SPIRV-Cross/reference/shaders-msl/comp/inverse.comp
Bill Hollings ec054dad7f MSL: Support synthetic functions in function constants.
Emit synthetic functions before function constants.
Support use of spvQuantizeToF16() in function constants for numerical
behavior consistency with the op code.
Ensure subnormal results from OpQuantizeToF16 are flushed to zero per SPIR-V spec.

Adjust SPIRV-Cross unit test reference shaders to accommodate these changes.
Any MSL reference shader that inclues a synthetic function is affected,
since the location it is emitted has changed.
2021-09-28 19:10:16 -04:00

131 lines
5.7 KiB
Plaintext

#pragma clang diagnostic ignored "-Wmissing-prototypes"
#include <metal_stdlib>
#include <simd/simd.h>
using namespace metal;
// Returns the determinant of a 2x2 matrix.
static inline __attribute__((always_inline))
float spvDet2x2(float a1, float a2, float b1, float b2)
{
return a1 * b2 - b1 * a2;
}
// Returns the determinant of a 3x3 matrix.
static inline __attribute__((always_inline))
float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3)
{
return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, b2, b3);
}
// Returns the inverse of a matrix, by using the algorithm of calculating the classical
// adjoint and dividing by the determinant. The contents of the matrix are changed.
static inline __attribute__((always_inline))
float4x4 spvInverse4x4(float4x4 m)
{
float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)
// Create the transpose of the cofactors, as the classical adjoint of the matrix.
adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]);
adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]);
adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], m[3][3]);
adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3]);
adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]);
adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]);
adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], m[3][3]);
adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3]);
adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]);
adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]);
adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], m[3][3]);
adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3]);
adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]);
adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]);
adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], m[3][2]);
adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2]);
// Calculate the determinant as a combination of the cofactors of the first row.
float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] * m[3][0]);
// Divide the classical adjoint matrix by the determinant.
// If determinant is zero, matrix is not invertable, so leave it unchanged.
return (det != 0.0f) ? (adj * (1.0f / det)) : m;
}
// Returns the inverse of a matrix, by using the algorithm of calculating the classical
// adjoint and dividing by the determinant. The contents of the matrix are changed.
static inline __attribute__((always_inline))
float3x3 spvInverse3x3(float3x3 m)
{
float3x3 adj; // The adjoint matrix (inverse after dividing by determinant)
// Create the transpose of the cofactors, as the classical adjoint of the matrix.
adj[0][0] = spvDet2x2(m[1][1], m[1][2], m[2][1], m[2][2]);
adj[0][1] = -spvDet2x2(m[0][1], m[0][2], m[2][1], m[2][2]);
adj[0][2] = spvDet2x2(m[0][1], m[0][2], m[1][1], m[1][2]);
adj[1][0] = -spvDet2x2(m[1][0], m[1][2], m[2][0], m[2][2]);
adj[1][1] = spvDet2x2(m[0][0], m[0][2], m[2][0], m[2][2]);
adj[1][2] = -spvDet2x2(m[0][0], m[0][2], m[1][0], m[1][2]);
adj[2][0] = spvDet2x2(m[1][0], m[1][1], m[2][0], m[2][1]);
adj[2][1] = -spvDet2x2(m[0][0], m[0][1], m[2][0], m[2][1]);
adj[2][2] = spvDet2x2(m[0][0], m[0][1], m[1][0], m[1][1]);
// Calculate the determinant as a combination of the cofactors of the first row.
float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]);
// Divide the classical adjoint matrix by the determinant.
// If determinant is zero, matrix is not invertable, so leave it unchanged.
return (det != 0.0f) ? (adj * (1.0f / det)) : m;
}
// Returns the inverse of a matrix, by using the algorithm of calculating the classical
// adjoint and dividing by the determinant. The contents of the matrix are changed.
static inline __attribute__((always_inline))
float2x2 spvInverse2x2(float2x2 m)
{
float2x2 adj; // The adjoint matrix (inverse after dividing by determinant)
// Create the transpose of the cofactors, as the classical adjoint of the matrix.
adj[0][0] = m[1][1];
adj[0][1] = -m[0][1];
adj[1][0] = -m[1][0];
adj[1][1] = m[0][0];
// Calculate the determinant as a combination of the cofactors of the first row.
float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]);
// Divide the classical adjoint matrix by the determinant.
// If determinant is zero, matrix is not invertable, so leave it unchanged.
return (det != 0.0f) ? (adj * (1.0f / det)) : m;
}
struct MatrixOut
{
float2x2 m2out;
float3x3 m3out;
float4x4 m4out;
};
struct MatrixIn
{
float2x2 m2in;
float3x3 m3in;
float4x4 m4in;
};
constant uint3 gl_WorkGroupSize [[maybe_unused]] = uint3(1u);
kernel void main0(device MatrixOut& _15 [[buffer(0)]], const device MatrixIn& _20 [[buffer(1)]])
{
_15.m2out = spvInverse2x2(_20.m2in);
_15.m3out = spvInverse3x3(_20.m3in);
_15.m4out = spvInverse4x4(_20.m4in);
}