = instruction.length;
#define BOP(op) emit_binary_op(ops[0], ops[1], ops[2], ops[3], #op)
#define BOP_CAST(op, type, skip_cast) emit_binary_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, skip_cast)
#define UOP(op) emit_unary_op(ops[0], ops[1], ops[2], #op)
#define QFOP(op) emit_quaternary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], #op)
#define TFOP(op) emit_trinary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], #op)
#define BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
#define BFOP_CAST(op, type, skip_cast) emit_binary_func_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, skip_cast)
#define BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
#define UFOP(op) emit_unary_func_op(ops[0], ops[1], ops[2], #op)
switch (opcode)
{
case OpMatrixTimesVector:
{
emit_binary_func_op_transpose_first(ops[0], ops[1], ops[2], ops[3], "mul");
break;
}
case OpVectorTimesMatrix:
{
emit_binary_func_op_transpose_second(ops[0], ops[1], ops[2], ops[3], "mul");
break;
}
case OpMatrixTimesMatrix:
{
emit_binary_func_op_transpose_all(ops[0], ops[1], ops[2], ops[3], "mul");
break;
}
case OpFMod:
{
requires_op_fmod = true;
CompilerGLSL::emit_instruction(instruction);
break;
}
default:
CompilerGLSL::emit_instruction(instruction);
break;
}
}
string CompilerHLSL::compile()
{
// Do not deal with ES-isms like precision, older extensions and such.
CompilerGLSL::options.es = false;
CompilerGLSL::options.version = 450;
backend.float_literal_suffix = true;
backend.double_literal_suffix = false;
backend.long_long_literal_suffix = true;
backend.uint32_t_literal_suffix = true;
backend.basic_int_type = "int";
backend.basic_uint_type = "uint";
backend.swizzle_is_function = false;
backend.shared_is_implied = true;
backend.flexible_member_array_supported = false;
backend.explicit_struct_type = true;
backend.use_initializer_list = true;
backend.use_constructor_splatting = false;
uint32_t pass_count = 0;
do
{
if (pass_count >= 3)
throw CompilerError("Over 3 compilation loops detected. Must be a bug!");
reset();
// Move constructor for this type is broken on GCC 4.9 ...
buffer = unique_ptr<ostringstream>(new ostringstream());
emit_header();
emit_resources();
emit_function(get<SPIRFunction>(entry_point), 0);
emit_hlsl_entry_point();
pass_count++;
} while (force_recompile);
return buffer->str();
}