7774 lines
252 KiB
C++
7774 lines
252 KiB
C++
/*
|
|
* Copyright 2016-2019 The Brenwill Workshop Ltd.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "spirv_msl.hpp"
|
|
#include "GLSL.std.450.h"
|
|
|
|
#include <algorithm>
|
|
#include <assert.h>
|
|
#include <numeric>
|
|
|
|
using namespace spv;
|
|
using namespace SPIRV_CROSS_NAMESPACE;
|
|
using namespace std;
|
|
|
|
static const uint32_t k_unknown_location = ~0u;
|
|
static const uint32_t k_unknown_component = ~0u;
|
|
|
|
static const uint32_t k_aux_mbr_idx_swizzle_const = 0u;
|
|
|
|
CompilerMSL::CompilerMSL(std::vector<uint32_t> spirv_)
|
|
: CompilerGLSL(move(spirv_))
|
|
{
|
|
}
|
|
|
|
CompilerMSL::CompilerMSL(const uint32_t *ir_, size_t word_count)
|
|
: CompilerGLSL(ir_, word_count)
|
|
{
|
|
}
|
|
|
|
CompilerMSL::CompilerMSL(const ParsedIR &ir_)
|
|
: CompilerGLSL(ir_)
|
|
{
|
|
}
|
|
|
|
CompilerMSL::CompilerMSL(ParsedIR &&ir_)
|
|
: CompilerGLSL(std::move(ir_))
|
|
{
|
|
}
|
|
|
|
void CompilerMSL::add_msl_vertex_attribute(const MSLVertexAttr &va)
|
|
{
|
|
vtx_attrs_by_location[va.location] = va;
|
|
if (va.builtin != BuiltInMax && !vtx_attrs_by_builtin.count(va.builtin))
|
|
vtx_attrs_by_builtin[va.builtin] = va;
|
|
}
|
|
|
|
void CompilerMSL::add_msl_resource_binding(const MSLResourceBinding &binding)
|
|
{
|
|
resource_bindings.push_back({ binding, false });
|
|
}
|
|
|
|
void CompilerMSL::add_discrete_descriptor_set(uint32_t desc_set)
|
|
{
|
|
if (desc_set < kMaxArgumentBuffers)
|
|
argument_buffer_discrete_mask |= 1u << desc_set;
|
|
}
|
|
|
|
bool CompilerMSL::is_msl_vertex_attribute_used(uint32_t location)
|
|
{
|
|
return vtx_attrs_in_use.count(location) != 0;
|
|
}
|
|
|
|
bool CompilerMSL::is_msl_resource_binding_used(ExecutionModel model, uint32_t desc_set, uint32_t binding)
|
|
{
|
|
auto itr = find_if(begin(resource_bindings), end(resource_bindings),
|
|
[&](const std::pair<MSLResourceBinding, bool> &resource) -> bool {
|
|
return model == resource.first.stage && desc_set == resource.first.desc_set &&
|
|
binding == resource.first.binding;
|
|
});
|
|
return itr != end(resource_bindings) && itr->second;
|
|
}
|
|
|
|
void CompilerMSL::set_fragment_output_components(uint32_t location, uint32_t components)
|
|
{
|
|
fragment_output_components[location] = components;
|
|
}
|
|
|
|
void CompilerMSL::build_implicit_builtins()
|
|
{
|
|
bool need_sample_pos = active_input_builtins.get(BuiltInSamplePosition);
|
|
bool need_vertex_params = capture_output_to_buffer && get_execution_model() == ExecutionModelVertex;
|
|
bool need_tesc_params = get_execution_model() == ExecutionModelTessellationControl;
|
|
if (need_subpass_input || need_sample_pos || need_vertex_params || need_tesc_params)
|
|
{
|
|
bool has_frag_coord = false;
|
|
bool has_sample_id = false;
|
|
bool has_vertex_idx = false;
|
|
bool has_base_vertex = false;
|
|
bool has_instance_idx = false;
|
|
bool has_base_instance = false;
|
|
bool has_invocation_id = false;
|
|
bool has_primitive_id = false;
|
|
|
|
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
|
|
if (var.storage != StorageClassInput || !ir.meta[var.self].decoration.builtin)
|
|
return;
|
|
|
|
if (need_subpass_input && ir.meta[var.self].decoration.builtin_type == BuiltInFragCoord)
|
|
{
|
|
builtin_frag_coord_id = var.self;
|
|
has_frag_coord = true;
|
|
}
|
|
|
|
if (need_sample_pos && ir.meta[var.self].decoration.builtin_type == BuiltInSampleId)
|
|
{
|
|
builtin_sample_id_id = var.self;
|
|
has_sample_id = true;
|
|
}
|
|
|
|
if (need_vertex_params)
|
|
{
|
|
switch (ir.meta[var.self].decoration.builtin_type)
|
|
{
|
|
case BuiltInVertexIndex:
|
|
builtin_vertex_idx_id = var.self;
|
|
has_vertex_idx = true;
|
|
break;
|
|
case BuiltInBaseVertex:
|
|
builtin_base_vertex_id = var.self;
|
|
has_base_vertex = true;
|
|
break;
|
|
case BuiltInInstanceIndex:
|
|
builtin_instance_idx_id = var.self;
|
|
has_instance_idx = true;
|
|
break;
|
|
case BuiltInBaseInstance:
|
|
builtin_base_instance_id = var.self;
|
|
has_base_instance = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (need_tesc_params)
|
|
{
|
|
switch (ir.meta[var.self].decoration.builtin_type)
|
|
{
|
|
case BuiltInInvocationId:
|
|
builtin_invocation_id_id = var.self;
|
|
has_invocation_id = true;
|
|
break;
|
|
case BuiltInPrimitiveId:
|
|
builtin_primitive_id_id = var.self;
|
|
has_primitive_id = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
});
|
|
|
|
if (!has_frag_coord && need_subpass_input)
|
|
{
|
|
uint32_t offset = ir.increase_bound_by(3);
|
|
uint32_t type_id = offset;
|
|
uint32_t type_ptr_id = offset + 1;
|
|
uint32_t var_id = offset + 2;
|
|
|
|
// Create gl_FragCoord.
|
|
SPIRType vec4_type;
|
|
vec4_type.basetype = SPIRType::Float;
|
|
vec4_type.width = 32;
|
|
vec4_type.vecsize = 4;
|
|
set<SPIRType>(type_id, vec4_type);
|
|
|
|
SPIRType vec4_type_ptr;
|
|
vec4_type_ptr = vec4_type;
|
|
vec4_type_ptr.pointer = true;
|
|
vec4_type_ptr.parent_type = type_id;
|
|
vec4_type_ptr.storage = StorageClassInput;
|
|
auto &ptr_type = set<SPIRType>(type_ptr_id, vec4_type_ptr);
|
|
ptr_type.self = type_id;
|
|
|
|
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
|
|
set_decoration(var_id, DecorationBuiltIn, BuiltInFragCoord);
|
|
builtin_frag_coord_id = var_id;
|
|
}
|
|
|
|
if (!has_sample_id && need_sample_pos)
|
|
{
|
|
uint32_t offset = ir.increase_bound_by(3);
|
|
uint32_t type_id = offset;
|
|
uint32_t type_ptr_id = offset + 1;
|
|
uint32_t var_id = offset + 2;
|
|
|
|
// Create gl_SampleID.
|
|
SPIRType uint_type;
|
|
uint_type.basetype = SPIRType::UInt;
|
|
uint_type.width = 32;
|
|
set<SPIRType>(type_id, uint_type);
|
|
|
|
SPIRType uint_type_ptr;
|
|
uint_type_ptr = uint_type;
|
|
uint_type_ptr.pointer = true;
|
|
uint_type_ptr.parent_type = type_id;
|
|
uint_type_ptr.storage = StorageClassInput;
|
|
auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
|
|
ptr_type.self = type_id;
|
|
|
|
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
|
|
set_decoration(var_id, DecorationBuiltIn, BuiltInSampleId);
|
|
builtin_sample_id_id = var_id;
|
|
}
|
|
|
|
if (need_vertex_params && (!has_vertex_idx || !has_base_vertex || !has_instance_idx || !has_base_instance))
|
|
{
|
|
uint32_t offset = ir.increase_bound_by(2);
|
|
uint32_t type_id = offset;
|
|
uint32_t type_ptr_id = offset + 1;
|
|
|
|
SPIRType uint_type;
|
|
uint_type.basetype = SPIRType::UInt;
|
|
uint_type.width = 32;
|
|
set<SPIRType>(type_id, uint_type);
|
|
|
|
SPIRType uint_type_ptr;
|
|
uint_type_ptr = uint_type;
|
|
uint_type_ptr.pointer = true;
|
|
uint_type_ptr.parent_type = type_id;
|
|
uint_type_ptr.storage = StorageClassInput;
|
|
auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
|
|
ptr_type.self = type_id;
|
|
|
|
if (!has_vertex_idx)
|
|
{
|
|
uint32_t var_id = ir.increase_bound_by(1);
|
|
|
|
// Create gl_VertexIndex.
|
|
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
|
|
set_decoration(var_id, DecorationBuiltIn, BuiltInVertexIndex);
|
|
builtin_vertex_idx_id = var_id;
|
|
}
|
|
if (!has_base_vertex)
|
|
{
|
|
uint32_t var_id = ir.increase_bound_by(1);
|
|
|
|
// Create gl_BaseVertex.
|
|
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
|
|
set_decoration(var_id, DecorationBuiltIn, BuiltInBaseVertex);
|
|
builtin_base_vertex_id = var_id;
|
|
}
|
|
if (!has_instance_idx)
|
|
{
|
|
uint32_t var_id = ir.increase_bound_by(1);
|
|
|
|
// Create gl_InstanceIndex.
|
|
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
|
|
set_decoration(var_id, DecorationBuiltIn, BuiltInInstanceIndex);
|
|
builtin_instance_idx_id = var_id;
|
|
}
|
|
if (!has_base_instance)
|
|
{
|
|
uint32_t var_id = ir.increase_bound_by(1);
|
|
|
|
// Create gl_BaseInstance.
|
|
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
|
|
set_decoration(var_id, DecorationBuiltIn, BuiltInBaseInstance);
|
|
builtin_base_instance_id = var_id;
|
|
}
|
|
}
|
|
|
|
if (need_tesc_params && (!has_invocation_id || !has_primitive_id))
|
|
{
|
|
uint32_t offset = ir.increase_bound_by(2);
|
|
uint32_t type_id = offset;
|
|
uint32_t type_ptr_id = offset + 1;
|
|
|
|
SPIRType uint_type;
|
|
uint_type.basetype = SPIRType::UInt;
|
|
uint_type.width = 32;
|
|
set<SPIRType>(type_id, uint_type);
|
|
|
|
SPIRType uint_type_ptr;
|
|
uint_type_ptr = uint_type;
|
|
uint_type_ptr.pointer = true;
|
|
uint_type_ptr.parent_type = type_id;
|
|
uint_type_ptr.storage = StorageClassInput;
|
|
auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
|
|
ptr_type.self = type_id;
|
|
|
|
if (!has_invocation_id)
|
|
{
|
|
uint32_t var_id = ir.increase_bound_by(1);
|
|
|
|
// Create gl_InvocationID.
|
|
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
|
|
set_decoration(var_id, DecorationBuiltIn, BuiltInInvocationId);
|
|
builtin_invocation_id_id = var_id;
|
|
}
|
|
if (!has_primitive_id)
|
|
{
|
|
uint32_t var_id = ir.increase_bound_by(1);
|
|
|
|
// Create gl_PrimitiveID.
|
|
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
|
|
set_decoration(var_id, DecorationBuiltIn, BuiltInPrimitiveId);
|
|
builtin_primitive_id_id = var_id;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (needs_aux_buffer_def)
|
|
{
|
|
uint32_t offset = ir.increase_bound_by(5);
|
|
uint32_t type_id = offset;
|
|
uint32_t type_arr_id = offset + 1;
|
|
uint32_t struct_id = offset + 2;
|
|
uint32_t struct_ptr_id = offset + 3;
|
|
uint32_t var_id = offset + 4;
|
|
|
|
// Create a buffer to hold extra data, including the swizzle constants.
|
|
SPIRType uint_type;
|
|
uint_type.basetype = SPIRType::UInt;
|
|
uint_type.width = 32;
|
|
set<SPIRType>(type_id, uint_type);
|
|
|
|
SPIRType uint_type_arr = uint_type;
|
|
uint_type_arr.array.push_back(0);
|
|
uint_type_arr.array_size_literal.push_back(true);
|
|
uint_type_arr.parent_type = type_id;
|
|
set<SPIRType>(type_arr_id, uint_type_arr);
|
|
set_decoration(type_arr_id, DecorationArrayStride, 4);
|
|
|
|
SPIRType struct_type;
|
|
struct_type.basetype = SPIRType::Struct;
|
|
struct_type.member_types.push_back(type_arr_id);
|
|
auto &type = set<SPIRType>(struct_id, struct_type);
|
|
type.self = struct_id;
|
|
set_decoration(struct_id, DecorationBlock);
|
|
set_name(struct_id, "spvAux");
|
|
set_member_name(struct_id, k_aux_mbr_idx_swizzle_const, "swizzleConst");
|
|
set_member_decoration(struct_id, k_aux_mbr_idx_swizzle_const, DecorationOffset, 0);
|
|
|
|
SPIRType struct_type_ptr = struct_type;
|
|
struct_type_ptr.pointer = true;
|
|
struct_type_ptr.parent_type = struct_id;
|
|
struct_type_ptr.storage = StorageClassUniform;
|
|
auto &ptr_type = set<SPIRType>(struct_ptr_id, struct_type_ptr);
|
|
ptr_type.self = struct_id;
|
|
|
|
set<SPIRVariable>(var_id, struct_ptr_id, StorageClassUniform);
|
|
set_name(var_id, "spvAuxBuffer");
|
|
// This should never match anything.
|
|
set_decoration(var_id, DecorationDescriptorSet, 0xFFFFFFFE);
|
|
set_decoration(var_id, DecorationBinding, msl_options.aux_buffer_index);
|
|
aux_buffer_id = var_id;
|
|
}
|
|
}
|
|
|
|
static string create_sampler_address(const char *prefix, MSLSamplerAddress addr)
|
|
{
|
|
switch (addr)
|
|
{
|
|
case MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE:
|
|
return join(prefix, "address::clamp_to_edge");
|
|
case MSL_SAMPLER_ADDRESS_CLAMP_TO_ZERO:
|
|
return join(prefix, "address::clamp_to_zero");
|
|
case MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER:
|
|
return join(prefix, "address::clamp_to_border");
|
|
case MSL_SAMPLER_ADDRESS_REPEAT:
|
|
return join(prefix, "address::repeat");
|
|
case MSL_SAMPLER_ADDRESS_MIRRORED_REPEAT:
|
|
return join(prefix, "address::mirrored_repeat");
|
|
default:
|
|
SPIRV_CROSS_THROW("Invalid sampler addressing mode.");
|
|
}
|
|
}
|
|
|
|
SPIRType &CompilerMSL::get_stage_in_struct_type()
|
|
{
|
|
auto &si_var = get<SPIRVariable>(stage_in_var_id);
|
|
return get_variable_data_type(si_var);
|
|
}
|
|
|
|
SPIRType &CompilerMSL::get_stage_out_struct_type()
|
|
{
|
|
auto &so_var = get<SPIRVariable>(stage_out_var_id);
|
|
return get_variable_data_type(so_var);
|
|
}
|
|
|
|
SPIRType &CompilerMSL::get_patch_stage_in_struct_type()
|
|
{
|
|
auto &si_var = get<SPIRVariable>(patch_stage_in_var_id);
|
|
return get_variable_data_type(si_var);
|
|
}
|
|
|
|
SPIRType &CompilerMSL::get_patch_stage_out_struct_type()
|
|
{
|
|
auto &so_var = get<SPIRVariable>(patch_stage_out_var_id);
|
|
return get_variable_data_type(so_var);
|
|
}
|
|
|
|
std::string CompilerMSL::get_tess_factor_struct_name()
|
|
{
|
|
if (get_entry_point().flags.get(ExecutionModeTriangles))
|
|
return "MTLTriangleTessellationFactorsHalf";
|
|
return "MTLQuadTessellationFactorsHalf";
|
|
}
|
|
|
|
void CompilerMSL::emit_entry_point_declarations()
|
|
{
|
|
// FIXME: Get test coverage here ...
|
|
|
|
// Emit constexpr samplers here.
|
|
for (auto &samp : constexpr_samplers)
|
|
{
|
|
auto &var = get<SPIRVariable>(samp.first);
|
|
auto &type = get<SPIRType>(var.basetype);
|
|
if (type.basetype == SPIRType::Sampler)
|
|
add_resource_name(samp.first);
|
|
|
|
SmallVector<string> args;
|
|
auto &s = samp.second;
|
|
|
|
if (s.coord != MSL_SAMPLER_COORD_NORMALIZED)
|
|
args.push_back("coord::pixel");
|
|
|
|
if (s.min_filter == s.mag_filter)
|
|
{
|
|
if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST)
|
|
args.push_back("filter::linear");
|
|
}
|
|
else
|
|
{
|
|
if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST)
|
|
args.push_back("min_filter::linear");
|
|
if (s.mag_filter != MSL_SAMPLER_FILTER_NEAREST)
|
|
args.push_back("mag_filter::linear");
|
|
}
|
|
|
|
switch (s.mip_filter)
|
|
{
|
|
case MSL_SAMPLER_MIP_FILTER_NONE:
|
|
// Default
|
|
break;
|
|
case MSL_SAMPLER_MIP_FILTER_NEAREST:
|
|
args.push_back("mip_filter::nearest");
|
|
break;
|
|
case MSL_SAMPLER_MIP_FILTER_LINEAR:
|
|
args.push_back("mip_filter::linear");
|
|
break;
|
|
default:
|
|
SPIRV_CROSS_THROW("Invalid mip filter.");
|
|
}
|
|
|
|
if (s.s_address == s.t_address && s.s_address == s.r_address)
|
|
{
|
|
if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
|
|
args.push_back(create_sampler_address("", s.s_address));
|
|
}
|
|
else
|
|
{
|
|
if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
|
|
args.push_back(create_sampler_address("s_", s.s_address));
|
|
if (s.t_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
|
|
args.push_back(create_sampler_address("t_", s.t_address));
|
|
if (s.r_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
|
|
args.push_back(create_sampler_address("r_", s.r_address));
|
|
}
|
|
|
|
if (s.compare_enable)
|
|
{
|
|
switch (s.compare_func)
|
|
{
|
|
case MSL_SAMPLER_COMPARE_FUNC_ALWAYS:
|
|
args.push_back("compare_func::always");
|
|
break;
|
|
case MSL_SAMPLER_COMPARE_FUNC_NEVER:
|
|
args.push_back("compare_func::never");
|
|
break;
|
|
case MSL_SAMPLER_COMPARE_FUNC_EQUAL:
|
|
args.push_back("compare_func::equal");
|
|
break;
|
|
case MSL_SAMPLER_COMPARE_FUNC_NOT_EQUAL:
|
|
args.push_back("compare_func::not_equal");
|
|
break;
|
|
case MSL_SAMPLER_COMPARE_FUNC_LESS:
|
|
args.push_back("compare_func::less");
|
|
break;
|
|
case MSL_SAMPLER_COMPARE_FUNC_LESS_EQUAL:
|
|
args.push_back("compare_func::less_equal");
|
|
break;
|
|
case MSL_SAMPLER_COMPARE_FUNC_GREATER:
|
|
args.push_back("compare_func::greater");
|
|
break;
|
|
case MSL_SAMPLER_COMPARE_FUNC_GREATER_EQUAL:
|
|
args.push_back("compare_func::greater_equal");
|
|
break;
|
|
default:
|
|
SPIRV_CROSS_THROW("Invalid sampler compare function.");
|
|
}
|
|
}
|
|
|
|
if (s.s_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER || s.t_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER ||
|
|
s.r_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER)
|
|
{
|
|
switch (s.border_color)
|
|
{
|
|
case MSL_SAMPLER_BORDER_COLOR_OPAQUE_BLACK:
|
|
args.push_back("border_color::opaque_black");
|
|
break;
|
|
case MSL_SAMPLER_BORDER_COLOR_OPAQUE_WHITE:
|
|
args.push_back("border_color::opaque_white");
|
|
break;
|
|
case MSL_SAMPLER_BORDER_COLOR_TRANSPARENT_BLACK:
|
|
args.push_back("border_color::transparent_black");
|
|
break;
|
|
default:
|
|
SPIRV_CROSS_THROW("Invalid sampler border color.");
|
|
}
|
|
}
|
|
|
|
if (s.anisotropy_enable)
|
|
args.push_back(join("max_anisotropy(", s.max_anisotropy, ")"));
|
|
if (s.lod_clamp_enable)
|
|
{
|
|
args.push_back(join("lod_clamp(", convert_to_string(s.lod_clamp_min, current_locale_radix_character), ", ",
|
|
convert_to_string(s.lod_clamp_max, current_locale_radix_character), ")"));
|
|
}
|
|
|
|
statement("constexpr sampler ",
|
|
type.basetype == SPIRType::SampledImage ? to_sampler_expression(samp.first) : to_name(samp.first),
|
|
"(", merge(args), ");");
|
|
}
|
|
|
|
// Emit buffer arrays here.
|
|
for (uint32_t array_id : buffer_arrays)
|
|
{
|
|
const auto &var = get<SPIRVariable>(array_id);
|
|
const auto &type = get_variable_data_type(var);
|
|
string name = to_name(array_id);
|
|
statement(get_argument_address_space(var) + " " + type_to_glsl(type) + "* " + name + "[] =");
|
|
begin_scope();
|
|
for (uint32_t i = 0; i < type.array[0]; ++i)
|
|
statement(name + "_" + convert_to_string(i) + ",");
|
|
end_scope_decl();
|
|
statement_no_indent("");
|
|
}
|
|
// For some reason, without this, we end up emitting the arrays twice.
|
|
buffer_arrays.clear();
|
|
}
|
|
|
|
string CompilerMSL::compile()
|
|
{
|
|
// Do not deal with GLES-isms like precision, older extensions and such.
|
|
options.vulkan_semantics = true;
|
|
options.es = false;
|
|
options.version = 450;
|
|
backend.null_pointer_literal = "nullptr";
|
|
backend.float_literal_suffix = false;
|
|
backend.uint32_t_literal_suffix = true;
|
|
backend.int16_t_literal_suffix = "";
|
|
backend.uint16_t_literal_suffix = "u";
|
|
backend.basic_int_type = "int";
|
|
backend.basic_uint_type = "uint";
|
|
backend.basic_int8_type = "char";
|
|
backend.basic_uint8_type = "uchar";
|
|
backend.basic_int16_type = "short";
|
|
backend.basic_uint16_type = "ushort";
|
|
backend.discard_literal = "discard_fragment()";
|
|
backend.swizzle_is_function = false;
|
|
backend.shared_is_implied = false;
|
|
backend.use_initializer_list = true;
|
|
backend.use_typed_initializer_list = true;
|
|
backend.native_row_major_matrix = false;
|
|
backend.flexible_member_array_supported = false;
|
|
backend.can_declare_arrays_inline = false;
|
|
backend.can_return_array = false;
|
|
backend.boolean_mix_support = false;
|
|
backend.allow_truncated_access_chain = true;
|
|
backend.array_is_value_type = false;
|
|
backend.comparison_image_samples_scalar = true;
|
|
|
|
capture_output_to_buffer = msl_options.capture_output_to_buffer;
|
|
is_rasterization_disabled = msl_options.disable_rasterization || capture_output_to_buffer;
|
|
|
|
replace_illegal_names();
|
|
|
|
struct_member_padding.clear();
|
|
|
|
build_function_control_flow_graphs_and_analyze();
|
|
update_active_builtins();
|
|
analyze_image_and_sampler_usage();
|
|
analyze_sampled_image_usage();
|
|
build_implicit_builtins();
|
|
|
|
fixup_image_load_store_access();
|
|
|
|
set_enabled_interface_variables(get_active_interface_variables());
|
|
if (aux_buffer_id)
|
|
active_interface_variables.insert(aux_buffer_id);
|
|
|
|
// Preprocess OpCodes to extract the need to output additional header content
|
|
preprocess_op_codes();
|
|
|
|
// Create structs to hold input, output and uniform variables.
|
|
// Do output first to ensure out. is declared at top of entry function.
|
|
qual_pos_var_name = "";
|
|
stage_out_var_id = add_interface_block(StorageClassOutput);
|
|
patch_stage_out_var_id = add_interface_block(StorageClassOutput, true);
|
|
stage_in_var_id = add_interface_block(StorageClassInput);
|
|
if (get_execution_model() == ExecutionModelTessellationEvaluation)
|
|
patch_stage_in_var_id = add_interface_block(StorageClassInput, true);
|
|
|
|
if (get_execution_model() == ExecutionModelTessellationControl)
|
|
stage_out_ptr_var_id = add_interface_block_pointer(stage_out_var_id, StorageClassOutput);
|
|
if (is_tessellation_shader())
|
|
stage_in_ptr_var_id = add_interface_block_pointer(stage_in_var_id, StorageClassInput);
|
|
|
|
// Metal vertex functions that define no output must disable rasterization and return void.
|
|
if (!stage_out_var_id)
|
|
is_rasterization_disabled = true;
|
|
|
|
// Convert the use of global variables to recursively-passed function parameters
|
|
localize_global_variables();
|
|
extract_global_variables_from_functions();
|
|
|
|
// Mark any non-stage-in structs to be tightly packed.
|
|
mark_packable_structs();
|
|
|
|
// Add fixup hooks required by shader inputs and outputs. This needs to happen before
|
|
// the loop, so the hooks aren't added multiple times.
|
|
fix_up_shader_inputs_outputs();
|
|
|
|
// If we are using argument buffers, we create argument buffer structures for them here.
|
|
// These buffers will be used in the entry point, not the individual resources.
|
|
if (msl_options.argument_buffers)
|
|
{
|
|
if (!msl_options.supports_msl_version(2, 0))
|
|
SPIRV_CROSS_THROW("Argument buffers can only be used with MSL 2.0 and up.");
|
|
analyze_argument_buffers();
|
|
}
|
|
|
|
uint32_t pass_count = 0;
|
|
do
|
|
{
|
|
if (pass_count >= 3)
|
|
SPIRV_CROSS_THROW("Over 3 compilation loops detected. Must be a bug!");
|
|
|
|
reset();
|
|
|
|
// Start bindings at zero.
|
|
next_metal_resource_index_buffer = 0;
|
|
next_metal_resource_index_texture = 0;
|
|
next_metal_resource_index_sampler = 0;
|
|
|
|
// Move constructor for this type is broken on GCC 4.9 ...
|
|
buffer.reset();
|
|
|
|
emit_header();
|
|
emit_specialization_constants_and_structs();
|
|
emit_resources();
|
|
emit_custom_functions();
|
|
emit_function(get<SPIRFunction>(ir.default_entry_point), Bitset());
|
|
|
|
pass_count++;
|
|
} while (is_forcing_recompilation());
|
|
|
|
return buffer.str();
|
|
}
|
|
|
|
// Register the need to output any custom functions.
|
|
void CompilerMSL::preprocess_op_codes()
|
|
{
|
|
OpCodePreprocessor preproc(*this);
|
|
traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), preproc);
|
|
|
|
suppress_missing_prototypes = preproc.suppress_missing_prototypes;
|
|
|
|
if (preproc.uses_atomics)
|
|
{
|
|
add_header_line("#include <metal_atomic>");
|
|
add_pragma_line("#pragma clang diagnostic ignored \"-Wunused-variable\"");
|
|
}
|
|
|
|
// Metal vertex functions that write to resources must disable rasterization and return void.
|
|
if (preproc.uses_resource_write)
|
|
is_rasterization_disabled = true;
|
|
|
|
// Tessellation control shaders are run as compute functions in Metal, and so
|
|
// must capture their output to a buffer.
|
|
if (get_execution_model() == ExecutionModelTessellationControl)
|
|
{
|
|
is_rasterization_disabled = true;
|
|
capture_output_to_buffer = true;
|
|
}
|
|
}
|
|
|
|
// Move the Private and Workgroup global variables to the entry function.
|
|
// Non-constant variables cannot have global scope in Metal.
|
|
void CompilerMSL::localize_global_variables()
|
|
{
|
|
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
|
|
auto iter = global_variables.begin();
|
|
while (iter != global_variables.end())
|
|
{
|
|
uint32_t v_id = *iter;
|
|
auto &var = get<SPIRVariable>(v_id);
|
|
if (var.storage == StorageClassPrivate || var.storage == StorageClassWorkgroup)
|
|
{
|
|
if (!variable_is_lut(var))
|
|
entry_func.add_local_variable(v_id);
|
|
iter = global_variables.erase(iter);
|
|
}
|
|
else
|
|
iter++;
|
|
}
|
|
}
|
|
|
|
// For any global variable accessed directly by a function,
|
|
// extract that variable and add it as an argument to that function.
|
|
void CompilerMSL::extract_global_variables_from_functions()
|
|
{
|
|
// Uniforms
|
|
unordered_set<uint32_t> global_var_ids;
|
|
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
|
|
if (var.storage == StorageClassInput || var.storage == StorageClassOutput ||
|
|
var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
|
|
var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer)
|
|
{
|
|
global_var_ids.insert(var.self);
|
|
}
|
|
});
|
|
|
|
// Local vars that are declared in the main function and accessed directly by a function
|
|
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
|
|
for (auto &var : entry_func.local_variables)
|
|
if (get<SPIRVariable>(var).storage != StorageClassFunction)
|
|
global_var_ids.insert(var);
|
|
|
|
std::set<uint32_t> added_arg_ids;
|
|
unordered_set<uint32_t> processed_func_ids;
|
|
extract_global_variables_from_function(ir.default_entry_point, added_arg_ids, global_var_ids, processed_func_ids);
|
|
}
|
|
|
|
// MSL does not support the use of global variables for shader input content.
|
|
// For any global variable accessed directly by the specified function, extract that variable,
|
|
// add it as an argument to that function, and the arg to the added_arg_ids collection.
|
|
void CompilerMSL::extract_global_variables_from_function(uint32_t func_id, std::set<uint32_t> &added_arg_ids,
|
|
unordered_set<uint32_t> &global_var_ids,
|
|
unordered_set<uint32_t> &processed_func_ids)
|
|
{
|
|
// Avoid processing a function more than once
|
|
if (processed_func_ids.find(func_id) != processed_func_ids.end())
|
|
{
|
|
// Return function global variables
|
|
added_arg_ids = function_global_vars[func_id];
|
|
return;
|
|
}
|
|
|
|
processed_func_ids.insert(func_id);
|
|
|
|
auto &func = get<SPIRFunction>(func_id);
|
|
|
|
// Recursively establish global args added to functions on which we depend.
|
|
for (auto block : func.blocks)
|
|
{
|
|
auto &b = get<SPIRBlock>(block);
|
|
for (auto &i : b.ops)
|
|
{
|
|
auto ops = stream(i);
|
|
auto op = static_cast<Op>(i.op);
|
|
|
|
switch (op)
|
|
{
|
|
case OpLoad:
|
|
case OpInBoundsAccessChain:
|
|
case OpAccessChain:
|
|
case OpPtrAccessChain:
|
|
{
|
|
uint32_t base_id = ops[2];
|
|
if (global_var_ids.find(base_id) != global_var_ids.end())
|
|
added_arg_ids.insert(base_id);
|
|
|
|
auto &type = get<SPIRType>(ops[0]);
|
|
if (type.basetype == SPIRType::Image && type.image.dim == DimSubpassData)
|
|
{
|
|
// Implicitly reads gl_FragCoord.
|
|
assert(builtin_frag_coord_id != 0);
|
|
added_arg_ids.insert(builtin_frag_coord_id);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case OpFunctionCall:
|
|
{
|
|
// First see if any of the function call args are globals
|
|
for (uint32_t arg_idx = 3; arg_idx < i.length; arg_idx++)
|
|
{
|
|
uint32_t arg_id = ops[arg_idx];
|
|
if (global_var_ids.find(arg_id) != global_var_ids.end())
|
|
added_arg_ids.insert(arg_id);
|
|
}
|
|
|
|
// Then recurse into the function itself to extract globals used internally in the function
|
|
uint32_t inner_func_id = ops[2];
|
|
std::set<uint32_t> inner_func_args;
|
|
extract_global_variables_from_function(inner_func_id, inner_func_args, global_var_ids,
|
|
processed_func_ids);
|
|
added_arg_ids.insert(inner_func_args.begin(), inner_func_args.end());
|
|
break;
|
|
}
|
|
|
|
case OpStore:
|
|
{
|
|
uint32_t base_id = ops[0];
|
|
if (global_var_ids.find(base_id) != global_var_ids.end())
|
|
added_arg_ids.insert(base_id);
|
|
break;
|
|
}
|
|
|
|
case OpSelect:
|
|
{
|
|
uint32_t base_id = ops[3];
|
|
if (global_var_ids.find(base_id) != global_var_ids.end())
|
|
added_arg_ids.insert(base_id);
|
|
base_id = ops[4];
|
|
if (global_var_ids.find(base_id) != global_var_ids.end())
|
|
added_arg_ids.insert(base_id);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// TODO: Add all other operations which can affect memory.
|
|
// We should consider a more unified system here to reduce boiler-plate.
|
|
// This kind of analysis is done in several places ...
|
|
}
|
|
}
|
|
|
|
function_global_vars[func_id] = added_arg_ids;
|
|
|
|
// Add the global variables as arguments to the function
|
|
if (func_id != ir.default_entry_point)
|
|
{
|
|
bool added_in = false;
|
|
bool added_out = false;
|
|
for (uint32_t arg_id : added_arg_ids)
|
|
{
|
|
auto &var = get<SPIRVariable>(arg_id);
|
|
uint32_t type_id = var.basetype;
|
|
auto *p_type = &get<SPIRType>(type_id);
|
|
BuiltIn bi_type = BuiltIn(get_decoration(arg_id, DecorationBuiltIn));
|
|
|
|
if (((is_tessellation_shader() && var.storage == StorageClassInput) ||
|
|
(get_execution_model() == ExecutionModelTessellationControl && var.storage == StorageClassOutput)) &&
|
|
!(has_decoration(arg_id, DecorationPatch) || is_patch_block(*p_type)) &&
|
|
(!is_builtin_variable(var) || bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
|
|
bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance ||
|
|
p_type->basetype == SPIRType::Struct))
|
|
{
|
|
// Tessellation control shaders see inputs and per-vertex outputs as arrays.
|
|
// Similarly, tessellation evaluation shaders see per-vertex inputs as arrays.
|
|
// We collected them into a structure; we must pass the array of this
|
|
// structure to the function.
|
|
std::string name;
|
|
if (var.storage == StorageClassInput)
|
|
{
|
|
if (added_in)
|
|
continue;
|
|
name = input_wg_var_name;
|
|
arg_id = stage_in_ptr_var_id;
|
|
added_in = true;
|
|
}
|
|
else if (var.storage == StorageClassOutput)
|
|
{
|
|
if (added_out)
|
|
continue;
|
|
name = "gl_out";
|
|
arg_id = stage_out_ptr_var_id;
|
|
added_out = true;
|
|
}
|
|
type_id = get<SPIRVariable>(arg_id).basetype;
|
|
p_type = &get<SPIRType>(type_id);
|
|
uint32_t next_id = ir.increase_bound_by(1);
|
|
func.add_parameter(type_id, next_id, true);
|
|
set<SPIRVariable>(next_id, type_id, StorageClassFunction, 0, arg_id);
|
|
|
|
set_name(next_id, name);
|
|
}
|
|
else if (is_builtin_variable(var) && p_type->basetype == SPIRType::Struct)
|
|
{
|
|
// Get the pointee type
|
|
type_id = get_pointee_type_id(type_id);
|
|
p_type = &get<SPIRType>(type_id);
|
|
|
|
uint32_t mbr_idx = 0;
|
|
for (auto &mbr_type_id : p_type->member_types)
|
|
{
|
|
BuiltIn builtin = BuiltInMax;
|
|
bool is_builtin = is_member_builtin(*p_type, mbr_idx, &builtin);
|
|
if (is_builtin && has_active_builtin(builtin, var.storage))
|
|
{
|
|
// Add a arg variable with the same type and decorations as the member
|
|
uint32_t next_ids = ir.increase_bound_by(2);
|
|
uint32_t ptr_type_id = next_ids + 0;
|
|
uint32_t var_id = next_ids + 1;
|
|
|
|
// Make sure we have an actual pointer type,
|
|
// so that we will get the appropriate address space when declaring these builtins.
|
|
auto &ptr = set<SPIRType>(ptr_type_id, get<SPIRType>(mbr_type_id));
|
|
ptr.self = mbr_type_id;
|
|
ptr.storage = var.storage;
|
|
ptr.pointer = true;
|
|
ptr.parent_type = mbr_type_id;
|
|
|
|
func.add_parameter(mbr_type_id, var_id, true);
|
|
set<SPIRVariable>(var_id, ptr_type_id, StorageClassFunction);
|
|
ir.meta[var_id].decoration = ir.meta[type_id].members[mbr_idx];
|
|
}
|
|
mbr_idx++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
uint32_t next_id = ir.increase_bound_by(1);
|
|
func.add_parameter(type_id, next_id, true);
|
|
set<SPIRVariable>(next_id, type_id, StorageClassFunction, 0, arg_id);
|
|
|
|
// Ensure the existing variable has a valid name and the new variable has all the same meta info
|
|
set_name(arg_id, ensure_valid_name(to_name(arg_id), "v"));
|
|
ir.meta[next_id] = ir.meta[arg_id];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// For all variables that are some form of non-input-output interface block, mark that all the structs
|
|
// that are recursively contained within the type referenced by that variable should be packed tightly.
|
|
void CompilerMSL::mark_packable_structs()
|
|
{
|
|
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
|
|
if (var.storage != StorageClassFunction && !is_hidden_variable(var))
|
|
{
|
|
auto &type = this->get<SPIRType>(var.basetype);
|
|
if (type.pointer &&
|
|
(type.storage == StorageClassUniform || type.storage == StorageClassUniformConstant ||
|
|
type.storage == StorageClassPushConstant || type.storage == StorageClassStorageBuffer) &&
|
|
(has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock)))
|
|
mark_as_packable(type);
|
|
}
|
|
});
|
|
}
|
|
|
|
// If the specified type is a struct, it and any nested structs
|
|
// are marked as packable with the SPIRVCrossDecorationPacked decoration,
|
|
void CompilerMSL::mark_as_packable(SPIRType &type)
|
|
{
|
|
// If this is not the base type (eg. it's a pointer or array), tunnel down
|
|
if (type.parent_type)
|
|
{
|
|
mark_as_packable(get<SPIRType>(type.parent_type));
|
|
return;
|
|
}
|
|
|
|
if (type.basetype == SPIRType::Struct)
|
|
{
|
|
set_extended_decoration(type.self, SPIRVCrossDecorationPacked);
|
|
|
|
// Recurse
|
|
size_t mbr_cnt = type.member_types.size();
|
|
for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
|
|
{
|
|
uint32_t mbr_type_id = type.member_types[mbr_idx];
|
|
auto &mbr_type = get<SPIRType>(mbr_type_id);
|
|
mark_as_packable(mbr_type);
|
|
if (mbr_type.type_alias)
|
|
{
|
|
auto &mbr_type_alias = get<SPIRType>(mbr_type.type_alias);
|
|
mark_as_packable(mbr_type_alias);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If a vertex attribute exists at the location, it is marked as being used by this shader
|
|
void CompilerMSL::mark_location_as_used_by_shader(uint32_t location, StorageClass storage)
|
|
{
|
|
if ((get_execution_model() == ExecutionModelVertex || is_tessellation_shader()) && (storage == StorageClassInput))
|
|
vtx_attrs_in_use.insert(location);
|
|
}
|
|
|
|
uint32_t CompilerMSL::get_target_components_for_fragment_location(uint32_t location) const
|
|
{
|
|
auto itr = fragment_output_components.find(location);
|
|
if (itr == end(fragment_output_components))
|
|
return 4;
|
|
else
|
|
return itr->second;
|
|
}
|
|
|
|
uint32_t CompilerMSL::build_extended_vector_type(uint32_t type_id, uint32_t components)
|
|
{
|
|
uint32_t new_type_id = ir.increase_bound_by(1);
|
|
auto &type = set<SPIRType>(new_type_id, get<SPIRType>(type_id));
|
|
type.vecsize = components;
|
|
type.self = new_type_id;
|
|
type.parent_type = type_id;
|
|
type.pointer = false;
|
|
|
|
return new_type_id;
|
|
}
|
|
|
|
void CompilerMSL::add_plain_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
|
|
SPIRType &ib_type, SPIRVariable &var, bool strip_array)
|
|
{
|
|
bool is_builtin = is_builtin_variable(var);
|
|
BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
|
|
bool is_flat = has_decoration(var.self, DecorationFlat);
|
|
bool is_noperspective = has_decoration(var.self, DecorationNoPerspective);
|
|
bool is_centroid = has_decoration(var.self, DecorationCentroid);
|
|
bool is_sample = has_decoration(var.self, DecorationSample);
|
|
|
|
// Add a reference to the variable type to the interface struct.
|
|
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
|
|
uint32_t type_id = ensure_correct_builtin_type(var.basetype, builtin);
|
|
var.basetype = type_id;
|
|
|
|
type_id = get_pointee_type_id(var.basetype);
|
|
if (strip_array && is_array(get<SPIRType>(type_id)))
|
|
type_id = get<SPIRType>(type_id).parent_type;
|
|
auto &type = get<SPIRType>(type_id);
|
|
uint32_t target_components = 0;
|
|
uint32_t type_components = type.vecsize;
|
|
bool padded_output = false;
|
|
|
|
// Check if we need to pad fragment output to match a certain number of components.
|
|
if (get_decoration_bitset(var.self).get(DecorationLocation) && msl_options.pad_fragment_output_components &&
|
|
get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput)
|
|
{
|
|
uint32_t locn = get_decoration(var.self, DecorationLocation);
|
|
target_components = get_target_components_for_fragment_location(locn);
|
|
if (type_components < target_components)
|
|
{
|
|
// Make a new type here.
|
|
type_id = build_extended_vector_type(type_id, target_components);
|
|
padded_output = true;
|
|
}
|
|
}
|
|
|
|
ib_type.member_types.push_back(type_id);
|
|
|
|
// Give the member a name
|
|
string mbr_name = ensure_valid_name(to_expression(var.self), "m");
|
|
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
|
|
|
|
// Update the original variable reference to include the structure reference
|
|
string qual_var_name = ib_var_ref + "." + mbr_name;
|
|
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
|
|
|
|
if (padded_output)
|
|
{
|
|
entry_func.add_local_variable(var.self);
|
|
vars_needing_early_declaration.push_back(var.self);
|
|
|
|
entry_func.fixup_hooks_out.push_back([=, &var]() {
|
|
SPIRType &padded_type = this->get<SPIRType>(type_id);
|
|
statement(qual_var_name, " = ", remap_swizzle(padded_type, type_components, to_name(var.self)), ";");
|
|
});
|
|
}
|
|
else if (!strip_array)
|
|
ir.meta[var.self].decoration.qualified_alias = qual_var_name;
|
|
|
|
if (var.storage == StorageClassOutput && var.initializer != 0)
|
|
{
|
|
entry_func.fixup_hooks_in.push_back(
|
|
[=, &var]() { statement(qual_var_name, " = ", to_expression(var.initializer), ";"); });
|
|
}
|
|
|
|
// Copy the variable location from the original variable to the member
|
|
if (get_decoration_bitset(var.self).get(DecorationLocation))
|
|
{
|
|
uint32_t locn = get_decoration(var.self, DecorationLocation);
|
|
if (storage == StorageClassInput && (get_execution_model() == ExecutionModelVertex || is_tessellation_shader()))
|
|
{
|
|
type_id = ensure_correct_attribute_type(var.basetype, locn);
|
|
var.basetype = type_id;
|
|
type_id = get_pointee_type_id(type_id);
|
|
if (strip_array && is_array(get<SPIRType>(type_id)))
|
|
type_id = get<SPIRType>(type_id).parent_type;
|
|
ib_type.member_types[ib_mbr_idx] = type_id;
|
|
}
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
|
|
mark_location_as_used_by_shader(locn, storage);
|
|
}
|
|
else if (is_builtin && is_tessellation_shader() && vtx_attrs_by_builtin.count(builtin))
|
|
{
|
|
uint32_t locn = vtx_attrs_by_builtin[builtin].location;
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
|
|
mark_location_as_used_by_shader(locn, storage);
|
|
}
|
|
|
|
if (get_decoration_bitset(var.self).get(DecorationComponent))
|
|
{
|
|
uint32_t comp = get_decoration(var.self, DecorationComponent);
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp);
|
|
}
|
|
|
|
if (get_decoration_bitset(var.self).get(DecorationIndex))
|
|
{
|
|
uint32_t index = get_decoration(var.self, DecorationIndex);
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, index);
|
|
}
|
|
|
|
// Mark the member as builtin if needed
|
|
if (is_builtin)
|
|
{
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
|
|
if (builtin == BuiltInPosition && storage == StorageClassOutput)
|
|
qual_pos_var_name = qual_var_name;
|
|
}
|
|
|
|
// Copy interpolation decorations if needed
|
|
if (is_flat)
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
|
|
if (is_noperspective)
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
|
|
if (is_centroid)
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
|
|
if (is_sample)
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
|
|
|
|
set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
|
|
}
|
|
|
|
void CompilerMSL::add_composite_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
|
|
SPIRType &ib_type, SPIRVariable &var, bool strip_array)
|
|
{
|
|
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
|
|
auto &var_type = strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
|
|
uint32_t elem_cnt = 0;
|
|
|
|
if (is_matrix(var_type))
|
|
{
|
|
if (is_array(var_type))
|
|
SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");
|
|
|
|
elem_cnt = var_type.columns;
|
|
}
|
|
else if (is_array(var_type))
|
|
{
|
|
if (var_type.array.size() != 1)
|
|
SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");
|
|
|
|
elem_cnt = to_array_size_literal(var_type);
|
|
}
|
|
|
|
bool is_builtin = is_builtin_variable(var);
|
|
BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
|
|
bool is_flat = has_decoration(var.self, DecorationFlat);
|
|
bool is_noperspective = has_decoration(var.self, DecorationNoPerspective);
|
|
bool is_centroid = has_decoration(var.self, DecorationCentroid);
|
|
bool is_sample = has_decoration(var.self, DecorationSample);
|
|
|
|
auto *usable_type = &var_type;
|
|
if (usable_type->pointer)
|
|
usable_type = &get<SPIRType>(usable_type->parent_type);
|
|
while (is_array(*usable_type) || is_matrix(*usable_type))
|
|
usable_type = &get<SPIRType>(usable_type->parent_type);
|
|
|
|
// If a builtin, force it to have the proper name.
|
|
if (is_builtin)
|
|
set_name(var.self, builtin_to_glsl(builtin, StorageClassFunction));
|
|
|
|
entry_func.add_local_variable(var.self);
|
|
|
|
// We need to declare the variable early and at entry-point scope.
|
|
vars_needing_early_declaration.push_back(var.self);
|
|
|
|
for (uint32_t i = 0; i < elem_cnt; i++)
|
|
{
|
|
// Add a reference to the variable type to the interface struct.
|
|
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
|
|
|
|
uint32_t target_components = 0;
|
|
bool padded_output = false;
|
|
uint32_t type_id = usable_type->self;
|
|
|
|
// Check if we need to pad fragment output to match a certain number of components.
|
|
if (get_decoration_bitset(var.self).get(DecorationLocation) && msl_options.pad_fragment_output_components &&
|
|
get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput)
|
|
{
|
|
uint32_t locn = get_decoration(var.self, DecorationLocation) + i;
|
|
target_components = get_target_components_for_fragment_location(locn);
|
|
if (usable_type->vecsize < target_components)
|
|
{
|
|
// Make a new type here.
|
|
type_id = build_extended_vector_type(usable_type->self, target_components);
|
|
padded_output = true;
|
|
}
|
|
}
|
|
|
|
ib_type.member_types.push_back(get_pointee_type_id(type_id));
|
|
|
|
// Give the member a name
|
|
string mbr_name = ensure_valid_name(join(to_expression(var.self), "_", i), "m");
|
|
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
|
|
|
|
// There is no qualified alias since we need to flatten the internal array on return.
|
|
if (get_decoration_bitset(var.self).get(DecorationLocation))
|
|
{
|
|
uint32_t locn = get_decoration(var.self, DecorationLocation) + i;
|
|
if (storage == StorageClassInput &&
|
|
(get_execution_model() == ExecutionModelVertex || is_tessellation_shader()))
|
|
{
|
|
var.basetype = ensure_correct_attribute_type(var.basetype, locn);
|
|
uint32_t mbr_type_id = ensure_correct_attribute_type(usable_type->self, locn);
|
|
ib_type.member_types[ib_mbr_idx] = mbr_type_id;
|
|
}
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
|
|
mark_location_as_used_by_shader(locn, storage);
|
|
}
|
|
else if (is_builtin && is_tessellation_shader() && vtx_attrs_by_builtin.count(builtin))
|
|
{
|
|
uint32_t locn = vtx_attrs_by_builtin[builtin].location + i;
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
|
|
mark_location_as_used_by_shader(locn, storage);
|
|
}
|
|
|
|
if (get_decoration_bitset(var.self).get(DecorationIndex))
|
|
{
|
|
uint32_t index = get_decoration(var.self, DecorationIndex);
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, index);
|
|
}
|
|
|
|
// Copy interpolation decorations if needed
|
|
if (is_flat)
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
|
|
if (is_noperspective)
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
|
|
if (is_centroid)
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
|
|
if (is_sample)
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
|
|
|
|
set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
|
|
|
|
if (!strip_array)
|
|
{
|
|
switch (storage)
|
|
{
|
|
case StorageClassInput:
|
|
entry_func.fixup_hooks_in.push_back(
|
|
[=, &var]() { statement(to_name(var.self), "[", i, "] = ", ib_var_ref, ".", mbr_name, ";"); });
|
|
break;
|
|
|
|
case StorageClassOutput:
|
|
entry_func.fixup_hooks_out.push_back([=, &var]() {
|
|
if (padded_output)
|
|
{
|
|
auto &padded_type = this->get<SPIRType>(type_id);
|
|
statement(
|
|
ib_var_ref, ".", mbr_name, " = ",
|
|
remap_swizzle(padded_type, usable_type->vecsize, join(to_name(var.self), "[", i, "]")),
|
|
";");
|
|
}
|
|
else
|
|
statement(ib_var_ref, ".", mbr_name, " = ", to_name(var.self), "[", i, "];");
|
|
});
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t CompilerMSL::get_accumulated_member_location(const SPIRVariable &var, uint32_t mbr_idx, bool strip_array)
|
|
{
|
|
auto &type = strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
|
|
uint32_t location = get_decoration(var.self, DecorationLocation);
|
|
|
|
for (uint32_t i = 0; i < mbr_idx; i++)
|
|
{
|
|
auto &mbr_type = get<SPIRType>(type.member_types[i]);
|
|
|
|
// Start counting from any place we have a new location decoration.
|
|
if (has_member_decoration(type.self, mbr_idx, DecorationLocation))
|
|
location = get_member_decoration(type.self, mbr_idx, DecorationLocation);
|
|
|
|
uint32_t location_count = 1;
|
|
|
|
if (mbr_type.columns > 1)
|
|
location_count = mbr_type.columns;
|
|
|
|
if (!mbr_type.array.empty())
|
|
for (uint32_t j = 0; j < uint32_t(mbr_type.array.size()); j++)
|
|
location_count *= to_array_size_literal(mbr_type, j);
|
|
|
|
location += location_count;
|
|
}
|
|
|
|
return location;
|
|
}
|
|
|
|
void CompilerMSL::add_composite_member_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
|
|
SPIRType &ib_type, SPIRVariable &var,
|
|
uint32_t mbr_idx, bool strip_array)
|
|
{
|
|
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
|
|
auto &var_type = strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
|
|
|
|
BuiltIn builtin;
|
|
bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
|
|
bool is_flat =
|
|
has_member_decoration(var_type.self, mbr_idx, DecorationFlat) || has_decoration(var.self, DecorationFlat);
|
|
bool is_noperspective = has_member_decoration(var_type.self, mbr_idx, DecorationNoPerspective) ||
|
|
has_decoration(var.self, DecorationNoPerspective);
|
|
bool is_centroid = has_member_decoration(var_type.self, mbr_idx, DecorationCentroid) ||
|
|
has_decoration(var.self, DecorationCentroid);
|
|
bool is_sample =
|
|
has_member_decoration(var_type.self, mbr_idx, DecorationSample) || has_decoration(var.self, DecorationSample);
|
|
|
|
uint32_t mbr_type_id = var_type.member_types[mbr_idx];
|
|
auto &mbr_type = get<SPIRType>(mbr_type_id);
|
|
uint32_t elem_cnt = 0;
|
|
|
|
if (is_matrix(mbr_type))
|
|
{
|
|
if (is_array(mbr_type))
|
|
SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");
|
|
|
|
elem_cnt = mbr_type.columns;
|
|
}
|
|
else if (is_array(mbr_type))
|
|
{
|
|
if (mbr_type.array.size() != 1)
|
|
SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");
|
|
|
|
elem_cnt = to_array_size_literal(mbr_type);
|
|
}
|
|
|
|
auto *usable_type = &mbr_type;
|
|
if (usable_type->pointer)
|
|
usable_type = &get<SPIRType>(usable_type->parent_type);
|
|
while (is_array(*usable_type) || is_matrix(*usable_type))
|
|
usable_type = &get<SPIRType>(usable_type->parent_type);
|
|
|
|
for (uint32_t i = 0; i < elem_cnt; i++)
|
|
{
|
|
// Add a reference to the variable type to the interface struct.
|
|
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
|
|
ib_type.member_types.push_back(usable_type->self);
|
|
|
|
// Give the member a name
|
|
string mbr_name = ensure_valid_name(join(to_qualified_member_name(var_type, mbr_idx), "_", i), "m");
|
|
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
|
|
|
|
if (has_member_decoration(var_type.self, mbr_idx, DecorationLocation))
|
|
{
|
|
uint32_t locn = get_member_decoration(var_type.self, mbr_idx, DecorationLocation) + i;
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
|
|
mark_location_as_used_by_shader(locn, storage);
|
|
}
|
|
else if (has_decoration(var.self, DecorationLocation))
|
|
{
|
|
uint32_t locn = get_accumulated_member_location(var, mbr_idx, strip_array) + i;
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
|
|
mark_location_as_used_by_shader(locn, storage);
|
|
}
|
|
else if (is_builtin && is_tessellation_shader() && vtx_attrs_by_builtin.count(builtin))
|
|
{
|
|
uint32_t locn = vtx_attrs_by_builtin[builtin].location + i;
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
|
|
mark_location_as_used_by_shader(locn, storage);
|
|
}
|
|
|
|
if (has_member_decoration(var_type.self, mbr_idx, DecorationComponent))
|
|
SPIRV_CROSS_THROW("DecorationComponent on matrices and arrays make little sense.");
|
|
|
|
// Copy interpolation decorations if needed
|
|
if (is_flat)
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
|
|
if (is_noperspective)
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
|
|
if (is_centroid)
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
|
|
if (is_sample)
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
|
|
|
|
set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
|
|
set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, mbr_idx);
|
|
|
|
// Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate.
|
|
if (!strip_array)
|
|
{
|
|
switch (storage)
|
|
{
|
|
case StorageClassInput:
|
|
entry_func.fixup_hooks_in.push_back([=, &var, &var_type]() {
|
|
statement(to_name(var.self), ".", to_member_name(var_type, mbr_idx), "[", i, "] = ", ib_var_ref,
|
|
".", mbr_name, ";");
|
|
});
|
|
break;
|
|
|
|
case StorageClassOutput:
|
|
entry_func.fixup_hooks_out.push_back([=, &var, &var_type]() {
|
|
statement(ib_var_ref, ".", mbr_name, " = ", to_name(var.self), ".",
|
|
to_member_name(var_type, mbr_idx), "[", i, "];");
|
|
});
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CompilerMSL::add_plain_member_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
|
|
SPIRType &ib_type, SPIRVariable &var, uint32_t mbr_idx,
|
|
bool strip_array)
|
|
{
|
|
auto &var_type = strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
|
|
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
|
|
|
|
BuiltIn builtin = BuiltInMax;
|
|
bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
|
|
bool is_flat =
|
|
has_member_decoration(var_type.self, mbr_idx, DecorationFlat) || has_decoration(var.self, DecorationFlat);
|
|
bool is_noperspective = has_member_decoration(var_type.self, mbr_idx, DecorationNoPerspective) ||
|
|
has_decoration(var.self, DecorationNoPerspective);
|
|
bool is_centroid = has_member_decoration(var_type.self, mbr_idx, DecorationCentroid) ||
|
|
has_decoration(var.self, DecorationCentroid);
|
|
bool is_sample =
|
|
has_member_decoration(var_type.self, mbr_idx, DecorationSample) || has_decoration(var.self, DecorationSample);
|
|
|
|
// Add a reference to the member to the interface struct.
|
|
uint32_t mbr_type_id = var_type.member_types[mbr_idx];
|
|
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
|
|
mbr_type_id = ensure_correct_builtin_type(mbr_type_id, builtin);
|
|
var_type.member_types[mbr_idx] = mbr_type_id;
|
|
ib_type.member_types.push_back(mbr_type_id);
|
|
|
|
// Give the member a name
|
|
string mbr_name = ensure_valid_name(to_qualified_member_name(var_type, mbr_idx), "m");
|
|
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
|
|
|
|
// Update the original variable reference to include the structure reference
|
|
string qual_var_name = ib_var_ref + "." + mbr_name;
|
|
|
|
if (is_builtin && !strip_array)
|
|
{
|
|
// For the builtin gl_PerVertex, we cannot treat it as a block anyways,
|
|
// so redirect to qualified name.
|
|
set_member_qualified_name(var_type.self, mbr_idx, qual_var_name);
|
|
}
|
|
else if (!strip_array)
|
|
{
|
|
// Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate.
|
|
switch (storage)
|
|
{
|
|
case StorageClassInput:
|
|
entry_func.fixup_hooks_in.push_back([=, &var, &var_type]() {
|
|
statement(to_name(var.self), ".", to_member_name(var_type, mbr_idx), " = ", qual_var_name, ";");
|
|
});
|
|
break;
|
|
|
|
case StorageClassOutput:
|
|
entry_func.fixup_hooks_out.push_back([=, &var, &var_type]() {
|
|
statement(qual_var_name, " = ", to_name(var.self), ".", to_member_name(var_type, mbr_idx), ";");
|
|
});
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Copy the variable location from the original variable to the member
|
|
if (has_member_decoration(var_type.self, mbr_idx, DecorationLocation))
|
|
{
|
|
uint32_t locn = get_member_decoration(var_type.self, mbr_idx, DecorationLocation);
|
|
if (storage == StorageClassInput && (get_execution_model() == ExecutionModelVertex || is_tessellation_shader()))
|
|
{
|
|
mbr_type_id = ensure_correct_attribute_type(mbr_type_id, locn);
|
|
var_type.member_types[mbr_idx] = mbr_type_id;
|
|
ib_type.member_types[ib_mbr_idx] = mbr_type_id;
|
|
}
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
|
|
mark_location_as_used_by_shader(locn, storage);
|
|
}
|
|
else if (has_decoration(var.self, DecorationLocation))
|
|
{
|
|
// The block itself might have a location and in this case, all members of the block
|
|
// receive incrementing locations.
|
|
uint32_t locn = get_accumulated_member_location(var, mbr_idx, strip_array);
|
|
if (storage == StorageClassInput && (get_execution_model() == ExecutionModelVertex || is_tessellation_shader()))
|
|
{
|
|
mbr_type_id = ensure_correct_attribute_type(mbr_type_id, locn);
|
|
var_type.member_types[mbr_idx] = mbr_type_id;
|
|
ib_type.member_types[ib_mbr_idx] = mbr_type_id;
|
|
}
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
|
|
mark_location_as_used_by_shader(locn, storage);
|
|
}
|
|
else if (is_builtin && is_tessellation_shader() && vtx_attrs_by_builtin.count(builtin))
|
|
{
|
|
uint32_t locn = 0;
|
|
auto builtin_itr = vtx_attrs_by_builtin.find(builtin);
|
|
if (builtin_itr != end(vtx_attrs_by_builtin))
|
|
locn = builtin_itr->second.location;
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
|
|
mark_location_as_used_by_shader(locn, storage);
|
|
}
|
|
|
|
// Copy the component location, if present.
|
|
if (has_member_decoration(var_type.self, mbr_idx, DecorationComponent))
|
|
{
|
|
uint32_t comp = get_member_decoration(var_type.self, mbr_idx, DecorationComponent);
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp);
|
|
}
|
|
|
|
// Mark the member as builtin if needed
|
|
if (is_builtin)
|
|
{
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
|
|
if (builtin == BuiltInPosition && storage == StorageClassOutput)
|
|
qual_pos_var_name = qual_var_name;
|
|
}
|
|
|
|
// Copy interpolation decorations if needed
|
|
if (is_flat)
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
|
|
if (is_noperspective)
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
|
|
if (is_centroid)
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
|
|
if (is_sample)
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
|
|
|
|
set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
|
|
set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, mbr_idx);
|
|
}
|
|
|
|
// In Metal, the tessellation levels are stored as tightly packed half-precision floating point values.
|
|
// But, stage-in attribute offsets and strides must be multiples of four, so we can't pass the levels
|
|
// individually. Therefore, we must pass them as vectors. Triangles get a single float4, with the outer
|
|
// levels in 'xyz' and the inner level in 'w'. Quads get a float4 containing the outer levels and a
|
|
// float2 containing the inner levels.
|
|
void CompilerMSL::add_tess_level_input_to_interface_block(const std::string &ib_var_ref, SPIRType &ib_type,
|
|
SPIRVariable &var)
|
|
{
|
|
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
|
|
auto &var_type = get_variable_element_type(var);
|
|
|
|
BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
|
|
|
|
// Force the variable to have the proper name.
|
|
set_name(var.self, builtin_to_glsl(builtin, StorageClassFunction));
|
|
|
|
if (get_entry_point().flags.get(ExecutionModeTriangles))
|
|
{
|
|
// Triangles are tricky, because we want only one member in the struct.
|
|
|
|
// We need to declare the variable early and at entry-point scope.
|
|
entry_func.add_local_variable(var.self);
|
|
vars_needing_early_declaration.push_back(var.self);
|
|
|
|
string mbr_name = "gl_TessLevel";
|
|
|
|
// If we already added the other one, we can skip this step.
|
|
if (!added_builtin_tess_level)
|
|
{
|
|
// Add a reference to the variable type to the interface struct.
|
|
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
|
|
|
|
uint32_t type_id = build_extended_vector_type(var_type.self, 4);
|
|
|
|
ib_type.member_types.push_back(type_id);
|
|
|
|
// Give the member a name
|
|
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
|
|
|
|
// There is no qualified alias since we need to flatten the internal array on return.
|
|
if (get_decoration_bitset(var.self).get(DecorationLocation))
|
|
{
|
|
uint32_t locn = get_decoration(var.self, DecorationLocation);
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
|
|
mark_location_as_used_by_shader(locn, StorageClassInput);
|
|
}
|
|
else if (vtx_attrs_by_builtin.count(builtin))
|
|
{
|
|
uint32_t locn = vtx_attrs_by_builtin[builtin].location;
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
|
|
mark_location_as_used_by_shader(locn, StorageClassInput);
|
|
}
|
|
|
|
added_builtin_tess_level = true;
|
|
}
|
|
|
|
switch (builtin)
|
|
{
|
|
case BuiltInTessLevelOuter:
|
|
entry_func.fixup_hooks_in.push_back([=, &var]() {
|
|
statement(to_name(var.self), "[0] = ", ib_var_ref, ".", mbr_name, ".x;");
|
|
statement(to_name(var.self), "[1] = ", ib_var_ref, ".", mbr_name, ".y;");
|
|
statement(to_name(var.self), "[2] = ", ib_var_ref, ".", mbr_name, ".z;");
|
|
});
|
|
break;
|
|
|
|
case BuiltInTessLevelInner:
|
|
entry_func.fixup_hooks_in.push_back(
|
|
[=, &var]() { statement(to_name(var.self), "[0] = ", ib_var_ref, ".", mbr_name, ".w;"); });
|
|
break;
|
|
|
|
default:
|
|
assert(false);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Add a reference to the variable type to the interface struct.
|
|
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
|
|
|
|
uint32_t type_id = build_extended_vector_type(var_type.self, builtin == BuiltInTessLevelOuter ? 4 : 2);
|
|
// Change the type of the variable, too.
|
|
uint32_t ptr_type_id = ir.increase_bound_by(1);
|
|
auto &new_var_type = set<SPIRType>(ptr_type_id, get<SPIRType>(type_id));
|
|
new_var_type.pointer = true;
|
|
new_var_type.storage = StorageClassInput;
|
|
new_var_type.parent_type = type_id;
|
|
var.basetype = ptr_type_id;
|
|
|
|
ib_type.member_types.push_back(type_id);
|
|
|
|
// Give the member a name
|
|
string mbr_name = to_expression(var.self);
|
|
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
|
|
|
|
// Since vectors can be indexed like arrays, there is no need to unpack this. We can
|
|
// just refer to the vector directly. So give it a qualified alias.
|
|
string qual_var_name = ib_var_ref + "." + mbr_name;
|
|
ir.meta[var.self].decoration.qualified_alias = qual_var_name;
|
|
|
|
if (get_decoration_bitset(var.self).get(DecorationLocation))
|
|
{
|
|
uint32_t locn = get_decoration(var.self, DecorationLocation);
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
|
|
mark_location_as_used_by_shader(locn, StorageClassInput);
|
|
}
|
|
else if (vtx_attrs_by_builtin.count(builtin))
|
|
{
|
|
uint32_t locn = vtx_attrs_by_builtin[builtin].location;
|
|
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
|
|
mark_location_as_used_by_shader(locn, StorageClassInput);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CompilerMSL::add_variable_to_interface_block(StorageClass storage, const string &ib_var_ref, SPIRType &ib_type,
|
|
SPIRVariable &var, bool strip_array)
|
|
{
|
|
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
|
|
// Tessellation control I/O variables and tessellation evaluation per-point inputs are
|
|
// usually declared as arrays. In these cases, we want to add the element type to the
|
|
// interface block, since in Metal it's the interface block itself which is arrayed.
|
|
auto &var_type = strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
|
|
bool is_builtin = is_builtin_variable(var);
|
|
auto builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
|
|
|
|
if (var_type.basetype == SPIRType::Struct)
|
|
{
|
|
if (!is_builtin_type(var_type) && (!capture_output_to_buffer || storage == StorageClassInput) && !strip_array)
|
|
{
|
|
// For I/O blocks or structs, we will need to pass the block itself around
|
|
// to functions if they are used globally in leaf functions.
|
|
// Rather than passing down member by member,
|
|
// we unflatten I/O blocks while running the shader,
|
|
// and pass the actual struct type down to leaf functions.
|
|
// We then unflatten inputs, and flatten outputs in the "fixup" stages.
|
|
entry_func.add_local_variable(var.self);
|
|
vars_needing_early_declaration.push_back(var.self);
|
|
}
|
|
|
|
if (capture_output_to_buffer && storage != StorageClassInput && !has_decoration(var_type.self, DecorationBlock))
|
|
{
|
|
// In Metal tessellation shaders, the interface block itself is arrayed. This makes things
|
|
// very complicated, since stage-in structures in MSL don't support nested structures.
|
|
// Luckily, for stage-out when capturing output, we can avoid this and just add
|
|
// composite members directly, because the stage-out structure is stored to a buffer,
|
|
// not returned.
|
|
add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, strip_array);
|
|
}
|
|
else
|
|
{
|
|
// Flatten the struct members into the interface struct
|
|
for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(var_type.member_types.size()); mbr_idx++)
|
|
{
|
|
builtin = BuiltInMax;
|
|
is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
|
|
auto &mbr_type = get<SPIRType>(var_type.member_types[mbr_idx]);
|
|
|
|
if (!is_builtin || has_active_builtin(builtin, storage))
|
|
{
|
|
if ((!is_builtin ||
|
|
(storage == StorageClassInput && get_execution_model() != ExecutionModelFragment)) &&
|
|
(storage == StorageClassInput || storage == StorageClassOutput) &&
|
|
(is_matrix(mbr_type) || is_array(mbr_type)))
|
|
{
|
|
add_composite_member_variable_to_interface_block(storage, ib_var_ref, ib_type, var, mbr_idx,
|
|
strip_array);
|
|
}
|
|
else
|
|
{
|
|
add_plain_member_variable_to_interface_block(storage, ib_var_ref, ib_type, var, mbr_idx,
|
|
strip_array);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput &&
|
|
!strip_array && is_builtin && (builtin == BuiltInTessLevelOuter || builtin == BuiltInTessLevelInner))
|
|
{
|
|
add_tess_level_input_to_interface_block(ib_var_ref, ib_type, var);
|
|
}
|
|
else if (var_type.basetype == SPIRType::Boolean || var_type.basetype == SPIRType::Char ||
|
|
type_is_integral(var_type) || type_is_floating_point(var_type) || var_type.basetype == SPIRType::Boolean)
|
|
{
|
|
if (!is_builtin || has_active_builtin(builtin, storage))
|
|
{
|
|
// MSL does not allow matrices or arrays in input or output variables, so need to handle it specially.
|
|
if ((!is_builtin || (storage == StorageClassInput && get_execution_model() != ExecutionModelFragment)) &&
|
|
(storage == StorageClassInput || (storage == StorageClassOutput && !capture_output_to_buffer)) &&
|
|
(is_matrix(var_type) || is_array(var_type)))
|
|
{
|
|
add_composite_variable_to_interface_block(storage, ib_var_ref, ib_type, var, strip_array);
|
|
}
|
|
else
|
|
{
|
|
add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, strip_array);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fix up the mapping of variables to interface member indices, which is used to compile access chains
|
|
// for per-vertex variables in a tessellation control shader.
|
|
void CompilerMSL::fix_up_interface_member_indices(StorageClass storage, uint32_t ib_type_id)
|
|
{
|
|
// Only needed for tessellation shaders.
|
|
if (get_execution_model() != ExecutionModelTessellationControl &&
|
|
!(get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput))
|
|
return;
|
|
|
|
bool in_array = false;
|
|
for (uint32_t i = 0; i < ir.meta[ib_type_id].members.size(); i++)
|
|
{
|
|
auto &mbr_dec = ir.meta[ib_type_id].members[i];
|
|
uint32_t var_id = mbr_dec.extended.ib_orig_id;
|
|
if (!var_id)
|
|
continue;
|
|
auto &var = get<SPIRVariable>(var_id);
|
|
|
|
// Unfortunately, all this complexity is needed to handle flattened structs and/or
|
|
// arrays.
|
|
if (storage == StorageClassInput)
|
|
{
|
|
auto &type = get_variable_element_type(var);
|
|
if (is_array(type) || is_matrix(type))
|
|
{
|
|
if (in_array)
|
|
continue;
|
|
in_array = true;
|
|
set_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex, i);
|
|
}
|
|
else
|
|
{
|
|
if (type.basetype == SPIRType::Struct)
|
|
{
|
|
uint32_t mbr_idx =
|
|
get_extended_member_decoration(ib_type_id, i, SPIRVCrossDecorationInterfaceMemberIndex);
|
|
auto &mbr_type = get<SPIRType>(type.member_types[mbr_idx]);
|
|
|
|
if (is_array(mbr_type) || is_matrix(mbr_type))
|
|
{
|
|
if (in_array)
|
|
continue;
|
|
in_array = true;
|
|
set_extended_member_decoration(var_id, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, i);
|
|
}
|
|
else
|
|
{
|
|
in_array = false;
|
|
set_extended_member_decoration(var_id, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, i);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
in_array = false;
|
|
set_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex, i);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
set_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex, i);
|
|
}
|
|
}
|
|
|
|
// Add an interface structure for the type of storage, which is either StorageClassInput or StorageClassOutput.
|
|
// Returns the ID of the newly added variable, or zero if no variable was added.
|
|
uint32_t CompilerMSL::add_interface_block(StorageClass storage, bool patch)
|
|
{
|
|
// Accumulate the variables that should appear in the interface struct
|
|
SmallVector<SPIRVariable *> vars;
|
|
bool incl_builtins = (storage == StorageClassOutput || is_tessellation_shader());
|
|
|
|
ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) {
|
|
auto &type = this->get<SPIRType>(var.basetype);
|
|
BuiltIn bi_type = BuiltIn(get_decoration(var_id, DecorationBuiltIn));
|
|
if (var.storage == storage && interface_variable_exists_in_entry_point(var.self) &&
|
|
!is_hidden_variable(var, incl_builtins) && type.pointer &&
|
|
(has_decoration(var_id, DecorationPatch) || is_patch_block(type)) == patch &&
|
|
(!is_builtin_variable(var) || bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
|
|
bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance || bi_type == BuiltInLayer ||
|
|
bi_type == BuiltInViewportIndex || bi_type == BuiltInFragDepth || bi_type == BuiltInSampleMask ||
|
|
(get_execution_model() == ExecutionModelTessellationEvaluation &&
|
|
(bi_type == BuiltInTessLevelOuter || bi_type == BuiltInTessLevelInner))))
|
|
{
|
|
vars.push_back(&var);
|
|
}
|
|
});
|
|
|
|
// If no variables qualify, leave.
|
|
// For patch input in a tessellation evaluation shader, the per-vertex stage inputs
|
|
// are included in a special patch control point array.
|
|
if (vars.empty() && !(storage == StorageClassInput && patch && stage_in_var_id))
|
|
return 0;
|
|
|
|
// Add a new typed variable for this interface structure.
|
|
// The initializer expression is allocated here, but populated when the function
|
|
// declaraion is emitted, because it is cleared after each compilation pass.
|
|
uint32_t next_id = ir.increase_bound_by(3);
|
|
uint32_t ib_type_id = next_id++;
|
|
auto &ib_type = set<SPIRType>(ib_type_id);
|
|
ib_type.basetype = SPIRType::Struct;
|
|
ib_type.storage = storage;
|
|
set_decoration(ib_type_id, DecorationBlock);
|
|
|
|
uint32_t ib_var_id = next_id++;
|
|
auto &var = set<SPIRVariable>(ib_var_id, ib_type_id, storage, 0);
|
|
var.initializer = next_id++;
|
|
|
|
string ib_var_ref;
|
|
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
|
|
switch (storage)
|
|
{
|
|
case StorageClassInput:
|
|
ib_var_ref = patch ? patch_stage_in_var_name : stage_in_var_name;
|
|
if (get_execution_model() == ExecutionModelTessellationControl)
|
|
{
|
|
// Add a hook to populate the shared workgroup memory containing
|
|
// the gl_in array.
|
|
entry_func.fixup_hooks_in.push_back([=]() {
|
|
// Can't use PatchVertices yet; the hook for that may not have run yet.
|
|
statement("if (", to_expression(builtin_invocation_id_id), " < ", "spvIndirectParams[0])");
|
|
statement(" ", input_wg_var_name, "[", to_expression(builtin_invocation_id_id), "] = ", ib_var_ref,
|
|
";");
|
|
statement("threadgroup_barrier(mem_flags::mem_threadgroup);");
|
|
statement("if (", to_expression(builtin_invocation_id_id), " >= ", get_entry_point().output_vertices,
|
|
")");
|
|
statement(" return;");
|
|
});
|
|
}
|
|
break;
|
|
|
|
case StorageClassOutput:
|
|
{
|
|
ib_var_ref = patch ? patch_stage_out_var_name : stage_out_var_name;
|
|
|
|
// Add the output interface struct as a local variable to the entry function.
|
|
// If the entry point should return the output struct, set the entry function
|
|
// to return the output interface struct, otherwise to return nothing.
|
|
// Indicate the output var requires early initialization.
|
|
bool ep_should_return_output = !get_is_rasterization_disabled();
|
|
uint32_t rtn_id = ep_should_return_output ? ib_var_id : 0;
|
|
if (!capture_output_to_buffer)
|
|
{
|
|
entry_func.add_local_variable(ib_var_id);
|
|
for (auto &blk_id : entry_func.blocks)
|
|
{
|
|
auto &blk = get<SPIRBlock>(blk_id);
|
|
if (blk.terminator == SPIRBlock::Return)
|
|
blk.return_value = rtn_id;
|
|
}
|
|
vars_needing_early_declaration.push_back(ib_var_id);
|
|
}
|
|
else
|
|
{
|
|
switch (get_execution_model())
|
|
{
|
|
case ExecutionModelVertex:
|
|
case ExecutionModelTessellationEvaluation:
|
|
// Instead of declaring a struct variable to hold the output and then
|
|
// copying that to the output buffer, we'll declare the output variable
|
|
// as a reference to the final output element in the buffer. Then we can
|
|
// avoid the extra copy.
|
|
entry_func.fixup_hooks_in.push_back([=]() {
|
|
if (stage_out_var_id)
|
|
{
|
|
// The first member of the indirect buffer is always the number of vertices
|
|
// to draw.
|
|
statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref, " = ",
|
|
output_buffer_var_name, "[(", to_expression(builtin_instance_idx_id), " - ",
|
|
to_expression(builtin_base_instance_id), ") * spvIndirectParams[0] + ",
|
|
to_expression(builtin_vertex_idx_id), " - ", to_expression(builtin_base_vertex_id),
|
|
"];");
|
|
}
|
|
});
|
|
break;
|
|
case ExecutionModelTessellationControl:
|
|
if (patch)
|
|
entry_func.fixup_hooks_in.push_back([=]() {
|
|
statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref, " = ",
|
|
patch_output_buffer_var_name, "[", to_expression(builtin_primitive_id_id), "];");
|
|
});
|
|
else
|
|
entry_func.fixup_hooks_in.push_back([=]() {
|
|
statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_out = &",
|
|
output_buffer_var_name, "[", to_expression(builtin_primitive_id_id), " * ",
|
|
get_entry_point().output_vertices, "];");
|
|
});
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
set_name(ib_type_id, to_name(ir.default_entry_point) + "_" + ib_var_ref);
|
|
set_name(ib_var_id, ib_var_ref);
|
|
|
|
for (auto p_var : vars)
|
|
{
|
|
bool strip_array =
|
|
(get_execution_model() == ExecutionModelTessellationControl ||
|
|
(get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput)) &&
|
|
!patch;
|
|
add_variable_to_interface_block(storage, ib_var_ref, ib_type, *p_var, strip_array);
|
|
}
|
|
|
|
// Sort the members of the structure by their locations.
|
|
MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::Location);
|
|
member_sorter.sort();
|
|
|
|
// The member indices were saved to the original variables, but after the members
|
|
// were sorted, those indices are now likely incorrect. Fix those up now.
|
|
if (!patch)
|
|
fix_up_interface_member_indices(storage, ib_type_id);
|
|
|
|
// For patch inputs, add one more member, holding the array of control point data.
|
|
if (get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput && patch &&
|
|
stage_in_var_id)
|
|
{
|
|
uint32_t pcp_type_id = ir.increase_bound_by(1);
|
|
auto &pcp_type = set<SPIRType>(pcp_type_id, ib_type);
|
|
pcp_type.basetype = SPIRType::ControlPointArray;
|
|
pcp_type.parent_type = pcp_type.type_alias = get_stage_in_struct_type().self;
|
|
pcp_type.storage = storage;
|
|
ir.meta[pcp_type_id] = ir.meta[ib_type.self];
|
|
uint32_t mbr_idx = uint32_t(ib_type.member_types.size());
|
|
ib_type.member_types.push_back(pcp_type_id);
|
|
set_member_name(ib_type.self, mbr_idx, "gl_in");
|
|
}
|
|
|
|
return ib_var_id;
|
|
}
|
|
|
|
uint32_t CompilerMSL::add_interface_block_pointer(uint32_t ib_var_id, StorageClass storage)
|
|
{
|
|
if (!ib_var_id)
|
|
return 0;
|
|
|
|
uint32_t ib_ptr_var_id;
|
|
uint32_t next_id = ir.increase_bound_by(3);
|
|
auto &ib_type = expression_type(ib_var_id);
|
|
if (get_execution_model() == ExecutionModelTessellationControl)
|
|
{
|
|
// Tessellation control per-vertex I/O is presented as an array, so we must
|
|
// do the same with our struct here.
|
|
uint32_t ib_ptr_type_id = next_id++;
|
|
auto &ib_ptr_type = set<SPIRType>(ib_ptr_type_id, ib_type);
|
|
ib_ptr_type.parent_type = ib_ptr_type.type_alias = ib_type.self;
|
|
ib_ptr_type.pointer = true;
|
|
ib_ptr_type.storage = storage == StorageClassInput ? StorageClassWorkgroup : StorageClassStorageBuffer;
|
|
ir.meta[ib_ptr_type_id] = ir.meta[ib_type.self];
|
|
// To ensure that get_variable_data_type() doesn't strip off the pointer,
|
|
// which we need, use another pointer.
|
|
uint32_t ib_ptr_ptr_type_id = next_id++;
|
|
auto &ib_ptr_ptr_type = set<SPIRType>(ib_ptr_ptr_type_id, ib_ptr_type);
|
|
ib_ptr_ptr_type.parent_type = ib_ptr_type_id;
|
|
ib_ptr_ptr_type.type_alias = ib_type.self;
|
|
ib_ptr_ptr_type.storage = StorageClassFunction;
|
|
ir.meta[ib_ptr_ptr_type_id] = ir.meta[ib_type.self];
|
|
|
|
ib_ptr_var_id = next_id;
|
|
set<SPIRVariable>(ib_ptr_var_id, ib_ptr_ptr_type_id, StorageClassFunction, 0);
|
|
set_name(ib_ptr_var_id, storage == StorageClassInput ? input_wg_var_name : "gl_out");
|
|
}
|
|
else
|
|
{
|
|
// Tessellation evaluation per-vertex inputs are also presented as arrays.
|
|
// But, in Metal, this array uses a very special type, 'patch_control_point<T>',
|
|
// which is a container that can be used to access the control point data.
|
|
// To represent this, a special 'ControlPointArray' type has been added to the
|
|
// SPIRV-Cross type system. It should only be generated by and seen in the MSL
|
|
// backend (i.e. this one).
|
|
uint32_t pcp_type_id = next_id++;
|
|
auto &pcp_type = set<SPIRType>(pcp_type_id, ib_type);
|
|
pcp_type.basetype = SPIRType::ControlPointArray;
|
|
pcp_type.parent_type = pcp_type.type_alias = ib_type.self;
|
|
pcp_type.storage = storage;
|
|
ir.meta[pcp_type_id] = ir.meta[ib_type.self];
|
|
|
|
ib_ptr_var_id = next_id;
|
|
set<SPIRVariable>(ib_ptr_var_id, pcp_type_id, storage, 0);
|
|
set_name(ib_ptr_var_id, "gl_in");
|
|
ir.meta[ib_ptr_var_id].decoration.qualified_alias = join(patch_stage_in_var_name, ".gl_in");
|
|
}
|
|
return ib_ptr_var_id;
|
|
}
|
|
|
|
// Ensure that the type is compatible with the builtin.
|
|
// If it is, simply return the given type ID.
|
|
// Otherwise, create a new type, and return it's ID.
|
|
uint32_t CompilerMSL::ensure_correct_builtin_type(uint32_t type_id, BuiltIn builtin)
|
|
{
|
|
auto &type = get<SPIRType>(type_id);
|
|
|
|
if ((builtin == BuiltInSampleMask && is_array(type)) ||
|
|
((builtin == BuiltInLayer || builtin == BuiltInViewportIndex) && type.basetype != SPIRType::UInt))
|
|
{
|
|
uint32_t next_id = ir.increase_bound_by(type.pointer ? 2 : 1);
|
|
uint32_t base_type_id = next_id++;
|
|
auto &base_type = set<SPIRType>(base_type_id);
|
|
base_type.basetype = SPIRType::UInt;
|
|
base_type.width = 32;
|
|
|
|
if (!type.pointer)
|
|
return base_type_id;
|
|
|
|
uint32_t ptr_type_id = next_id++;
|
|
auto &ptr_type = set<SPIRType>(ptr_type_id);
|
|
ptr_type = base_type;
|
|
ptr_type.pointer = true;
|
|
ptr_type.storage = type.storage;
|
|
ptr_type.parent_type = base_type_id;
|
|
return ptr_type_id;
|
|
}
|
|
|
|
return type_id;
|
|
}
|
|
|
|
// Ensure that the type is compatible with the vertex attribute.
|
|
// If it is, simply return the given type ID.
|
|
// Otherwise, create a new type, and return its ID.
|
|
uint32_t CompilerMSL::ensure_correct_attribute_type(uint32_t type_id, uint32_t location)
|
|
{
|
|
auto &type = get<SPIRType>(type_id);
|
|
|
|
auto p_va = vtx_attrs_by_location.find(location);
|
|
if (p_va == end(vtx_attrs_by_location))
|
|
return type_id;
|
|
|
|
switch (p_va->second.format)
|
|
{
|
|
case MSL_VERTEX_FORMAT_UINT8:
|
|
{
|
|
switch (type.basetype)
|
|
{
|
|
case SPIRType::UByte:
|
|
case SPIRType::UShort:
|
|
case SPIRType::UInt:
|
|
return type_id;
|
|
case SPIRType::Short:
|
|
case SPIRType::Int:
|
|
break;
|
|
default:
|
|
SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader");
|
|
}
|
|
uint32_t next_id = ir.increase_bound_by(type.pointer ? 2 : 1);
|
|
uint32_t base_type_id = next_id++;
|
|
auto &base_type = set<SPIRType>(base_type_id);
|
|
base_type = type;
|
|
base_type.basetype = type.basetype == SPIRType::Short ? SPIRType::UShort : SPIRType::UInt;
|
|
base_type.pointer = false;
|
|
|
|
if (!type.pointer)
|
|
return base_type_id;
|
|
|
|
uint32_t ptr_type_id = next_id++;
|
|
auto &ptr_type = set<SPIRType>(ptr_type_id);
|
|
ptr_type = base_type;
|
|
ptr_type.pointer = true;
|
|
ptr_type.storage = type.storage;
|
|
ptr_type.parent_type = base_type_id;
|
|
return ptr_type_id;
|
|
}
|
|
|
|
case MSL_VERTEX_FORMAT_UINT16:
|
|
{
|
|
switch (type.basetype)
|
|
{
|
|
case SPIRType::UShort:
|
|
case SPIRType::UInt:
|
|
return type_id;
|
|
case SPIRType::Int:
|
|
break;
|
|
default:
|
|
SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader");
|
|
}
|
|
uint32_t next_id = ir.increase_bound_by(type.pointer ? 2 : 1);
|
|
uint32_t base_type_id = next_id++;
|
|
auto &base_type = set<SPIRType>(base_type_id);
|
|
base_type = type;
|
|
base_type.basetype = SPIRType::UInt;
|
|
base_type.pointer = false;
|
|
|
|
if (!type.pointer)
|
|
return base_type_id;
|
|
|
|
uint32_t ptr_type_id = next_id++;
|
|
auto &ptr_type = set<SPIRType>(ptr_type_id);
|
|
ptr_type = base_type;
|
|
ptr_type.pointer = true;
|
|
ptr_type.storage = type.storage;
|
|
ptr_type.parent_type = base_type_id;
|
|
return ptr_type_id;
|
|
}
|
|
|
|
default:
|
|
case MSL_VERTEX_FORMAT_OTHER:
|
|
break;
|
|
}
|
|
|
|
return type_id;
|
|
}
|
|
|
|
// Sort the members of the struct type by offset, and pack and then pad members where needed
|
|
// to align MSL members with SPIR-V offsets. The struct members are iterated twice. Packing
|
|
// occurs first, followed by padding, because packing a member reduces both its size and its
|
|
// natural alignment, possibly requiring a padding member to be added ahead of it.
|
|
void CompilerMSL::align_struct(SPIRType &ib_type)
|
|
{
|
|
uint32_t &ib_type_id = ib_type.self;
|
|
|
|
// Sort the members of the interface structure by their offset.
|
|
// They should already be sorted per SPIR-V spec anyway.
|
|
MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::Offset);
|
|
member_sorter.sort();
|
|
|
|
uint32_t mbr_cnt = uint32_t(ib_type.member_types.size());
|
|
|
|
// Test the alignment of each member, and if a member should be closer to the previous
|
|
// member than the default spacing expects, it is likely that the previous member is in
|
|
// a packed format. If so, and the previous member is packable, pack it.
|
|
// For example...this applies to any 3-element vector that is followed by a scalar.
|
|
uint32_t curr_offset = 0;
|
|
for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
|
|
{
|
|
if (is_member_packable(ib_type, mbr_idx))
|
|
{
|
|
set_extended_member_decoration(ib_type_id, mbr_idx, SPIRVCrossDecorationPacked);
|
|
set_extended_member_decoration(ib_type_id, mbr_idx, SPIRVCrossDecorationPackedType,
|
|
ib_type.member_types[mbr_idx]);
|
|
}
|
|
|
|
// Align current offset to the current member's default alignment.
|
|
size_t align_mask = get_declared_struct_member_alignment(ib_type, mbr_idx) - 1;
|
|
uint32_t aligned_curr_offset = uint32_t((curr_offset + align_mask) & ~align_mask);
|
|
|
|
// Fetch the member offset as declared in the SPIRV.
|
|
uint32_t mbr_offset = get_member_decoration(ib_type_id, mbr_idx, DecorationOffset);
|
|
if (mbr_offset > aligned_curr_offset)
|
|
{
|
|
// Since MSL and SPIR-V have slightly different struct member alignment and
|
|
// size rules, we'll pad to standard C-packing rules. If the member is farther
|
|
// away than C-packing, expects, add an inert padding member before the the member.
|
|
MSLStructMemberKey key = get_struct_member_key(ib_type_id, mbr_idx);
|
|
struct_member_padding[key] = mbr_offset - curr_offset;
|
|
}
|
|
|
|
// Increment the current offset to be positioned immediately after the current member.
|
|
// Don't do this for the last member since it can be unsized, and it is not relevant for padding purposes here.
|
|
if (mbr_idx + 1 < mbr_cnt)
|
|
curr_offset = mbr_offset + uint32_t(get_declared_struct_member_size(ib_type, mbr_idx));
|
|
}
|
|
}
|
|
|
|
// Returns whether the specified struct member supports a packable type
|
|
// variation that is smaller than the unpacked variation of that type.
|
|
bool CompilerMSL::is_member_packable(SPIRType &ib_type, uint32_t index)
|
|
{
|
|
// We've already marked it as packable
|
|
if (has_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPacked))
|
|
return true;
|
|
|
|
auto &mbr_type = get<SPIRType>(ib_type.member_types[index]);
|
|
|
|
uint32_t component_size = mbr_type.width / 8;
|
|
uint32_t unpacked_mbr_size;
|
|
if (mbr_type.vecsize == 3)
|
|
unpacked_mbr_size = component_size * (mbr_type.vecsize + 1) * mbr_type.columns;
|
|
else
|
|
unpacked_mbr_size = component_size * mbr_type.vecsize * mbr_type.columns;
|
|
|
|
// Special case for packing. Check for float[] or vec2[] in std140 layout. Here we actually need to pad out instead,
|
|
// but we will use the same mechanism.
|
|
if (is_array(mbr_type) && (is_scalar(mbr_type) || is_vector(mbr_type)) && mbr_type.vecsize <= 2 &&
|
|
type_struct_member_array_stride(ib_type, index) == 4 * component_size)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
// Check for array of struct, where the SPIR-V declares an array stride which is larger than the struct itself.
|
|
// This can happen for struct A { float a }; A a[]; in std140 layout.
|
|
// TODO: Emit a padded struct which can be used for this purpose.
|
|
if (is_array(mbr_type) && mbr_type.basetype == SPIRType::Struct)
|
|
{
|
|
size_t declared_struct_size = get_declared_struct_size(mbr_type);
|
|
size_t alignment = get_declared_struct_member_alignment(ib_type, index);
|
|
declared_struct_size = (declared_struct_size + alignment - 1) & ~(alignment - 1);
|
|
if (type_struct_member_array_stride(ib_type, index) > declared_struct_size)
|
|
return true;
|
|
}
|
|
|
|
// TODO: Another sanity check for matrices. We currently do not support std140 matrices which need to be padded out per column.
|
|
//if (is_matrix(mbr_type) && mbr_type.vecsize <= 2 && type_struct_member_matrix_stride(ib_type, index) == 16)
|
|
// SPIRV_CROSS_THROW("Currently cannot support matrices with small vector size in std140 layout.");
|
|
|
|
// Only vectors or 3-row matrices need to be packed.
|
|
if (mbr_type.vecsize == 1 || (is_matrix(mbr_type) && mbr_type.vecsize != 3))
|
|
return false;
|
|
|
|
// Only row-major matrices need to be packed.
|
|
if (is_matrix(mbr_type) && !has_member_decoration(ib_type.self, index, DecorationRowMajor))
|
|
return false;
|
|
|
|
if (is_array(mbr_type))
|
|
{
|
|
// If member is an array, and the array stride is larger than the type needs, don't pack it.
|
|
// Take into consideration multi-dimentional arrays.
|
|
uint32_t md_elem_cnt = 1;
|
|
size_t last_elem_idx = mbr_type.array.size() - 1;
|
|
for (uint32_t i = 0; i < last_elem_idx; i++)
|
|
md_elem_cnt *= max(to_array_size_literal(mbr_type, i), 1u);
|
|
|
|
uint32_t unpacked_array_stride = unpacked_mbr_size * md_elem_cnt;
|
|
uint32_t array_stride = type_struct_member_array_stride(ib_type, index);
|
|
return unpacked_array_stride > array_stride;
|
|
}
|
|
else
|
|
{
|
|
uint32_t mbr_offset_curr = get_member_decoration(ib_type.self, index, DecorationOffset);
|
|
// For vectors, pack if the member's offset doesn't conform to the
|
|
// type's usual alignment. For example, a float3 at offset 4.
|
|
if (!is_matrix(mbr_type) && (mbr_offset_curr % unpacked_mbr_size))
|
|
return true;
|
|
// Pack if there is not enough space between this member and next.
|
|
// If last member, only pack if it's a row-major matrix.
|
|
if (index < ib_type.member_types.size() - 1)
|
|
{
|
|
uint32_t mbr_offset_next = get_member_decoration(ib_type.self, index + 1, DecorationOffset);
|
|
return unpacked_mbr_size > mbr_offset_next - mbr_offset_curr;
|
|
}
|
|
else
|
|
return is_matrix(mbr_type);
|
|
}
|
|
}
|
|
|
|
// Returns a combination of type ID and member index for use as hash key
|
|
MSLStructMemberKey CompilerMSL::get_struct_member_key(uint32_t type_id, uint32_t index)
|
|
{
|
|
MSLStructMemberKey k = type_id;
|
|
k <<= 32;
|
|
k += index;
|
|
return k;
|
|
}
|
|
|
|
void CompilerMSL::emit_store_statement(uint32_t lhs_expression, uint32_t rhs_expression)
|
|
{
|
|
if (!has_extended_decoration(lhs_expression, SPIRVCrossDecorationPacked) ||
|
|
get_extended_decoration(lhs_expression, SPIRVCrossDecorationPackedType) == 0)
|
|
{
|
|
CompilerGLSL::emit_store_statement(lhs_expression, rhs_expression);
|
|
}
|
|
else
|
|
{
|
|
// Special handling when storing to a float[] or float2[] in std140 layout.
|
|
|
|
auto &type = get<SPIRType>(get_extended_decoration(lhs_expression, SPIRVCrossDecorationPackedType));
|
|
string lhs = to_dereferenced_expression(lhs_expression);
|
|
string rhs = to_pointer_expression(rhs_expression);
|
|
|
|
// Unpack the expression so we can store to it with a float or float2.
|
|
// It's still an l-value, so it's fine. Most other unpacking of expressions turn them into r-values instead.
|
|
if (is_scalar(type) && is_array(type))
|
|
lhs = enclose_expression(lhs) + ".x";
|
|
else if (is_vector(type) && type.vecsize == 2 && is_array(type))
|
|
lhs = enclose_expression(lhs) + ".xy";
|
|
|
|
if (!optimize_read_modify_write(expression_type(rhs_expression), lhs, rhs))
|
|
statement(lhs, " = ", rhs, ";");
|
|
register_write(lhs_expression);
|
|
}
|
|
}
|
|
|
|
// Converts the format of the current expression from packed to unpacked,
|
|
// by wrapping the expression in a constructor of the appropriate type.
|
|
string CompilerMSL::unpack_expression_type(string expr_str, const SPIRType &type, uint32_t packed_type_id)
|
|
{
|
|
const SPIRType *packed_type = nullptr;
|
|
if (packed_type_id)
|
|
packed_type = &get<SPIRType>(packed_type_id);
|
|
|
|
// float[] and float2[] cases are really just padding, so directly swizzle from the backing float4 instead.
|
|
if (packed_type && is_array(*packed_type) && is_scalar(*packed_type))
|
|
return enclose_expression(expr_str) + ".x";
|
|
else if (packed_type && is_array(*packed_type) && is_vector(*packed_type) && packed_type->vecsize == 2)
|
|
return enclose_expression(expr_str) + ".xy";
|
|
else
|
|
return join(type_to_glsl(type), "(", expr_str, ")");
|
|
}
|
|
|
|
// Emits the file header info
|
|
void CompilerMSL::emit_header()
|
|
{
|
|
// This particular line can be overridden during compilation, so make it a flag and not a pragma line.
|
|
if (suppress_missing_prototypes)
|
|
statement("#pragma clang diagnostic ignored \"-Wmissing-prototypes\"");
|
|
for (auto &pragma : pragma_lines)
|
|
statement(pragma);
|
|
|
|
if (!pragma_lines.empty() || suppress_missing_prototypes)
|
|
statement("");
|
|
|
|
statement("#include <metal_stdlib>");
|
|
statement("#include <simd/simd.h>");
|
|
|
|
for (auto &header : header_lines)
|
|
statement(header);
|
|
|
|
statement("");
|
|
statement("using namespace metal;");
|
|
statement("");
|
|
|
|
for (auto &td : typedef_lines)
|
|
statement(td);
|
|
|
|
if (!typedef_lines.empty())
|
|
statement("");
|
|
}
|
|
|
|
void CompilerMSL::add_pragma_line(const string &line)
|
|
{
|
|
auto rslt = pragma_lines.insert(line);
|
|
if (rslt.second)
|
|
force_recompile();
|
|
}
|
|
|
|
void CompilerMSL::add_typedef_line(const string &line)
|
|
{
|
|
auto rslt = typedef_lines.insert(line);
|
|
if (rslt.second)
|
|
force_recompile();
|
|
}
|
|
|
|
// Emits any needed custom function bodies.
|
|
void CompilerMSL::emit_custom_functions()
|
|
{
|
|
for (uint32_t i = SPVFuncImplArrayCopyMultidimMax; i >= 2; i--)
|
|
if (spv_function_implementations.count(static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + i)))
|
|
spv_function_implementations.insert(static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + i - 1));
|
|
|
|
for (auto &spv_func : spv_function_implementations)
|
|
{
|
|
switch (spv_func)
|
|
{
|
|
case SPVFuncImplMod:
|
|
statement("// Implementation of the GLSL mod() function, which is slightly different than Metal fmod()");
|
|
statement("template<typename Tx, typename Ty>");
|
|
statement("Tx mod(Tx x, Ty y)");
|
|
begin_scope();
|
|
statement("return x - y * floor(x / y);");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplRadians:
|
|
statement("// Implementation of the GLSL radians() function");
|
|
statement("template<typename T>");
|
|
statement("T radians(T d)");
|
|
begin_scope();
|
|
statement("return d * T(0.01745329251);");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplDegrees:
|
|
statement("// Implementation of the GLSL degrees() function");
|
|
statement("template<typename T>");
|
|
statement("T degrees(T r)");
|
|
begin_scope();
|
|
statement("return r * T(57.2957795131);");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplFindILsb:
|
|
statement("// Implementation of the GLSL findLSB() function");
|
|
statement("template<typename T>");
|
|
statement("T findLSB(T x)");
|
|
begin_scope();
|
|
statement("return select(ctz(x), T(-1), x == T(0));");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplFindUMsb:
|
|
statement("// Implementation of the unsigned GLSL findMSB() function");
|
|
statement("template<typename T>");
|
|
statement("T findUMSB(T x)");
|
|
begin_scope();
|
|
statement("return select(clz(T(0)) - (clz(x) + T(1)), T(-1), x == T(0));");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplFindSMsb:
|
|
statement("// Implementation of the signed GLSL findMSB() function");
|
|
statement("template<typename T>");
|
|
statement("T findSMSB(T x)");
|
|
begin_scope();
|
|
statement("T v = select(x, T(-1) - x, x < T(0));");
|
|
statement("return select(clz(T(0)) - (clz(v) + T(1)), T(-1), v == T(0));");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplSSign:
|
|
statement("// Implementation of the GLSL sign() function for integer types");
|
|
statement("template<typename T, typename E = typename enable_if<is_integral<T>::value>::type>");
|
|
statement("T sign(T x)");
|
|
begin_scope();
|
|
statement("return select(select(select(x, T(0), x == T(0)), T(1), x > T(0)), T(-1), x < T(0));");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplArrayCopy:
|
|
statement("// Implementation of an array copy function to cover GLSL's ability to copy an array via "
|
|
"assignment.");
|
|
statement("template<typename T, uint N>");
|
|
statement("void spvArrayCopyFromStack1(thread T (&dst)[N], thread const T (&src)[N])");
|
|
begin_scope();
|
|
statement("for (uint i = 0; i < N; dst[i] = src[i], i++);");
|
|
end_scope();
|
|
statement("");
|
|
|
|
statement("template<typename T, uint N>");
|
|
statement("void spvArrayCopyFromConstant1(thread T (&dst)[N], constant T (&src)[N])");
|
|
begin_scope();
|
|
statement("for (uint i = 0; i < N; dst[i] = src[i], i++);");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplArrayOfArrayCopy2Dim:
|
|
case SPVFuncImplArrayOfArrayCopy3Dim:
|
|
case SPVFuncImplArrayOfArrayCopy4Dim:
|
|
case SPVFuncImplArrayOfArrayCopy5Dim:
|
|
case SPVFuncImplArrayOfArrayCopy6Dim:
|
|
{
|
|
static const char *function_name_tags[] = {
|
|
"FromStack",
|
|
"FromConstant",
|
|
};
|
|
|
|
static const char *src_address_space[] = {
|
|
"thread const",
|
|
"constant",
|
|
};
|
|
|
|
for (uint32_t variant = 0; variant < 2; variant++)
|
|
{
|
|
uint32_t dimensions = spv_func - SPVFuncImplArrayCopyMultidimBase;
|
|
string tmp = "template<typename T";
|
|
for (uint8_t i = 0; i < dimensions; i++)
|
|
{
|
|
tmp += ", uint ";
|
|
tmp += 'A' + i;
|
|
}
|
|
tmp += ">";
|
|
statement(tmp);
|
|
|
|
string array_arg;
|
|
for (uint8_t i = 0; i < dimensions; i++)
|
|
{
|
|
array_arg += "[";
|
|
array_arg += 'A' + i;
|
|
array_arg += "]";
|
|
}
|
|
|
|
statement("void spvArrayCopy", function_name_tags[variant], dimensions, "(thread T (&dst)", array_arg,
|
|
", ", src_address_space[variant], " T (&src)", array_arg, ")");
|
|
|
|
begin_scope();
|
|
statement("for (uint i = 0; i < A; i++)");
|
|
begin_scope();
|
|
statement("spvArrayCopy", function_name_tags[variant], dimensions - 1, "(dst[i], src[i]);");
|
|
end_scope();
|
|
end_scope();
|
|
statement("");
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SPVFuncImplTexelBufferCoords:
|
|
{
|
|
string tex_width_str = convert_to_string(msl_options.texel_buffer_texture_width);
|
|
statement("// Returns 2D texture coords corresponding to 1D texel buffer coords");
|
|
statement("uint2 spvTexelBufferCoord(uint tc)");
|
|
begin_scope();
|
|
statement(join("return uint2(tc % ", tex_width_str, ", tc / ", tex_width_str, ");"));
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
}
|
|
|
|
case SPVFuncImplInverse4x4:
|
|
statement("// Returns the determinant of a 2x2 matrix.");
|
|
statement("inline float spvDet2x2(float a1, float a2, float b1, float b2)");
|
|
begin_scope();
|
|
statement("return a1 * b2 - b1 * a2;");
|
|
end_scope();
|
|
statement("");
|
|
|
|
statement("// Returns the determinant of a 3x3 matrix.");
|
|
statement("inline float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, "
|
|
"float c2, float c3)");
|
|
begin_scope();
|
|
statement("return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, "
|
|
"b2, b3);");
|
|
end_scope();
|
|
statement("");
|
|
statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
|
|
statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
|
|
statement("float4x4 spvInverse4x4(float4x4 m)");
|
|
begin_scope();
|
|
statement("float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)");
|
|
statement_no_indent("");
|
|
statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
|
|
statement("adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
|
|
"m[3][3]);");
|
|
statement("adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
|
|
"m[3][3]);");
|
|
statement("adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], "
|
|
"m[3][3]);");
|
|
statement("adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], "
|
|
"m[2][3]);");
|
|
statement_no_indent("");
|
|
statement("adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
|
|
"m[3][3]);");
|
|
statement("adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
|
|
"m[3][3]);");
|
|
statement("adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], "
|
|
"m[3][3]);");
|
|
statement("adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], "
|
|
"m[2][3]);");
|
|
statement_no_indent("");
|
|
statement("adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
|
|
"m[3][3]);");
|
|
statement("adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
|
|
"m[3][3]);");
|
|
statement("adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], "
|
|
"m[3][3]);");
|
|
statement("adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], "
|
|
"m[2][3]);");
|
|
statement_no_indent("");
|
|
statement("adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
|
|
"m[3][2]);");
|
|
statement("adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
|
|
"m[3][2]);");
|
|
statement("adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], "
|
|
"m[3][2]);");
|
|
statement("adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], "
|
|
"m[2][2]);");
|
|
statement_no_indent("");
|
|
statement("// Calculate the determinant as a combination of the cofactors of the first row.");
|
|
statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] "
|
|
"* m[3][0]);");
|
|
statement_no_indent("");
|
|
statement("// Divide the classical adjoint matrix by the determinant.");
|
|
statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
|
|
statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplInverse3x3:
|
|
if (spv_function_implementations.count(SPVFuncImplInverse4x4) == 0)
|
|
{
|
|
statement("// Returns the determinant of a 2x2 matrix.");
|
|
statement("inline float spvDet2x2(float a1, float a2, float b1, float b2)");
|
|
begin_scope();
|
|
statement("return a1 * b2 - b1 * a2;");
|
|
end_scope();
|
|
statement("");
|
|
}
|
|
|
|
statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
|
|
statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
|
|
statement("float3x3 spvInverse3x3(float3x3 m)");
|
|
begin_scope();
|
|
statement("float3x3 adj; // The adjoint matrix (inverse after dividing by determinant)");
|
|
statement_no_indent("");
|
|
statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
|
|
statement("adj[0][0] = spvDet2x2(m[1][1], m[1][2], m[2][1], m[2][2]);");
|
|
statement("adj[0][1] = -spvDet2x2(m[0][1], m[0][2], m[2][1], m[2][2]);");
|
|
statement("adj[0][2] = spvDet2x2(m[0][1], m[0][2], m[1][1], m[1][2]);");
|
|
statement_no_indent("");
|
|
statement("adj[1][0] = -spvDet2x2(m[1][0], m[1][2], m[2][0], m[2][2]);");
|
|
statement("adj[1][1] = spvDet2x2(m[0][0], m[0][2], m[2][0], m[2][2]);");
|
|
statement("adj[1][2] = -spvDet2x2(m[0][0], m[0][2], m[1][0], m[1][2]);");
|
|
statement_no_indent("");
|
|
statement("adj[2][0] = spvDet2x2(m[1][0], m[1][1], m[2][0], m[2][1]);");
|
|
statement("adj[2][1] = -spvDet2x2(m[0][0], m[0][1], m[2][0], m[2][1]);");
|
|
statement("adj[2][2] = spvDet2x2(m[0][0], m[0][1], m[1][0], m[1][1]);");
|
|
statement_no_indent("");
|
|
statement("// Calculate the determinant as a combination of the cofactors of the first row.");
|
|
statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]);");
|
|
statement_no_indent("");
|
|
statement("// Divide the classical adjoint matrix by the determinant.");
|
|
statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
|
|
statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplInverse2x2:
|
|
statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
|
|
statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
|
|
statement("float2x2 spvInverse2x2(float2x2 m)");
|
|
begin_scope();
|
|
statement("float2x2 adj; // The adjoint matrix (inverse after dividing by determinant)");
|
|
statement_no_indent("");
|
|
statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
|
|
statement("adj[0][0] = m[1][1];");
|
|
statement("adj[0][1] = -m[0][1];");
|
|
statement_no_indent("");
|
|
statement("adj[1][0] = -m[1][0];");
|
|
statement("adj[1][1] = m[0][0];");
|
|
statement_no_indent("");
|
|
statement("// Calculate the determinant as a combination of the cofactors of the first row.");
|
|
statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]);");
|
|
statement_no_indent("");
|
|
statement("// Divide the classical adjoint matrix by the determinant.");
|
|
statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
|
|
statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplRowMajor2x3:
|
|
statement("// Implementation of a conversion of matrix content from RowMajor to ColumnMajor organization.");
|
|
statement("float2x3 spvConvertFromRowMajor2x3(float2x3 m)");
|
|
begin_scope();
|
|
statement("return float2x3(float3(m[0][0], m[0][2], m[1][1]), float3(m[0][1], m[1][0], m[1][2]));");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplRowMajor2x4:
|
|
statement("// Implementation of a conversion of matrix content from RowMajor to ColumnMajor organization.");
|
|
statement("float2x4 spvConvertFromRowMajor2x4(float2x4 m)");
|
|
begin_scope();
|
|
statement("return float2x4(float4(m[0][0], m[0][2], m[1][0], m[1][2]), float4(m[0][1], m[0][3], m[1][1], "
|
|
"m[1][3]));");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplRowMajor3x2:
|
|
statement("// Implementation of a conversion of matrix content from RowMajor to ColumnMajor organization.");
|
|
statement("float3x2 spvConvertFromRowMajor3x2(float3x2 m)");
|
|
begin_scope();
|
|
statement("return float3x2(float2(m[0][0], m[1][1]), float2(m[0][1], m[2][0]), float2(m[1][0], m[2][1]));");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplRowMajor3x4:
|
|
statement("// Implementation of a conversion of matrix content from RowMajor to ColumnMajor organization.");
|
|
statement("float3x4 spvConvertFromRowMajor3x4(float3x4 m)");
|
|
begin_scope();
|
|
statement("return float3x4(float4(m[0][0], m[0][3], m[1][2], m[2][1]), float4(m[0][1], m[1][0], m[1][3], "
|
|
"m[2][2]), float4(m[0][2], m[1][1], m[2][0], m[2][3]));");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplRowMajor4x2:
|
|
statement("// Implementation of a conversion of matrix content from RowMajor to ColumnMajor organization.");
|
|
statement("float4x2 spvConvertFromRowMajor4x2(float4x2 m)");
|
|
begin_scope();
|
|
statement("return float4x2(float2(m[0][0], m[2][0]), float2(m[0][1], m[2][1]), float2(m[1][0], m[3][0]), "
|
|
"float2(m[1][1], m[3][1]));");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplRowMajor4x3:
|
|
statement("// Implementation of a conversion of matrix content from RowMajor to ColumnMajor organization.");
|
|
statement("float4x3 spvConvertFromRowMajor4x3(float4x3 m)");
|
|
begin_scope();
|
|
statement("return float4x3(float3(m[0][0], m[1][1], m[2][2]), float3(m[0][1], m[1][2], m[3][0]), "
|
|
"float3(m[0][2], m[2][0], m[3][1]), float3(m[1][0], m[2][1], m[3][2]));");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplTextureSwizzle:
|
|
statement("enum class spvSwizzle : uint");
|
|
begin_scope();
|
|
statement("none = 0,");
|
|
statement("zero,");
|
|
statement("one,");
|
|
statement("red,");
|
|
statement("green,");
|
|
statement("blue,");
|
|
statement("alpha");
|
|
end_scope_decl();
|
|
statement("");
|
|
statement("template<typename T> struct spvRemoveReference { typedef T type; };");
|
|
statement("template<typename T> struct spvRemoveReference<thread T&> { typedef T type; };");
|
|
statement("template<typename T> struct spvRemoveReference<thread T&&> { typedef T type; };");
|
|
statement("template<typename T> inline constexpr thread T&& spvForward(thread typename "
|
|
"spvRemoveReference<T>::type& x)");
|
|
begin_scope();
|
|
statement("return static_cast<thread T&&>(x);");
|
|
end_scope();
|
|
statement("template<typename T> inline constexpr thread T&& spvForward(thread typename "
|
|
"spvRemoveReference<T>::type&& x)");
|
|
begin_scope();
|
|
statement("return static_cast<thread T&&>(x);");
|
|
end_scope();
|
|
statement("");
|
|
statement("template<typename T>");
|
|
statement("inline T spvGetSwizzle(vec<T, 4> x, T c, spvSwizzle s)");
|
|
begin_scope();
|
|
statement("switch (s)");
|
|
begin_scope();
|
|
statement("case spvSwizzle::none:");
|
|
statement(" return c;");
|
|
statement("case spvSwizzle::zero:");
|
|
statement(" return 0;");
|
|
statement("case spvSwizzle::one:");
|
|
statement(" return 1;");
|
|
statement("case spvSwizzle::red:");
|
|
statement(" return x.r;");
|
|
statement("case spvSwizzle::green:");
|
|
statement(" return x.g;");
|
|
statement("case spvSwizzle::blue:");
|
|
statement(" return x.b;");
|
|
statement("case spvSwizzle::alpha:");
|
|
statement(" return x.a;");
|
|
end_scope();
|
|
end_scope();
|
|
statement("");
|
|
statement("// Wrapper function that swizzles texture samples and fetches.");
|
|
statement("template<typename T>");
|
|
statement("inline vec<T, 4> spvTextureSwizzle(vec<T, 4> x, uint s)");
|
|
begin_scope();
|
|
statement("if (!s)");
|
|
statement(" return x;");
|
|
statement("return vec<T, 4>(spvGetSwizzle(x, x.r, spvSwizzle((s >> 0) & 0xFF)), "
|
|
"spvGetSwizzle(x, x.g, spvSwizzle((s >> 8) & 0xFF)), spvGetSwizzle(x, x.b, spvSwizzle((s >> 16) "
|
|
"& 0xFF)), "
|
|
"spvGetSwizzle(x, x.a, spvSwizzle((s >> 24) & 0xFF)));");
|
|
end_scope();
|
|
statement("");
|
|
statement("template<typename T>");
|
|
statement("inline T spvTextureSwizzle(T x, uint s)");
|
|
begin_scope();
|
|
statement("return spvTextureSwizzle(vec<T, 4>(x, 0, 0, 1), s).x;");
|
|
end_scope();
|
|
statement("");
|
|
statement("// Wrapper function that swizzles texture gathers.");
|
|
statement("template<typename T, typename Tex, typename... Ts>");
|
|
statement(
|
|
"inline vec<T, 4> spvGatherSwizzle(sampler s, const thread Tex& t, Ts... params, component c, uint sw) "
|
|
"METAL_CONST_ARG(c)");
|
|
begin_scope();
|
|
statement("if (sw)");
|
|
begin_scope();
|
|
statement("switch (spvSwizzle((sw >> (uint(c) * 8)) & 0xFF))");
|
|
begin_scope();
|
|
statement("case spvSwizzle::none:");
|
|
statement(" break;");
|
|
statement("case spvSwizzle::zero:");
|
|
statement(" return vec<T, 4>(0, 0, 0, 0);");
|
|
statement("case spvSwizzle::one:");
|
|
statement(" return vec<T, 4>(1, 1, 1, 1);");
|
|
statement("case spvSwizzle::red:");
|
|
statement(" return t.gather(s, spvForward<Ts>(params)..., component::x);");
|
|
statement("case spvSwizzle::green:");
|
|
statement(" return t.gather(s, spvForward<Ts>(params)..., component::y);");
|
|
statement("case spvSwizzle::blue:");
|
|
statement(" return t.gather(s, spvForward<Ts>(params)..., component::z);");
|
|
statement("case spvSwizzle::alpha:");
|
|
statement(" return t.gather(s, spvForward<Ts>(params)..., component::w);");
|
|
end_scope();
|
|
end_scope();
|
|
// texture::gather insists on its component parameter being a constant
|
|
// expression, so we need this silly workaround just to compile the shader.
|
|
statement("switch (c)");
|
|
begin_scope();
|
|
statement("case component::x:");
|
|
statement(" return t.gather(s, spvForward<Ts>(params)..., component::x);");
|
|
statement("case component::y:");
|
|
statement(" return t.gather(s, spvForward<Ts>(params)..., component::y);");
|
|
statement("case component::z:");
|
|
statement(" return t.gather(s, spvForward<Ts>(params)..., component::z);");
|
|
statement("case component::w:");
|
|
statement(" return t.gather(s, spvForward<Ts>(params)..., component::w);");
|
|
end_scope();
|
|
end_scope();
|
|
statement("");
|
|
statement("// Wrapper function that swizzles depth texture gathers.");
|
|
statement("template<typename T, typename Tex, typename... Ts>");
|
|
statement(
|
|
"inline vec<T, 4> spvGatherCompareSwizzle(sampler s, const thread Tex& t, Ts... params, uint sw) ");
|
|
begin_scope();
|
|
statement("if (sw)");
|
|
begin_scope();
|
|
statement("switch (spvSwizzle(sw & 0xFF))");
|
|
begin_scope();
|
|
statement("case spvSwizzle::none:");
|
|
statement("case spvSwizzle::red:");
|
|
statement(" break;");
|
|
statement("case spvSwizzle::zero:");
|
|
statement("case spvSwizzle::green:");
|
|
statement("case spvSwizzle::blue:");
|
|
statement("case spvSwizzle::alpha:");
|
|
statement(" return vec<T, 4>(0, 0, 0, 0);");
|
|
statement("case spvSwizzle::one:");
|
|
statement(" return vec<T, 4>(1, 1, 1, 1);");
|
|
end_scope();
|
|
end_scope();
|
|
statement("return t.gather_compare(s, spvForward<Ts>(params)...);");
|
|
end_scope();
|
|
statement("");
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Undefined global memory is not allowed in MSL.
|
|
// Declare constant and init to zeros. Use {}, as global constructors can break Metal.
|
|
void CompilerMSL::declare_undefined_values()
|
|
{
|
|
bool emitted = false;
|
|
ir.for_each_typed_id<SPIRUndef>([&](uint32_t, SPIRUndef &undef) {
|
|
auto &type = this->get<SPIRType>(undef.basetype);
|
|
statement("constant ", variable_decl(type, to_name(undef.self), undef.self), " = {};");
|
|
emitted = true;
|
|
});
|
|
|
|
if (emitted)
|
|
statement("");
|
|
}
|
|
|
|
void CompilerMSL::declare_constant_arrays()
|
|
{
|
|
// MSL cannot declare arrays inline (except when declaring a variable), so we must move them out to
|
|
// global constants directly, so we are able to use constants as variable expressions.
|
|
bool emitted = false;
|
|
|
|
ir.for_each_typed_id<SPIRConstant>([&](uint32_t, SPIRConstant &c) {
|
|
if (c.specialization)
|
|
return;
|
|
|
|
auto &type = this->get<SPIRType>(c.constant_type);
|
|
if (!type.array.empty())
|
|
{
|
|
auto name = to_name(c.self);
|
|
statement("constant ", variable_decl(type, name), " = ", constant_expression(c), ";");
|
|
emitted = true;
|
|
}
|
|
});
|
|
|
|
if (emitted)
|
|
statement("");
|
|
}
|
|
|
|
void CompilerMSL::emit_resources()
|
|
{
|
|
declare_constant_arrays();
|
|
declare_undefined_values();
|
|
|
|
// Emit the special [[stage_in]] and [[stage_out]] interface blocks which we created.
|
|
emit_interface_block(stage_out_var_id);
|
|
emit_interface_block(patch_stage_out_var_id);
|
|
emit_interface_block(stage_in_var_id);
|
|
emit_interface_block(patch_stage_in_var_id);
|
|
}
|
|
|
|
// Emit declarations for the specialization Metal function constants
|
|
void CompilerMSL::emit_specialization_constants_and_structs()
|
|
{
|
|
SpecializationConstant wg_x, wg_y, wg_z;
|
|
uint32_t workgroup_size_id = get_work_group_size_specialization_constants(wg_x, wg_y, wg_z);
|
|
bool emitted = false;
|
|
|
|
unordered_set<uint32_t> declared_structs;
|
|
|
|
for (auto &id_ : ir.ids_for_constant_or_type)
|
|
{
|
|
auto &id = ir.ids[id_];
|
|
|
|
if (id.get_type() == TypeConstant)
|
|
{
|
|
auto &c = id.get<SPIRConstant>();
|
|
|
|
if (c.self == workgroup_size_id)
|
|
{
|
|
// TODO: This can be expressed as a [[threads_per_threadgroup]] input semantic, but we need to know
|
|
// the work group size at compile time in SPIR-V, and [[threads_per_threadgroup]] would need to be passed around as a global.
|
|
// The work group size may be a specialization constant.
|
|
statement("constant uint3 ", builtin_to_glsl(BuiltInWorkgroupSize, StorageClassWorkgroup),
|
|
" [[maybe_unused]] = ", constant_expression(get<SPIRConstant>(workgroup_size_id)), ";");
|
|
emitted = true;
|
|
}
|
|
else if (c.specialization)
|
|
{
|
|
auto &type = get<SPIRType>(c.constant_type);
|
|
string sc_type_name = type_to_glsl(type);
|
|
string sc_name = to_name(c.self);
|
|
string sc_tmp_name = sc_name + "_tmp";
|
|
|
|
// Function constants are only supported in MSL 1.2 and later.
|
|
// If we don't support it just declare the "default" directly.
|
|
// This "default" value can be overridden to the true specialization constant by the API user.
|
|
// Specialization constants which are used as array length expressions cannot be function constants in MSL,
|
|
// so just fall back to macros.
|
|
if (msl_options.supports_msl_version(1, 2) && has_decoration(c.self, DecorationSpecId) &&
|
|
!c.is_used_as_array_length)
|
|
{
|
|
uint32_t constant_id = get_decoration(c.self, DecorationSpecId);
|
|
// Only scalar, non-composite values can be function constants.
|
|
statement("constant ", sc_type_name, " ", sc_tmp_name, " [[function_constant(", constant_id,
|
|
")]];");
|
|
statement("constant ", sc_type_name, " ", sc_name, " = is_function_constant_defined(", sc_tmp_name,
|
|
") ? ", sc_tmp_name, " : ", constant_expression(c), ";");
|
|
}
|
|
else if (has_decoration(c.self, DecorationSpecId))
|
|
{
|
|
// Fallback to macro overrides.
|
|
c.specialization_constant_macro_name =
|
|
constant_value_macro_name(get_decoration(c.self, DecorationSpecId));
|
|
|
|
statement("#ifndef ", c.specialization_constant_macro_name);
|
|
statement("#define ", c.specialization_constant_macro_name, " ", constant_expression(c));
|
|
statement("#endif");
|
|
statement("constant ", sc_type_name, " ", sc_name, " = ", c.specialization_constant_macro_name,
|
|
";");
|
|
}
|
|
else
|
|
{
|
|
// Composite specialization constants must be built from other specialization constants.
|
|
statement("constant ", sc_type_name, " ", sc_name, " = ", constant_expression(c), ";");
|
|
}
|
|
emitted = true;
|
|
}
|
|
}
|
|
else if (id.get_type() == TypeConstantOp)
|
|
{
|
|
auto &c = id.get<SPIRConstantOp>();
|
|
auto &type = get<SPIRType>(c.basetype);
|
|
auto name = to_name(c.self);
|
|
statement("constant ", variable_decl(type, name), " = ", constant_op_expression(c), ";");
|
|
emitted = true;
|
|
}
|
|
else if (id.get_type() == TypeType)
|
|
{
|
|
// Output non-builtin interface structs. These include local function structs
|
|
// and structs nested within uniform and read-write buffers.
|
|
auto &type = id.get<SPIRType>();
|
|
uint32_t type_id = type.self;
|
|
|
|
bool is_struct = (type.basetype == SPIRType::Struct) && type.array.empty();
|
|
bool is_block =
|
|
has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock);
|
|
|
|
bool is_builtin_block = is_block && is_builtin_type(type);
|
|
bool is_declarable_struct = is_struct && !is_builtin_block;
|
|
|
|
// We'll declare this later.
|
|
if (stage_out_var_id && get_stage_out_struct_type().self == type_id)
|
|
is_declarable_struct = false;
|
|
if (patch_stage_out_var_id && get_patch_stage_out_struct_type().self == type_id)
|
|
is_declarable_struct = false;
|
|
if (stage_in_var_id && get_stage_in_struct_type().self == type_id)
|
|
is_declarable_struct = false;
|
|
if (patch_stage_in_var_id && get_patch_stage_in_struct_type().self == type_id)
|
|
is_declarable_struct = false;
|
|
|
|
// Align and emit declarable structs...but avoid declaring each more than once.
|
|
if (is_declarable_struct && declared_structs.count(type_id) == 0)
|
|
{
|
|
if (emitted)
|
|
statement("");
|
|
emitted = false;
|
|
|
|
declared_structs.insert(type_id);
|
|
|
|
if (has_extended_decoration(type_id, SPIRVCrossDecorationPacked))
|
|
align_struct(type);
|
|
|
|
// Make sure we declare the underlying struct type, and not the "decorated" type with pointers, etc.
|
|
emit_struct(get<SPIRType>(type_id));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (emitted)
|
|
statement("");
|
|
}
|
|
|
|
void CompilerMSL::emit_binary_unord_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
|
|
const char *op)
|
|
{
|
|
bool forward = should_forward(op0) && should_forward(op1);
|
|
emit_op(result_type, result_id,
|
|
join("(isunordered(", to_enclosed_unpacked_expression(op0), ", ", to_enclosed_unpacked_expression(op1),
|
|
") || ", to_enclosed_unpacked_expression(op0), " ", op, " ", to_enclosed_unpacked_expression(op1),
|
|
")"),
|
|
forward);
|
|
|
|
inherit_expression_dependencies(result_id, op0);
|
|
inherit_expression_dependencies(result_id, op1);
|
|
}
|
|
|
|
bool CompilerMSL::emit_tessellation_access_chain(const uint32_t *ops, uint32_t length)
|
|
{
|
|
// If this is a per-vertex output, remap it to the I/O array buffer.
|
|
auto *var = maybe_get<SPIRVariable>(ops[2]);
|
|
BuiltIn bi_type = BuiltIn(get_decoration(ops[2], DecorationBuiltIn));
|
|
if (var &&
|
|
(var->storage == StorageClassInput ||
|
|
(get_execution_model() == ExecutionModelTessellationControl && var->storage == StorageClassOutput)) &&
|
|
!(has_decoration(ops[2], DecorationPatch) || is_patch_block(get_variable_data_type(*var))) &&
|
|
(!is_builtin_variable(*var) || bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
|
|
bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance ||
|
|
get_variable_data_type(*var).basetype == SPIRType::Struct))
|
|
{
|
|
AccessChainMeta meta;
|
|
SmallVector<uint32_t> indices;
|
|
uint32_t next_id = ir.increase_bound_by(2);
|
|
|
|
indices.reserve(length - 3 + 1);
|
|
uint32_t type_id = next_id++;
|
|
SPIRType new_uint_type;
|
|
new_uint_type.basetype = SPIRType::UInt;
|
|
new_uint_type.width = 32;
|
|
set<SPIRType>(type_id, new_uint_type);
|
|
|
|
indices.push_back(ops[3]);
|
|
|
|
uint32_t const_mbr_id = next_id++;
|
|
uint32_t index = get_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex);
|
|
uint32_t ptr = var->storage == StorageClassInput ? stage_in_ptr_var_id : stage_out_ptr_var_id;
|
|
if (var->storage == StorageClassInput || has_decoration(get_variable_element_type(*var).self, DecorationBlock))
|
|
{
|
|
uint32_t i = 4;
|
|
auto *type = &get_variable_element_type(*var);
|
|
if (index == uint32_t(-1) && length >= 5)
|
|
{
|
|
// Maybe this is a struct type in the input class, in which case
|
|
// we put it as a decoration on the corresponding member.
|
|
index = get_extended_member_decoration(ops[2], get_constant(ops[4]).scalar(),
|
|
SPIRVCrossDecorationInterfaceMemberIndex);
|
|
assert(index != uint32_t(-1));
|
|
i++;
|
|
type = &get<SPIRType>(type->member_types[get_constant(ops[4]).scalar()]);
|
|
}
|
|
// In this case, we flattened structures and arrays, so now we have to
|
|
// combine the following indices. If we encounter a non-constant index,
|
|
// we're hosed.
|
|
for (; i < length; ++i)
|
|
{
|
|
if (!is_array(*type) && !is_matrix(*type) && type->basetype != SPIRType::Struct)
|
|
break;
|
|
|
|
auto &c = get_constant(ops[i]);
|
|
index += c.scalar();
|
|
if (type->parent_type)
|
|
type = &get<SPIRType>(type->parent_type);
|
|
else if (type->basetype == SPIRType::Struct)
|
|
type = &get<SPIRType>(type->member_types[c.scalar()]);
|
|
}
|
|
// If the access chain terminates at a composite type, the composite
|
|
// itself might be copied. In that case, we must unflatten it.
|
|
if (is_matrix(*type) || is_array(*type) || type->basetype == SPIRType::Struct)
|
|
{
|
|
std::string temp_name = join(to_name(var->self), "_", ops[1]);
|
|
statement(variable_decl(*type, temp_name, var->self), ";");
|
|
// Set up the initializer for this temporary variable.
|
|
indices.push_back(const_mbr_id);
|
|
if (type->basetype == SPIRType::Struct)
|
|
{
|
|
for (uint32_t j = 0; j < type->member_types.size(); j++)
|
|
{
|
|
index = get_extended_member_decoration(ops[2], j, SPIRVCrossDecorationInterfaceMemberIndex);
|
|
const auto &mbr_type = get<SPIRType>(type->member_types[j]);
|
|
if (is_matrix(mbr_type))
|
|
{
|
|
for (uint32_t k = 0; k < mbr_type.columns; k++, index++)
|
|
{
|
|
set<SPIRConstant>(const_mbr_id, type_id, index, false);
|
|
auto e = access_chain(ptr, indices.data(), uint32_t(indices.size()), mbr_type, nullptr,
|
|
true);
|
|
statement(temp_name, ".", to_member_name(*type, j), "[", k, "] = ", e, ";");
|
|
}
|
|
}
|
|
else if (is_array(mbr_type))
|
|
{
|
|
for (uint32_t k = 0; k < mbr_type.array[0]; k++, index++)
|
|
{
|
|
set<SPIRConstant>(const_mbr_id, type_id, index, false);
|
|
auto e = access_chain(ptr, indices.data(), uint32_t(indices.size()), mbr_type, nullptr,
|
|
true);
|
|
statement(temp_name, ".", to_member_name(*type, j), "[", k, "] = ", e, ";");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
set<SPIRConstant>(const_mbr_id, type_id, index, false);
|
|
auto e =
|
|
access_chain(ptr, indices.data(), uint32_t(indices.size()), mbr_type, nullptr, true);
|
|
statement(temp_name, ".", to_member_name(*type, j), " = ", e, ";");
|
|
}
|
|
}
|
|
}
|
|
else if (is_matrix(*type))
|
|
{
|
|
for (uint32_t j = 0; j < type->columns; j++, index++)
|
|
{
|
|
set<SPIRConstant>(const_mbr_id, type_id, index, false);
|
|
auto e = access_chain(ptr, indices.data(), uint32_t(indices.size()), *type, nullptr, true);
|
|
statement(temp_name, "[", j, "] = ", e, ";");
|
|
}
|
|
}
|
|
else // Must be an array
|
|
{
|
|
assert(is_array(*type));
|
|
for (uint32_t j = 0; j < type->array[0]; j++, index++)
|
|
{
|
|
set<SPIRConstant>(const_mbr_id, type_id, index, false);
|
|
auto e = access_chain(ptr, indices.data(), uint32_t(indices.size()), *type, nullptr, true);
|
|
statement(temp_name, "[", j, "] = ", e, ";");
|
|
}
|
|
}
|
|
|
|
// This needs to be a variable instead of an expression so we don't
|
|
// try to dereference this as a variable pointer.
|
|
set<SPIRVariable>(ops[1], ops[0], var->storage);
|
|
ir.meta[ops[1]] = ir.meta[ops[2]];
|
|
set_name(ops[1], temp_name);
|
|
if (has_decoration(var->self, DecorationInvariant))
|
|
set_decoration(ops[1], DecorationInvariant);
|
|
for (uint32_t j = 2; j < length; j++)
|
|
inherit_expression_dependencies(ops[1], ops[j]);
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
set<SPIRConstant>(const_mbr_id, type_id, index, false);
|
|
indices.push_back(const_mbr_id);
|
|
|
|
if (i < length)
|
|
indices.insert(indices.end(), ops + i, ops + length);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
assert(index != uint32_t(-1));
|
|
set<SPIRConstant>(const_mbr_id, type_id, index, false);
|
|
indices.push_back(const_mbr_id);
|
|
|
|
indices.insert(indices.end(), ops + 4, ops + length);
|
|
}
|
|
|
|
// We use the pointer to the base of the input/output array here,
|
|
// so this is always a pointer chain.
|
|
auto e = access_chain(ptr, indices.data(), uint32_t(indices.size()), get<SPIRType>(ops[0]), &meta, true);
|
|
auto &expr = set<SPIRExpression>(ops[1], move(e), ops[0], should_forward(ops[2]));
|
|
expr.loaded_from = var->self;
|
|
expr.need_transpose = meta.need_transpose;
|
|
expr.access_chain = true;
|
|
|
|
// Mark the result as being packed if necessary.
|
|
if (meta.storage_is_packed)
|
|
set_extended_decoration(ops[1], SPIRVCrossDecorationPacked);
|
|
if (meta.storage_packed_type != 0)
|
|
set_extended_decoration(ops[1], SPIRVCrossDecorationPackedType, meta.storage_packed_type);
|
|
if (meta.storage_is_invariant)
|
|
set_decoration(ops[1], DecorationInvariant);
|
|
|
|
for (uint32_t i = 2; i < length; i++)
|
|
{
|
|
inherit_expression_dependencies(ops[1], ops[i]);
|
|
add_implied_read_expression(expr, ops[i]);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// If this is the inner tessellation level, and we're tessellating triangles,
|
|
// drop the last index. It isn't an array in this case, so we can't have an
|
|
// array reference here. We need to make this ID a variable instead of an
|
|
// expression so we don't try to dereference it as a variable pointer.
|
|
// Don't do this if the index is a constant 1, though. We need to drop stores
|
|
// to that one.
|
|
auto *m = ir.find_meta(var ? var->self : 0);
|
|
if (get_execution_model() == ExecutionModelTessellationControl && var && m &&
|
|
m->decoration.builtin_type == BuiltInTessLevelInner && get_entry_point().flags.get(ExecutionModeTriangles))
|
|
{
|
|
auto *c = maybe_get<SPIRConstant>(ops[3]);
|
|
if (c && c->scalar() == 1)
|
|
return false;
|
|
auto &dest_var = set<SPIRVariable>(ops[1], *var);
|
|
dest_var.basetype = ops[0];
|
|
ir.meta[ops[1]] = ir.meta[ops[2]];
|
|
inherit_expression_dependencies(ops[1], ops[2]);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool CompilerMSL::is_out_of_bounds_tessellation_level(uint32_t id_lhs)
|
|
{
|
|
if (!get_entry_point().flags.get(ExecutionModeTriangles))
|
|
return false;
|
|
|
|
// In SPIR-V, TessLevelInner always has two elements and TessLevelOuter always has
|
|
// four. This is true even if we are tessellating triangles. This allows clients
|
|
// to use a single tessellation control shader with multiple tessellation evaluation
|
|
// shaders.
|
|
// In Metal, however, only the first element of TessLevelInner and the first three
|
|
// of TessLevelOuter are accessible. This stems from how in Metal, the tessellation
|
|
// levels must be stored to a dedicated buffer in a particular format that depends
|
|
// on the patch type. Therefore, in Triangles mode, any access to the second
|
|
// inner level or the fourth outer level must be dropped.
|
|
const auto *e = maybe_get<SPIRExpression>(id_lhs);
|
|
if (!e || !e->access_chain)
|
|
return false;
|
|
BuiltIn builtin = BuiltIn(get_decoration(e->loaded_from, DecorationBuiltIn));
|
|
if (builtin != BuiltInTessLevelInner && builtin != BuiltInTessLevelOuter)
|
|
return false;
|
|
auto *c = maybe_get<SPIRConstant>(e->implied_read_expressions[1]);
|
|
if (!c)
|
|
return false;
|
|
return (builtin == BuiltInTessLevelInner && c->scalar() == 1) ||
|
|
(builtin == BuiltInTessLevelOuter && c->scalar() == 3);
|
|
}
|
|
|
|
// Override for MSL-specific syntax instructions
|
|
void CompilerMSL::emit_instruction(const Instruction &instruction)
|
|
{
|
|
#define MSL_BOP(op) emit_binary_op(ops[0], ops[1], ops[2], ops[3], #op)
|
|
#define MSL_BOP_CAST(op, type) \
|
|
emit_binary_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
|
|
#define MSL_UOP(op) emit_unary_op(ops[0], ops[1], ops[2], #op)
|
|
#define MSL_QFOP(op) emit_quaternary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], #op)
|
|
#define MSL_TFOP(op) emit_trinary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], #op)
|
|
#define MSL_BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
|
|
#define MSL_BFOP_CAST(op, type) \
|
|
emit_binary_func_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
|
|
#define MSL_UFOP(op) emit_unary_func_op(ops[0], ops[1], ops[2], #op)
|
|
#define MSL_UNORD_BOP(op) emit_binary_unord_op(ops[0], ops[1], ops[2], ops[3], #op)
|
|
|
|
auto ops = stream(instruction);
|
|
auto opcode = static_cast<Op>(instruction.op);
|
|
|
|
// If we need to do implicit bitcasts, make sure we do it with the correct type.
|
|
uint32_t integer_width = get_integer_width_for_instruction(instruction);
|
|
auto int_type = to_signed_basetype(integer_width);
|
|
auto uint_type = to_unsigned_basetype(integer_width);
|
|
|
|
switch (opcode)
|
|
{
|
|
|
|
// Comparisons
|
|
case OpIEqual:
|
|
MSL_BOP_CAST(==, int_type);
|
|
break;
|
|
|
|
case OpLogicalEqual:
|
|
case OpFOrdEqual:
|
|
MSL_BOP(==);
|
|
break;
|
|
|
|
case OpINotEqual:
|
|
MSL_BOP_CAST(!=, int_type);
|
|
break;
|
|
|
|
case OpLogicalNotEqual:
|
|
case OpFOrdNotEqual:
|
|
MSL_BOP(!=);
|
|
break;
|
|
|
|
case OpUGreaterThan:
|
|
MSL_BOP_CAST(>, uint_type);
|
|
break;
|
|
|
|
case OpSGreaterThan:
|
|
MSL_BOP_CAST(>, int_type);
|
|
break;
|
|
|
|
case OpFOrdGreaterThan:
|
|
MSL_BOP(>);
|
|
break;
|
|
|
|
case OpUGreaterThanEqual:
|
|
MSL_BOP_CAST(>=, uint_type);
|
|
break;
|
|
|
|
case OpSGreaterThanEqual:
|
|
MSL_BOP_CAST(>=, int_type);
|
|
break;
|
|
|
|
case OpFOrdGreaterThanEqual:
|
|
MSL_BOP(>=);
|
|
break;
|
|
|
|
case OpULessThan:
|
|
MSL_BOP_CAST(<, uint_type);
|
|
break;
|
|
|
|
case OpSLessThan:
|
|
MSL_BOP_CAST(<, int_type);
|
|
break;
|
|
|
|
case OpFOrdLessThan:
|
|
MSL_BOP(<);
|
|
break;
|
|
|
|
case OpULessThanEqual:
|
|
MSL_BOP_CAST(<=, uint_type);
|
|
break;
|
|
|
|
case OpSLessThanEqual:
|
|
MSL_BOP_CAST(<=, int_type);
|
|
break;
|
|
|
|
case OpFOrdLessThanEqual:
|
|
MSL_BOP(<=);
|
|
break;
|
|
|
|
case OpFUnordEqual:
|
|
MSL_UNORD_BOP(==);
|
|
break;
|
|
|
|
case OpFUnordNotEqual:
|
|
MSL_UNORD_BOP(!=);
|
|
break;
|
|
|
|
case OpFUnordGreaterThan:
|
|
MSL_UNORD_BOP(>);
|
|
break;
|
|
|
|
case OpFUnordGreaterThanEqual:
|
|
MSL_UNORD_BOP(>=);
|
|
break;
|
|
|
|
case OpFUnordLessThan:
|
|
MSL_UNORD_BOP(<);
|
|
break;
|
|
|
|
case OpFUnordLessThanEqual:
|
|
MSL_UNORD_BOP(<=);
|
|
break;
|
|
|
|
// Derivatives
|
|
case OpDPdx:
|
|
case OpDPdxFine:
|
|
case OpDPdxCoarse:
|
|
MSL_UFOP(dfdx);
|
|
register_control_dependent_expression(ops[1]);
|
|
break;
|
|
|
|
case OpDPdy:
|
|
case OpDPdyFine:
|
|
case OpDPdyCoarse:
|
|
MSL_UFOP(dfdy);
|
|
register_control_dependent_expression(ops[1]);
|
|
break;
|
|
|
|
case OpFwidth:
|
|
case OpFwidthCoarse:
|
|
case OpFwidthFine:
|
|
MSL_UFOP(fwidth);
|
|
register_control_dependent_expression(ops[1]);
|
|
break;
|
|
|
|
// Bitfield
|
|
case OpBitFieldInsert:
|
|
MSL_QFOP(insert_bits);
|
|
break;
|
|
|
|
case OpBitFieldSExtract:
|
|
case OpBitFieldUExtract:
|
|
MSL_TFOP(extract_bits);
|
|
break;
|
|
|
|
case OpBitReverse:
|
|
MSL_UFOP(reverse_bits);
|
|
break;
|
|
|
|
case OpBitCount:
|
|
MSL_UFOP(popcount);
|
|
break;
|
|
|
|
case OpFRem:
|
|
MSL_BFOP(fmod);
|
|
break;
|
|
|
|
// Atomics
|
|
case OpAtomicExchange:
|
|
{
|
|
uint32_t result_type = ops[0];
|
|
uint32_t id = ops[1];
|
|
uint32_t ptr = ops[2];
|
|
uint32_t mem_sem = ops[4];
|
|
uint32_t val = ops[5];
|
|
emit_atomic_func_op(result_type, id, "atomic_exchange_explicit", mem_sem, mem_sem, false, ptr, val);
|
|
break;
|
|
}
|
|
|
|
case OpAtomicCompareExchange:
|
|
{
|
|
uint32_t result_type = ops[0];
|
|
uint32_t id = ops[1];
|
|
uint32_t ptr = ops[2];
|
|
uint32_t mem_sem_pass = ops[4];
|
|
uint32_t mem_sem_fail = ops[5];
|
|
uint32_t val = ops[6];
|
|
uint32_t comp = ops[7];
|
|
emit_atomic_func_op(result_type, id, "atomic_compare_exchange_weak_explicit", mem_sem_pass, mem_sem_fail, true,
|
|
ptr, comp, true, false, val);
|
|
break;
|
|
}
|
|
|
|
case OpAtomicCompareExchangeWeak:
|
|
SPIRV_CROSS_THROW("OpAtomicCompareExchangeWeak is only supported in kernel profile.");
|
|
|
|
case OpAtomicLoad:
|
|
{
|
|
uint32_t result_type = ops[0];
|
|
uint32_t id = ops[1];
|
|
uint32_t ptr = ops[2];
|
|
uint32_t mem_sem = ops[4];
|
|
emit_atomic_func_op(result_type, id, "atomic_load_explicit", mem_sem, mem_sem, false, ptr, 0);
|
|
break;
|
|
}
|
|
|
|
case OpAtomicStore:
|
|
{
|
|
uint32_t result_type = expression_type(ops[0]).self;
|
|
uint32_t id = ops[0];
|
|
uint32_t ptr = ops[0];
|
|
uint32_t mem_sem = ops[2];
|
|
uint32_t val = ops[3];
|
|
emit_atomic_func_op(result_type, id, "atomic_store_explicit", mem_sem, mem_sem, false, ptr, val);
|
|
break;
|
|
}
|
|
|
|
#define MSL_AFMO_IMPL(op, valsrc, valconst) \
|
|
do \
|
|
{ \
|
|
uint32_t result_type = ops[0]; \
|
|
uint32_t id = ops[1]; \
|
|
uint32_t ptr = ops[2]; \
|
|
uint32_t mem_sem = ops[4]; \
|
|
uint32_t val = valsrc; \
|
|
emit_atomic_func_op(result_type, id, "atomic_fetch_" #op "_explicit", mem_sem, mem_sem, false, ptr, val, \
|
|
false, valconst); \
|
|
} while (false)
|
|
|
|
#define MSL_AFMO(op) MSL_AFMO_IMPL(op, ops[5], false)
|
|
#define MSL_AFMIO(op) MSL_AFMO_IMPL(op, 1, true)
|
|
|
|
case OpAtomicIIncrement:
|
|
MSL_AFMIO(add);
|
|
break;
|
|
|
|
case OpAtomicIDecrement:
|
|
MSL_AFMIO(sub);
|
|
break;
|
|
|
|
case OpAtomicIAdd:
|
|
MSL_AFMO(add);
|
|
break;
|
|
|
|
case OpAtomicISub:
|
|
MSL_AFMO(sub);
|
|
break;
|
|
|
|
case OpAtomicSMin:
|
|
case OpAtomicUMin:
|
|
MSL_AFMO(min);
|
|
break;
|
|
|
|
case OpAtomicSMax:
|
|
case OpAtomicUMax:
|
|
MSL_AFMO(max);
|
|
break;
|
|
|
|
case OpAtomicAnd:
|
|
MSL_AFMO(and);
|
|
break;
|
|
|
|
case OpAtomicOr:
|
|
MSL_AFMO(or);
|
|
break;
|
|
|
|
case OpAtomicXor:
|
|
MSL_AFMO(xor);
|
|
break;
|
|
|
|
// Images
|
|
|
|
// Reads == Fetches in Metal
|
|
case OpImageRead:
|
|
{
|
|
// Mark that this shader reads from this image
|
|
uint32_t img_id = ops[2];
|
|
auto &type = expression_type(img_id);
|
|
if (type.image.dim != DimSubpassData)
|
|
{
|
|
auto *p_var = maybe_get_backing_variable(img_id);
|
|
if (p_var && has_decoration(p_var->self, DecorationNonReadable))
|
|
{
|
|
unset_decoration(p_var->self, DecorationNonReadable);
|
|
force_recompile();
|
|
}
|
|
}
|
|
|
|
emit_texture_op(instruction);
|
|
break;
|
|
}
|
|
|
|
case OpImageWrite:
|
|
{
|
|
uint32_t img_id = ops[0];
|
|
uint32_t coord_id = ops[1];
|
|
uint32_t texel_id = ops[2];
|
|
const uint32_t *opt = &ops[3];
|
|
uint32_t length = instruction.length - 3;
|
|
|
|
// Bypass pointers because we need the real image struct
|
|
auto &type = expression_type(img_id);
|
|
auto &img_type = get<SPIRType>(type.self);
|
|
|
|
// Ensure this image has been marked as being written to and force a
|
|
// recommpile so that the image type output will include write access
|
|
auto *p_var = maybe_get_backing_variable(img_id);
|
|
if (p_var && has_decoration(p_var->self, DecorationNonWritable))
|
|
{
|
|
unset_decoration(p_var->self, DecorationNonWritable);
|
|
force_recompile();
|
|
}
|
|
|
|
bool forward = false;
|
|
uint32_t bias = 0;
|
|
uint32_t lod = 0;
|
|
uint32_t flags = 0;
|
|
|
|
if (length)
|
|
{
|
|
flags = *opt++;
|
|
length--;
|
|
}
|
|
|
|
auto test = [&](uint32_t &v, uint32_t flag) {
|
|
if (length && (flags & flag))
|
|
{
|
|
v = *opt++;
|
|
length--;
|
|
}
|
|
};
|
|
|
|
test(bias, ImageOperandsBiasMask);
|
|
test(lod, ImageOperandsLodMask);
|
|
|
|
auto &texel_type = expression_type(texel_id);
|
|
auto store_type = texel_type;
|
|
store_type.vecsize = 4;
|
|
|
|
statement(join(
|
|
to_expression(img_id), ".write(", remap_swizzle(store_type, texel_type.vecsize, to_expression(texel_id)),
|
|
", ",
|
|
to_function_args(img_id, img_type, true, false, false, coord_id, 0, 0, 0, 0, lod, 0, 0, 0, 0, 0, &forward),
|
|
");"));
|
|
|
|
if (p_var && variable_storage_is_aliased(*p_var))
|
|
flush_all_aliased_variables();
|
|
|
|
break;
|
|
}
|
|
|
|
case OpImageQuerySize:
|
|
case OpImageQuerySizeLod:
|
|
{
|
|
uint32_t rslt_type_id = ops[0];
|
|
auto &rslt_type = get<SPIRType>(rslt_type_id);
|
|
|
|
uint32_t id = ops[1];
|
|
|
|
uint32_t img_id = ops[2];
|
|
string img_exp = to_expression(img_id);
|
|
auto &img_type = expression_type(img_id);
|
|
Dim img_dim = img_type.image.dim;
|
|
bool img_is_array = img_type.image.arrayed;
|
|
|
|
if (img_type.basetype != SPIRType::Image)
|
|
SPIRV_CROSS_THROW("Invalid type for OpImageQuerySize.");
|
|
|
|
string lod;
|
|
if (opcode == OpImageQuerySizeLod)
|
|
{
|
|
// LOD index defaults to zero, so don't bother outputing level zero index
|
|
string decl_lod = to_expression(ops[3]);
|
|
if (decl_lod != "0")
|
|
lod = decl_lod;
|
|
}
|
|
|
|
string expr = type_to_glsl(rslt_type) + "(";
|
|
expr += img_exp + ".get_width(" + lod + ")";
|
|
|
|
if (img_dim == Dim2D || img_dim == DimCube || img_dim == Dim3D)
|
|
expr += ", " + img_exp + ".get_height(" + lod + ")";
|
|
|
|
if (img_dim == Dim3D)
|
|
expr += ", " + img_exp + ".get_depth(" + lod + ")";
|
|
|
|
if (img_is_array)
|
|
expr += ", " + img_exp + ".get_array_size()";
|
|
|
|
expr += ")";
|
|
|
|
emit_op(rslt_type_id, id, expr, should_forward(img_id));
|
|
|
|
break;
|
|
}
|
|
|
|
case OpImageQueryLod:
|
|
SPIRV_CROSS_THROW("MSL does not support textureQueryLod().");
|
|
|
|
#define MSL_ImgQry(qrytype) \
|
|
do \
|
|
{ \
|
|
uint32_t rslt_type_id = ops[0]; \
|
|
auto &rslt_type = get<SPIRType>(rslt_type_id); \
|
|
uint32_t id = ops[1]; \
|
|
uint32_t img_id = ops[2]; \
|
|
string img_exp = to_expression(img_id); \
|
|
string expr = type_to_glsl(rslt_type) + "(" + img_exp + ".get_num_" #qrytype "())"; \
|
|
emit_op(rslt_type_id, id, expr, should_forward(img_id)); \
|
|
} while (false)
|
|
|
|
case OpImageQueryLevels:
|
|
MSL_ImgQry(mip_levels);
|
|
break;
|
|
|
|
case OpImageQuerySamples:
|
|
MSL_ImgQry(samples);
|
|
break;
|
|
|
|
case OpImage:
|
|
{
|
|
uint32_t result_type = ops[0];
|
|
uint32_t id = ops[1];
|
|
auto *combined = maybe_get<SPIRCombinedImageSampler>(ops[2]);
|
|
|
|
if (combined)
|
|
{
|
|
auto &e = emit_op(result_type, id, to_expression(combined->image), true, true);
|
|
auto *var = maybe_get_backing_variable(combined->image);
|
|
if (var)
|
|
e.loaded_from = var->self;
|
|
}
|
|
else
|
|
{
|
|
auto &e = emit_op(result_type, id, to_expression(ops[2]), true, true);
|
|
auto *var = maybe_get_backing_variable(ops[2]);
|
|
if (var)
|
|
e.loaded_from = var->self;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case OpImageTexelPointer:
|
|
SPIRV_CROSS_THROW("MSL does not support atomic operations on images or texel buffers.");
|
|
|
|
// Casting
|
|
case OpQuantizeToF16:
|
|
{
|
|
uint32_t result_type = ops[0];
|
|
uint32_t id = ops[1];
|
|
uint32_t arg = ops[2];
|
|
|
|
string exp;
|
|
auto &type = get<SPIRType>(result_type);
|
|
|
|
switch (type.vecsize)
|
|
{
|
|
case 1:
|
|
exp = join("float(half(", to_expression(arg), "))");
|
|
break;
|
|
case 2:
|
|
exp = join("float2(half2(", to_expression(arg), "))");
|
|
break;
|
|
case 3:
|
|
exp = join("float3(half3(", to_expression(arg), "))");
|
|
break;
|
|
case 4:
|
|
exp = join("float4(half4(", to_expression(arg), "))");
|
|
break;
|
|
default:
|
|
SPIRV_CROSS_THROW("Illegal argument to OpQuantizeToF16.");
|
|
}
|
|
|
|
emit_op(result_type, id, exp, should_forward(arg));
|
|
break;
|
|
}
|
|
|
|
case OpInBoundsAccessChain:
|
|
case OpAccessChain:
|
|
case OpPtrAccessChain:
|
|
if (is_tessellation_shader())
|
|
{
|
|
if (!emit_tessellation_access_chain(ops, instruction.length))
|
|
CompilerGLSL::emit_instruction(instruction);
|
|
}
|
|
else
|
|
CompilerGLSL::emit_instruction(instruction);
|
|
break;
|
|
|
|
case OpStore:
|
|
if (is_out_of_bounds_tessellation_level(ops[0]))
|
|
break;
|
|
|
|
if (maybe_emit_array_assignment(ops[0], ops[1]))
|
|
break;
|
|
|
|
CompilerGLSL::emit_instruction(instruction);
|
|
break;
|
|
|
|
// Compute barriers
|
|
case OpMemoryBarrier:
|
|
emit_barrier(0, ops[0], ops[1]);
|
|
break;
|
|
|
|
case OpControlBarrier:
|
|
// In GLSL a memory barrier is often followed by a control barrier.
|
|
// But in MSL, memory barriers are also control barriers, so don't
|
|
// emit a simple control barrier if a memory barrier has just been emitted.
|
|
if (previous_instruction_opcode != OpMemoryBarrier)
|
|
emit_barrier(ops[0], ops[1], ops[2]);
|
|
break;
|
|
|
|
case OpVectorTimesMatrix:
|
|
case OpMatrixTimesVector:
|
|
{
|
|
// If the matrix needs transpose and it is square or packed, just flip the multiply order.
|
|
uint32_t mtx_id = ops[opcode == OpMatrixTimesVector ? 2 : 3];
|
|
auto *e = maybe_get<SPIRExpression>(mtx_id);
|
|
auto &t = expression_type(mtx_id);
|
|
bool is_packed = has_extended_decoration(mtx_id, SPIRVCrossDecorationPacked);
|
|
if (e && e->need_transpose && (t.columns == t.vecsize || is_packed))
|
|
{
|
|
e->need_transpose = false;
|
|
|
|
// This is important for matrices. Packed matrices
|
|
// are generally transposed, so unpacking using a constructor argument
|
|
// will result in an error.
|
|
// The simplest solution for now is to just avoid unpacking the matrix in this operation.
|
|
unset_extended_decoration(mtx_id, SPIRVCrossDecorationPacked);
|
|
|
|
emit_binary_op(ops[0], ops[1], ops[3], ops[2], "*");
|
|
if (is_packed)
|
|
set_extended_decoration(mtx_id, SPIRVCrossDecorationPacked);
|
|
e->need_transpose = true;
|
|
}
|
|
else
|
|
MSL_BOP(*);
|
|
break;
|
|
}
|
|
|
|
// OpOuterProduct
|
|
|
|
case OpIAddCarry:
|
|
case OpISubBorrow:
|
|
{
|
|
uint32_t result_type = ops[0];
|
|
uint32_t result_id = ops[1];
|
|
uint32_t op0 = ops[2];
|
|
uint32_t op1 = ops[3];
|
|
forced_temporaries.insert(result_id);
|
|
auto &type = get<SPIRType>(result_type);
|
|
statement(variable_decl(type, to_name(result_id)), ";");
|
|
set<SPIRExpression>(result_id, to_name(result_id), result_type, true);
|
|
|
|
auto &res_type = get<SPIRType>(type.member_types[1]);
|
|
if (opcode == OpIAddCarry)
|
|
{
|
|
statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", to_enclosed_expression(op0), " + ",
|
|
to_enclosed_expression(op1), ";");
|
|
statement(to_expression(result_id), ".", to_member_name(type, 1), " = select(", type_to_glsl(res_type),
|
|
"(1), ", type_to_glsl(res_type), "(0), ", to_expression(result_id), ".", to_member_name(type, 0),
|
|
" >= max(", to_expression(op0), ", ", to_expression(op1), "));");
|
|
}
|
|
else
|
|
{
|
|
statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", to_enclosed_expression(op0), " - ",
|
|
to_enclosed_expression(op1), ";");
|
|
statement(to_expression(result_id), ".", to_member_name(type, 1), " = select(", type_to_glsl(res_type),
|
|
"(1), ", type_to_glsl(res_type), "(0), ", to_enclosed_expression(op0),
|
|
" >= ", to_enclosed_expression(op1), ");");
|
|
}
|
|
break;
|
|
}
|
|
|
|
case OpUMulExtended:
|
|
case OpSMulExtended:
|
|
{
|
|
uint32_t result_type = ops[0];
|
|
uint32_t result_id = ops[1];
|
|
uint32_t op0 = ops[2];
|
|
uint32_t op1 = ops[3];
|
|
forced_temporaries.insert(result_id);
|
|
auto &type = get<SPIRType>(result_type);
|
|
statement(variable_decl(type, to_name(result_id)), ";");
|
|
set<SPIRExpression>(result_id, to_name(result_id), result_type, true);
|
|
|
|
statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", to_enclosed_expression(op0), " * ",
|
|
to_enclosed_expression(op1), ";");
|
|
statement(to_expression(result_id), ".", to_member_name(type, 1), " = mulhi(", to_expression(op0), ", ",
|
|
to_expression(op1), ");");
|
|
break;
|
|
}
|
|
|
|
default:
|
|
CompilerGLSL::emit_instruction(instruction);
|
|
break;
|
|
}
|
|
|
|
previous_instruction_opcode = opcode;
|
|
}
|
|
|
|
void CompilerMSL::emit_barrier(uint32_t id_exe_scope, uint32_t id_mem_scope, uint32_t id_mem_sem)
|
|
{
|
|
if (get_execution_model() != ExecutionModelGLCompute && get_execution_model() != ExecutionModelTessellationControl)
|
|
return;
|
|
|
|
string bar_stmt = "threadgroup_barrier(mem_flags::";
|
|
|
|
uint32_t mem_sem = id_mem_sem ? get<SPIRConstant>(id_mem_sem).scalar() : uint32_t(MemorySemanticsMaskNone);
|
|
|
|
if (get_execution_model() == ExecutionModelTessellationControl)
|
|
// For tesc shaders, this also affects objects in the Output storage class.
|
|
// Since in Metal, these are placed in a device buffer, we have to sync device memory here.
|
|
bar_stmt += "mem_device";
|
|
else if (mem_sem & MemorySemanticsCrossWorkgroupMemoryMask)
|
|
bar_stmt += "mem_device";
|
|
else if (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask |
|
|
MemorySemanticsAtomicCounterMemoryMask))
|
|
bar_stmt += "mem_threadgroup";
|
|
else if (mem_sem & MemorySemanticsImageMemoryMask)
|
|
bar_stmt += "mem_texture";
|
|
else
|
|
bar_stmt += "mem_none";
|
|
|
|
if (msl_options.is_ios() && (msl_options.supports_msl_version(2) && !msl_options.supports_msl_version(2, 1)))
|
|
{
|
|
bar_stmt += ", ";
|
|
|
|
// Use the wider of the two scopes (smaller value)
|
|
uint32_t exe_scope = id_exe_scope ? get<SPIRConstant>(id_exe_scope).scalar() : uint32_t(ScopeInvocation);
|
|
uint32_t mem_scope = id_mem_scope ? get<SPIRConstant>(id_mem_scope).scalar() : uint32_t(ScopeInvocation);
|
|
uint32_t scope = min(exe_scope, mem_scope);
|
|
switch (scope)
|
|
{
|
|
case ScopeCrossDevice:
|
|
case ScopeDevice:
|
|
bar_stmt += "memory_scope_device";
|
|
break;
|
|
|
|
case ScopeSubgroup:
|
|
case ScopeInvocation:
|
|
bar_stmt += "memory_scope_simdgroup";
|
|
break;
|
|
|
|
case ScopeWorkgroup:
|
|
default:
|
|
bar_stmt += "memory_scope_threadgroup";
|
|
break;
|
|
}
|
|
}
|
|
|
|
bar_stmt += ");";
|
|
|
|
statement(bar_stmt);
|
|
|
|
assert(current_emitting_block);
|
|
flush_control_dependent_expressions(current_emitting_block->self);
|
|
flush_all_active_variables();
|
|
}
|
|
|
|
void CompilerMSL::emit_array_copy(const string &lhs, uint32_t rhs_id)
|
|
{
|
|
// Assignment from an array initializer is fine.
|
|
auto &type = expression_type(rhs_id);
|
|
auto *var = maybe_get_backing_variable(rhs_id);
|
|
|
|
// Unfortunately, we cannot template on address space in MSL,
|
|
// so explicit address space redirection it is ...
|
|
bool is_constant = false;
|
|
if (ir.ids[rhs_id].get_type() == TypeConstant)
|
|
{
|
|
is_constant = true;
|
|
}
|
|
else if (var && var->remapped_variable && var->statically_assigned &&
|
|
ir.ids[var->static_expression].get_type() == TypeConstant)
|
|
{
|
|
is_constant = true;
|
|
}
|
|
|
|
// For the case where we have OpLoad triggering an array copy,
|
|
// we cannot easily detect this case ahead of time since it's
|
|
// context dependent. We might have to force a recompile here
|
|
// if this is the only use of array copies in our shader.
|
|
if (type.array.size() > 1)
|
|
{
|
|
if (type.array.size() > SPVFuncImplArrayCopyMultidimMax)
|
|
SPIRV_CROSS_THROW("Cannot support this many dimensions for arrays of arrays.");
|
|
auto func = static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + type.array.size());
|
|
if (spv_function_implementations.count(func) == 0)
|
|
{
|
|
spv_function_implementations.insert(func);
|
|
suppress_missing_prototypes = true;
|
|
force_recompile();
|
|
}
|
|
}
|
|
else if (spv_function_implementations.count(SPVFuncImplArrayCopy) == 0)
|
|
{
|
|
spv_function_implementations.insert(SPVFuncImplArrayCopy);
|
|
suppress_missing_prototypes = true;
|
|
force_recompile();
|
|
}
|
|
|
|
const char *tag = is_constant ? "FromConstant" : "FromStack";
|
|
statement("spvArrayCopy", tag, type.array.size(), "(", lhs, ", ", to_expression(rhs_id), ");");
|
|
}
|
|
|
|
// Since MSL does not allow arrays to be copied via simple variable assignment,
|
|
// if the LHS and RHS represent an assignment of an entire array, it must be
|
|
// implemented by calling an array copy function.
|
|
// Returns whether the struct assignment was emitted.
|
|
bool CompilerMSL::maybe_emit_array_assignment(uint32_t id_lhs, uint32_t id_rhs)
|
|
{
|
|
// We only care about assignments of an entire array
|
|
auto &type = expression_type(id_rhs);
|
|
if (type.array.size() == 0)
|
|
return false;
|
|
|
|
auto *var = maybe_get<SPIRVariable>(id_lhs);
|
|
|
|
// Is this a remapped, static constant? Don't do anything.
|
|
if (var && var->remapped_variable && var->statically_assigned)
|
|
return true;
|
|
|
|
if (ir.ids[id_rhs].get_type() == TypeConstant && var && var->deferred_declaration)
|
|
{
|
|
// Special case, if we end up declaring a variable when assigning the constant array,
|
|
// we can avoid the copy by directly assigning the constant expression.
|
|
// This is likely necessary to be able to use a variable as a true look-up table, as it is unlikely
|
|
// the compiler will be able to optimize the spvArrayCopy() into a constant LUT.
|
|
// After a variable has been declared, we can no longer assign constant arrays in MSL unfortunately.
|
|
statement(to_expression(id_lhs), " = ", constant_expression(get<SPIRConstant>(id_rhs)), ";");
|
|
return true;
|
|
}
|
|
|
|
// Ensure the LHS variable has been declared
|
|
auto *p_v_lhs = maybe_get_backing_variable(id_lhs);
|
|
if (p_v_lhs)
|
|
flush_variable_declaration(p_v_lhs->self);
|
|
|
|
emit_array_copy(to_expression(id_lhs), id_rhs);
|
|
register_write(id_lhs);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Emits one of the atomic functions. In MSL, the atomic functions operate on pointers
|
|
void CompilerMSL::emit_atomic_func_op(uint32_t result_type, uint32_t result_id, const char *op, uint32_t mem_order_1,
|
|
uint32_t mem_order_2, bool has_mem_order_2, uint32_t obj, uint32_t op1,
|
|
bool op1_is_pointer, bool op1_is_literal, uint32_t op2)
|
|
{
|
|
forced_temporaries.insert(result_id);
|
|
|
|
string exp = string(op) + "(";
|
|
|
|
auto &type = get_pointee_type(expression_type(obj));
|
|
exp += "(volatile ";
|
|
auto *var = maybe_get_backing_variable(obj);
|
|
if (!var)
|
|
SPIRV_CROSS_THROW("No backing variable for atomic operation.");
|
|
exp += get_argument_address_space(*var);
|
|
exp += " atomic_";
|
|
exp += type_to_glsl(type);
|
|
exp += "*)";
|
|
|
|
exp += "&";
|
|
exp += to_enclosed_expression(obj);
|
|
|
|
bool is_atomic_compare_exchange_strong = op1_is_pointer && op1;
|
|
|
|
if (is_atomic_compare_exchange_strong)
|
|
{
|
|
assert(strcmp(op, "atomic_compare_exchange_weak_explicit") == 0);
|
|
assert(op2);
|
|
assert(has_mem_order_2);
|
|
exp += ", &";
|
|
exp += to_name(result_id);
|
|
exp += ", ";
|
|
exp += to_expression(op2);
|
|
exp += ", ";
|
|
exp += get_memory_order(mem_order_1);
|
|
exp += ", ";
|
|
exp += get_memory_order(mem_order_2);
|
|
exp += ")";
|
|
|
|
// MSL only supports the weak atomic compare exchange, so emit a CAS loop here.
|
|
// The MSL function returns false if the atomic write fails OR the comparison test fails,
|
|
// so we must validate that it wasn't the comparison test that failed before continuing
|
|
// the CAS loop, otherwise it will loop infinitely, with the comparison test always failing.
|
|
// The function updates the comparitor value from the memory value, so the additional
|
|
// comparison test evaluates the memory value against the expected value.
|
|
statement(variable_decl(type, to_name(result_id)), ";");
|
|
statement("do");
|
|
begin_scope();
|
|
statement(to_name(result_id), " = ", to_expression(op1), ";");
|
|
end_scope_decl(join("while (!", exp, " && ", to_name(result_id), " == ", to_enclosed_expression(op1), ")"));
|
|
set<SPIRExpression>(result_id, to_name(result_id), result_type, true);
|
|
}
|
|
else
|
|
{
|
|
assert(strcmp(op, "atomic_compare_exchange_weak_explicit") != 0);
|
|
if (op1)
|
|
{
|
|
if (op1_is_literal)
|
|
exp += join(", ", op1);
|
|
else
|
|
exp += ", " + to_expression(op1);
|
|
}
|
|
if (op2)
|
|
exp += ", " + to_expression(op2);
|
|
|
|
exp += string(", ") + get_memory_order(mem_order_1);
|
|
if (has_mem_order_2)
|
|
exp += string(", ") + get_memory_order(mem_order_2);
|
|
|
|
exp += ")";
|
|
emit_op(result_type, result_id, exp, false);
|
|
}
|
|
|
|
flush_all_atomic_capable_variables();
|
|
}
|
|
|
|
// Metal only supports relaxed memory order for now
|
|
const char *CompilerMSL::get_memory_order(uint32_t)
|
|
{
|
|
return "memory_order_relaxed";
|
|
}
|
|
|
|
// Override for MSL-specific extension syntax instructions
|
|
void CompilerMSL::emit_glsl_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args, uint32_t count)
|
|
{
|
|
auto op = static_cast<GLSLstd450>(eop);
|
|
|
|
// If we need to do implicit bitcasts, make sure we do it with the correct type.
|
|
uint32_t integer_width = get_integer_width_for_glsl_instruction(op, args, count);
|
|
auto int_type = to_signed_basetype(integer_width);
|
|
auto uint_type = to_unsigned_basetype(integer_width);
|
|
|
|
switch (op)
|
|
{
|
|
case GLSLstd450Atan2:
|
|
emit_binary_func_op(result_type, id, args[0], args[1], "atan2");
|
|
break;
|
|
case GLSLstd450InverseSqrt:
|
|
emit_unary_func_op(result_type, id, args[0], "rsqrt");
|
|
break;
|
|
case GLSLstd450RoundEven:
|
|
emit_unary_func_op(result_type, id, args[0], "rint");
|
|
break;
|
|
|
|
case GLSLstd450FindSMsb:
|
|
emit_unary_func_op_cast(result_type, id, args[0], "findSMSB", int_type, int_type);
|
|
break;
|
|
|
|
case GLSLstd450FindUMsb:
|
|
emit_unary_func_op_cast(result_type, id, args[0], "findUMSB", uint_type, uint_type);
|
|
break;
|
|
|
|
case GLSLstd450PackSnorm4x8:
|
|
emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm4x8");
|
|
break;
|
|
case GLSLstd450PackUnorm4x8:
|
|
emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm4x8");
|
|
break;
|
|
case GLSLstd450PackSnorm2x16:
|
|
emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm2x16");
|
|
break;
|
|
case GLSLstd450PackUnorm2x16:
|
|
emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm2x16");
|
|
break;
|
|
|
|
case GLSLstd450PackHalf2x16:
|
|
{
|
|
auto expr = join("as_type<uint>(half2(", to_expression(args[0]), "))");
|
|
emit_op(result_type, id, expr, should_forward(args[0]));
|
|
inherit_expression_dependencies(id, args[0]);
|
|
break;
|
|
}
|
|
|
|
case GLSLstd450UnpackSnorm4x8:
|
|
emit_unary_func_op(result_type, id, args[0], "unpack_snorm4x8_to_float");
|
|
break;
|
|
case GLSLstd450UnpackUnorm4x8:
|
|
emit_unary_func_op(result_type, id, args[0], "unpack_unorm4x8_to_float");
|
|
break;
|
|
case GLSLstd450UnpackSnorm2x16:
|
|
emit_unary_func_op(result_type, id, args[0], "unpack_snorm2x16_to_float");
|
|
break;
|
|
case GLSLstd450UnpackUnorm2x16:
|
|
emit_unary_func_op(result_type, id, args[0], "unpack_unorm2x16_to_float");
|
|
break;
|
|
|
|
case GLSLstd450UnpackHalf2x16:
|
|
{
|
|
auto expr = join("float2(as_type<half2>(", to_expression(args[0]), "))");
|
|
emit_op(result_type, id, expr, should_forward(args[0]));
|
|
inherit_expression_dependencies(id, args[0]);
|
|
break;
|
|
}
|
|
|
|
case GLSLstd450PackDouble2x32:
|
|
emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450PackDouble2x32"); // Currently unsupported
|
|
break;
|
|
case GLSLstd450UnpackDouble2x32:
|
|
emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450UnpackDouble2x32"); // Currently unsupported
|
|
break;
|
|
|
|
case GLSLstd450MatrixInverse:
|
|
{
|
|
auto &mat_type = get<SPIRType>(result_type);
|
|
switch (mat_type.columns)
|
|
{
|
|
case 2:
|
|
emit_unary_func_op(result_type, id, args[0], "spvInverse2x2");
|
|
break;
|
|
case 3:
|
|
emit_unary_func_op(result_type, id, args[0], "spvInverse3x3");
|
|
break;
|
|
case 4:
|
|
emit_unary_func_op(result_type, id, args[0], "spvInverse4x4");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case GLSLstd450FMin:
|
|
// If the result type isn't float, don't bother calling the specific
|
|
// precise::/fast:: version. Metal doesn't have those for half and
|
|
// double types.
|
|
if (get<SPIRType>(result_type).basetype != SPIRType::Float)
|
|
emit_binary_func_op(result_type, id, args[0], args[1], "min");
|
|
else
|
|
emit_binary_func_op(result_type, id, args[0], args[1], "fast::min");
|
|
break;
|
|
|
|
case GLSLstd450FMax:
|
|
if (get<SPIRType>(result_type).basetype != SPIRType::Float)
|
|
emit_binary_func_op(result_type, id, args[0], args[1], "max");
|
|
else
|
|
emit_binary_func_op(result_type, id, args[0], args[1], "fast::max");
|
|
break;
|
|
|
|
case GLSLstd450FClamp:
|
|
// TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call.
|
|
if (get<SPIRType>(result_type).basetype != SPIRType::Float)
|
|
emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp");
|
|
else
|
|
emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "fast::clamp");
|
|
break;
|
|
|
|
case GLSLstd450NMin:
|
|
if (get<SPIRType>(result_type).basetype != SPIRType::Float)
|
|
emit_binary_func_op(result_type, id, args[0], args[1], "min");
|
|
else
|
|
emit_binary_func_op(result_type, id, args[0], args[1], "precise::min");
|
|
break;
|
|
|
|
case GLSLstd450NMax:
|
|
if (get<SPIRType>(result_type).basetype != SPIRType::Float)
|
|
emit_binary_func_op(result_type, id, args[0], args[1], "max");
|
|
else
|
|
emit_binary_func_op(result_type, id, args[0], args[1], "precise::max");
|
|
break;
|
|
|
|
case GLSLstd450NClamp:
|
|
// TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call.
|
|
if (get<SPIRType>(result_type).basetype != SPIRType::Float)
|
|
emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp");
|
|
else
|
|
emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "precise::clamp");
|
|
break;
|
|
|
|
// TODO:
|
|
// GLSLstd450InterpolateAtCentroid (centroid_no_perspective qualifier)
|
|
// GLSLstd450InterpolateAtSample (sample_no_perspective qualifier)
|
|
// GLSLstd450InterpolateAtOffset
|
|
|
|
default:
|
|
CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Emit a structure declaration for the specified interface variable.
|
|
void CompilerMSL::emit_interface_block(uint32_t ib_var_id)
|
|
{
|
|
if (ib_var_id)
|
|
{
|
|
auto &ib_var = get<SPIRVariable>(ib_var_id);
|
|
auto &ib_type = get_variable_data_type(ib_var);
|
|
assert(ib_type.basetype == SPIRType::Struct && !ib_type.member_types.empty());
|
|
emit_struct(ib_type);
|
|
}
|
|
}
|
|
|
|
// Emits the declaration signature of the specified function.
|
|
// If this is the entry point function, Metal-specific return value and function arguments are added.
|
|
void CompilerMSL::emit_function_prototype(SPIRFunction &func, const Bitset &)
|
|
{
|
|
if (func.self != ir.default_entry_point)
|
|
add_function_overload(func);
|
|
|
|
local_variable_names = resource_names;
|
|
string decl;
|
|
|
|
processing_entry_point = (func.self == ir.default_entry_point);
|
|
|
|
auto &type = get<SPIRType>(func.return_type);
|
|
|
|
if (type.array.empty())
|
|
{
|
|
decl += func_type_decl(type);
|
|
}
|
|
else
|
|
{
|
|
// We cannot return arrays in MSL, so "return" through an out variable.
|
|
decl = "void";
|
|
}
|
|
|
|
decl += " ";
|
|
decl += to_name(func.self);
|
|
decl += "(";
|
|
|
|
if (!type.array.empty())
|
|
{
|
|
// Fake arrays returns by writing to an out array instead.
|
|
decl += "thread ";
|
|
decl += type_to_glsl(type);
|
|
decl += " (&SPIRV_Cross_return_value)";
|
|
decl += type_to_array_glsl(type);
|
|
if (!func.arguments.empty())
|
|
decl += ", ";
|
|
}
|
|
|
|
if (processing_entry_point)
|
|
{
|
|
if (msl_options.argument_buffers)
|
|
decl += entry_point_args_argument_buffer(!func.arguments.empty());
|
|
else
|
|
decl += entry_point_args_classic(!func.arguments.empty());
|
|
|
|
// If entry point function has variables that require early declaration,
|
|
// ensure they each have an empty initializer, creating one if needed.
|
|
// This is done at this late stage because the initialization expression
|
|
// is cleared after each compilation pass.
|
|
for (auto var_id : vars_needing_early_declaration)
|
|
{
|
|
auto &ed_var = get<SPIRVariable>(var_id);
|
|
uint32_t &initializer = ed_var.initializer;
|
|
if (!initializer)
|
|
initializer = ir.increase_bound_by(1);
|
|
|
|
// Do not override proper initializers.
|
|
if (ir.ids[initializer].get_type() == TypeNone || ir.ids[initializer].get_type() == TypeExpression)
|
|
set<SPIRExpression>(ed_var.initializer, "{}", ed_var.basetype, true);
|
|
}
|
|
}
|
|
|
|
for (auto &arg : func.arguments)
|
|
{
|
|
uint32_t name_id = arg.id;
|
|
|
|
auto *var = maybe_get<SPIRVariable>(arg.id);
|
|
if (var)
|
|
{
|
|
// If we need to modify the name of the variable, make sure we modify the original variable.
|
|
// Our alias is just a shadow variable.
|
|
if (arg.alias_global_variable && var->basevariable)
|
|
name_id = var->basevariable;
|
|
|
|
var->parameter = &arg; // Hold a pointer to the parameter so we can invalidate the readonly field if needed.
|
|
}
|
|
|
|
add_local_variable_name(name_id);
|
|
|
|
decl += argument_decl(arg);
|
|
|
|
// Manufacture automatic sampler arg for SampledImage texture
|
|
auto &arg_type = get<SPIRType>(arg.type);
|
|
if (arg_type.basetype == SPIRType::SampledImage && arg_type.image.dim != DimBuffer)
|
|
decl += join(", thread const ", sampler_type(arg_type), " ", to_sampler_expression(arg.id));
|
|
|
|
// Manufacture automatic swizzle arg.
|
|
if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(arg_type))
|
|
decl += join(", constant uint32_t& ", to_swizzle_expression(arg.id));
|
|
|
|
if (&arg != &func.arguments.back())
|
|
decl += ", ";
|
|
}
|
|
|
|
decl += ")";
|
|
statement(decl);
|
|
}
|
|
|
|
// Returns the texture sampling function string for the specified image and sampling characteristics.
|
|
string CompilerMSL::to_function_name(uint32_t img, const SPIRType &imgtype, bool is_fetch, bool is_gather, bool, bool,
|
|
bool has_offset, bool, bool has_dref, uint32_t)
|
|
{
|
|
// Special-case gather. We have to alter the component being looked up
|
|
// in the swizzle case.
|
|
if (msl_options.swizzle_texture_samples && is_gather)
|
|
{
|
|
string fname = imgtype.image.depth ? "spvGatherCompareSwizzle" : "spvGatherSwizzle";
|
|
fname += "<" + type_to_glsl(get<SPIRType>(imgtype.image.type)) + ", metal::" + type_to_glsl(imgtype);
|
|
// Add the arg types ourselves. Yes, this sucks, but Clang can't
|
|
// deduce template pack parameters in the middle of an argument list.
|
|
switch (imgtype.image.dim)
|
|
{
|
|
case Dim2D:
|
|
fname += ", float2";
|
|
if (imgtype.image.arrayed)
|
|
fname += ", uint";
|
|
if (imgtype.image.depth)
|
|
fname += ", float";
|
|
if (!imgtype.image.depth || has_offset)
|
|
fname += ", int2";
|
|
break;
|
|
case DimCube:
|
|
fname += ", float3";
|
|
if (imgtype.image.arrayed)
|
|
fname += ", uint";
|
|
if (imgtype.image.depth)
|
|
fname += ", float";
|
|
break;
|
|
default:
|
|
SPIRV_CROSS_THROW("Invalid texture dimension for gather op.");
|
|
}
|
|
fname += ">";
|
|
return fname;
|
|
}
|
|
|
|
auto *combined = maybe_get<SPIRCombinedImageSampler>(img);
|
|
|
|
// Texture reference
|
|
string fname = to_expression(combined ? combined->image : img) + ".";
|
|
if (msl_options.swizzle_texture_samples && !is_gather && is_sampled_image_type(imgtype))
|
|
fname = "spvTextureSwizzle(" + fname;
|
|
|
|
// Texture function and sampler
|
|
if (is_fetch)
|
|
fname += "read";
|
|
else if (is_gather)
|
|
fname += "gather";
|
|
else
|
|
fname += "sample";
|
|
|
|
if (has_dref)
|
|
fname += "_compare";
|
|
|
|
return fname;
|
|
}
|
|
|
|
// Returns the function args for a texture sampling function for the specified image and sampling characteristics.
|
|
string CompilerMSL::to_function_args(uint32_t img, const SPIRType &imgtype, bool is_fetch, bool is_gather, bool is_proj,
|
|
uint32_t coord, uint32_t, uint32_t dref, uint32_t grad_x, uint32_t grad_y,
|
|
uint32_t lod, uint32_t coffset, uint32_t offset, uint32_t bias, uint32_t comp,
|
|
uint32_t sample, bool *p_forward)
|
|
{
|
|
string farg_str;
|
|
if (!is_fetch)
|
|
farg_str += to_sampler_expression(img);
|
|
|
|
if (msl_options.swizzle_texture_samples && is_gather)
|
|
{
|
|
if (!farg_str.empty())
|
|
farg_str += ", ";
|
|
|
|
auto *combined = maybe_get<SPIRCombinedImageSampler>(img);
|
|
farg_str += to_expression(combined ? combined->image : img);
|
|
}
|
|
|
|
// Texture coordinates
|
|
bool forward = should_forward(coord);
|
|
auto coord_expr = to_enclosed_expression(coord);
|
|
auto &coord_type = expression_type(coord);
|
|
bool coord_is_fp = type_is_floating_point(coord_type);
|
|
bool is_cube_fetch = false;
|
|
|
|
string tex_coords = coord_expr;
|
|
uint32_t alt_coord_component = 0;
|
|
|
|
switch (imgtype.image.dim)
|
|
{
|
|
|
|
case Dim1D:
|
|
if (coord_type.vecsize > 1)
|
|
tex_coords = enclose_expression(tex_coords) + ".x";
|
|
|
|
if (is_fetch)
|
|
tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
|
|
|
|
alt_coord_component = 1;
|
|
break;
|
|
|
|
case DimBuffer:
|
|
if (coord_type.vecsize > 1)
|
|
tex_coords = enclose_expression(tex_coords) + ".x";
|
|
|
|
if (msl_options.texture_buffer_native)
|
|
{
|
|
tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
|
|
}
|
|
else
|
|
{
|
|
// Metal texel buffer textures are 2D, so convert 1D coord to 2D.
|
|
if (is_fetch)
|
|
tex_coords = "spvTexelBufferCoord(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
|
|
}
|
|
|
|
alt_coord_component = 1;
|
|
break;
|
|
|
|
case DimSubpassData:
|
|
if (imgtype.image.ms)
|
|
tex_coords = "uint2(gl_FragCoord.xy)";
|
|
else
|
|
tex_coords = join("uint2(gl_FragCoord.xy), 0");
|
|
break;
|
|
|
|
case Dim2D:
|
|
if (coord_type.vecsize > 2)
|
|
tex_coords = enclose_expression(tex_coords) + ".xy";
|
|
|
|
if (is_fetch)
|
|
tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
|
|
|
|
alt_coord_component = 2;
|
|
break;
|
|
|
|
case Dim3D:
|
|
if (coord_type.vecsize > 3)
|
|
tex_coords = enclose_expression(tex_coords) + ".xyz";
|
|
|
|
if (is_fetch)
|
|
tex_coords = "uint3(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
|
|
|
|
alt_coord_component = 3;
|
|
break;
|
|
|
|
case DimCube:
|
|
if (is_fetch)
|
|
{
|
|
is_cube_fetch = true;
|
|
tex_coords += ".xy";
|
|
tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
|
|
}
|
|
else
|
|
{
|
|
if (coord_type.vecsize > 3)
|
|
tex_coords = enclose_expression(tex_coords) + ".xyz";
|
|
}
|
|
|
|
alt_coord_component = 3;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (is_fetch && offset)
|
|
{
|
|
// Fetch offsets must be applied directly to the coordinate.
|
|
forward = forward && should_forward(offset);
|
|
auto &type = expression_type(offset);
|
|
if (type.basetype != SPIRType::UInt)
|
|
tex_coords += " + " + bitcast_expression(SPIRType::UInt, offset);
|
|
else
|
|
tex_coords += " + " + to_enclosed_expression(offset);
|
|
}
|
|
else if (is_fetch && coffset)
|
|
{
|
|
// Fetch offsets must be applied directly to the coordinate.
|
|
forward = forward && should_forward(coffset);
|
|
auto &type = expression_type(coffset);
|
|
if (type.basetype != SPIRType::UInt)
|
|
tex_coords += " + " + bitcast_expression(SPIRType::UInt, coffset);
|
|
else
|
|
tex_coords += " + " + to_enclosed_expression(coffset);
|
|
}
|
|
|
|
// If projection, use alt coord as divisor
|
|
if (is_proj)
|
|
tex_coords += " / " + to_extract_component_expression(coord, alt_coord_component);
|
|
|
|
if (!farg_str.empty())
|
|
farg_str += ", ";
|
|
farg_str += tex_coords;
|
|
|
|
// If fetch from cube, add face explicitly
|
|
if (is_cube_fetch)
|
|
{
|
|
// Special case for cube arrays, face and layer are packed in one dimension.
|
|
if (imgtype.image.arrayed)
|
|
farg_str += ", uint(" + to_extract_component_expression(coord, 2) + ") % 6u";
|
|
else
|
|
farg_str += ", uint(" + round_fp_tex_coords(to_extract_component_expression(coord, 2), coord_is_fp) + ")";
|
|
}
|
|
|
|
// If array, use alt coord
|
|
if (imgtype.image.arrayed)
|
|
{
|
|
// Special case for cube arrays, face and layer are packed in one dimension.
|
|
if (imgtype.image.dim == DimCube && is_fetch)
|
|
farg_str += ", uint(" + to_extract_component_expression(coord, 2) + ") / 6u";
|
|
else
|
|
farg_str += ", uint(" +
|
|
round_fp_tex_coords(to_extract_component_expression(coord, alt_coord_component), coord_is_fp) +
|
|
")";
|
|
}
|
|
|
|
// Depth compare reference value
|
|
if (dref)
|
|
{
|
|
forward = forward && should_forward(dref);
|
|
farg_str += ", ";
|
|
|
|
if (is_proj)
|
|
farg_str +=
|
|
to_enclosed_expression(dref) + " / " + to_extract_component_expression(coord, alt_coord_component);
|
|
else
|
|
farg_str += to_expression(dref);
|
|
|
|
if (msl_options.is_macos() && (grad_x || grad_y))
|
|
{
|
|
// For sample compare, MSL does not support gradient2d for all targets (only iOS apparently according to docs).
|
|
// However, the most common case here is to have a constant gradient of 0, as that is the only way to express
|
|
// LOD == 0 in GLSL with sampler2DArrayShadow (cascaded shadow mapping).
|
|
// We will detect a compile-time constant 0 value for gradient and promote that to level(0) on MSL.
|
|
bool constant_zero_x = !grad_x || expression_is_constant_null(grad_x);
|
|
bool constant_zero_y = !grad_y || expression_is_constant_null(grad_y);
|
|
if (constant_zero_x && constant_zero_y)
|
|
{
|
|
lod = 0;
|
|
grad_x = 0;
|
|
grad_y = 0;
|
|
farg_str += ", level(0)";
|
|
}
|
|
else
|
|
{
|
|
SPIRV_CROSS_THROW("Using non-constant 0.0 gradient() qualifier for sample_compare. This is not "
|
|
"supported in MSL macOS.");
|
|
}
|
|
}
|
|
|
|
if (msl_options.is_macos() && bias)
|
|
{
|
|
// Bias is not supported either on macOS with sample_compare.
|
|
// Verify it is compile-time zero, and drop the argument.
|
|
if (expression_is_constant_null(bias))
|
|
{
|
|
bias = 0;
|
|
}
|
|
else
|
|
{
|
|
SPIRV_CROSS_THROW(
|
|
"Using non-constant 0.0 bias() qualifier for sample_compare. This is not supported in MSL macOS.");
|
|
}
|
|
}
|
|
}
|
|
|
|
// LOD Options
|
|
// Metal does not support LOD for 1D textures.
|
|
if (bias && imgtype.image.dim != Dim1D)
|
|
{
|
|
forward = forward && should_forward(bias);
|
|
farg_str += ", bias(" + to_expression(bias) + ")";
|
|
}
|
|
|
|
// Metal does not support LOD for 1D textures.
|
|
if (lod && imgtype.image.dim != Dim1D)
|
|
{
|
|
forward = forward && should_forward(lod);
|
|
if (is_fetch)
|
|
{
|
|
farg_str += ", " + to_expression(lod);
|
|
}
|
|
else
|
|
{
|
|
farg_str += ", level(" + to_expression(lod) + ")";
|
|
}
|
|
}
|
|
else if (is_fetch && !lod && imgtype.image.dim != Dim1D && imgtype.image.dim != DimBuffer && !imgtype.image.ms &&
|
|
imgtype.image.sampled != 2)
|
|
{
|
|
// Lod argument is optional in OpImageFetch, but we require a LOD value, pick 0 as the default.
|
|
// Check for sampled type as well, because is_fetch is also used for OpImageRead in MSL.
|
|
farg_str += ", 0";
|
|
}
|
|
|
|
// Metal does not support LOD for 1D textures.
|
|
if ((grad_x || grad_y) && imgtype.image.dim != Dim1D)
|
|
{
|
|
forward = forward && should_forward(grad_x);
|
|
forward = forward && should_forward(grad_y);
|
|
string grad_opt;
|
|
switch (imgtype.image.dim)
|
|
{
|
|
case Dim2D:
|
|
grad_opt = "2d";
|
|
break;
|
|
case Dim3D:
|
|
grad_opt = "3d";
|
|
break;
|
|
case DimCube:
|
|
grad_opt = "cube";
|
|
break;
|
|
default:
|
|
grad_opt = "unsupported_gradient_dimension";
|
|
break;
|
|
}
|
|
farg_str += ", gradient" + grad_opt + "(" + to_expression(grad_x) + ", " + to_expression(grad_y) + ")";
|
|
}
|
|
|
|
// Add offsets
|
|
string offset_expr;
|
|
if (coffset && !is_fetch)
|
|
{
|
|
forward = forward && should_forward(coffset);
|
|
offset_expr = to_expression(coffset);
|
|
}
|
|
else if (offset && !is_fetch)
|
|
{
|
|
forward = forward && should_forward(offset);
|
|
offset_expr = to_expression(offset);
|
|
}
|
|
|
|
if (!offset_expr.empty())
|
|
{
|
|
switch (imgtype.image.dim)
|
|
{
|
|
case Dim2D:
|
|
if (coord_type.vecsize > 2)
|
|
offset_expr = enclose_expression(offset_expr) + ".xy";
|
|
|
|
farg_str += ", " + offset_expr;
|
|
break;
|
|
|
|
case Dim3D:
|
|
if (coord_type.vecsize > 3)
|
|
offset_expr = enclose_expression(offset_expr) + ".xyz";
|
|
|
|
farg_str += ", " + offset_expr;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (comp)
|
|
{
|
|
// If 2D has gather component, ensure it also has an offset arg
|
|
if (imgtype.image.dim == Dim2D && offset_expr.empty())
|
|
farg_str += ", int2(0)";
|
|
|
|
forward = forward && should_forward(comp);
|
|
farg_str += ", " + to_component_argument(comp);
|
|
}
|
|
|
|
if (sample)
|
|
{
|
|
farg_str += ", ";
|
|
farg_str += to_expression(sample);
|
|
}
|
|
|
|
if (msl_options.swizzle_texture_samples && is_sampled_image_type(imgtype))
|
|
{
|
|
// Add the swizzle constant from the swizzle buffer.
|
|
if (!is_gather)
|
|
farg_str += ")";
|
|
farg_str += ", " + to_swizzle_expression(img);
|
|
used_aux_buffer = true;
|
|
}
|
|
|
|
*p_forward = forward;
|
|
|
|
return farg_str;
|
|
}
|
|
|
|
// If the texture coordinates are floating point, invokes MSL round() function to round them.
|
|
string CompilerMSL::round_fp_tex_coords(string tex_coords, bool coord_is_fp)
|
|
{
|
|
return coord_is_fp ? ("round(" + tex_coords + ")") : tex_coords;
|
|
}
|
|
|
|
// Returns a string to use in an image sampling function argument.
|
|
// The ID must be a scalar constant.
|
|
string CompilerMSL::to_component_argument(uint32_t id)
|
|
{
|
|
if (ir.ids[id].get_type() != TypeConstant)
|
|
{
|
|
SPIRV_CROSS_THROW("ID " + to_string(id) + " is not an OpConstant.");
|
|
return "component::x";
|
|
}
|
|
|
|
uint32_t component_index = get<SPIRConstant>(id).scalar();
|
|
switch (component_index)
|
|
{
|
|
case 0:
|
|
return "component::x";
|
|
case 1:
|
|
return "component::y";
|
|
case 2:
|
|
return "component::z";
|
|
case 3:
|
|
return "component::w";
|
|
|
|
default:
|
|
SPIRV_CROSS_THROW("The value (" + to_string(component_index) + ") of OpConstant ID " + to_string(id) +
|
|
" is not a valid Component index, which must be one of 0, 1, 2, or 3.");
|
|
return "component::x";
|
|
}
|
|
}
|
|
|
|
// Establish sampled image as expression object and assign the sampler to it.
|
|
void CompilerMSL::emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id)
|
|
{
|
|
set<SPIRCombinedImageSampler>(result_id, result_type, image_id, samp_id);
|
|
}
|
|
|
|
// Returns a string representation of the ID, usable as a function arg.
|
|
// Manufacture automatic sampler arg for SampledImage texture.
|
|
string CompilerMSL::to_func_call_arg(uint32_t id)
|
|
{
|
|
string arg_str;
|
|
|
|
auto *c = maybe_get<SPIRConstant>(id);
|
|
if (c && !get<SPIRType>(c->constant_type).array.empty())
|
|
{
|
|
// If we are passing a constant array directly to a function for some reason,
|
|
// the callee will expect an argument in thread const address space
|
|
// (since we can only bind to arrays with references in MSL).
|
|
// To resolve this, we must emit a copy in this address space.
|
|
// This kind of code gen should be rare enough that performance is not a real concern.
|
|
// Inline the SPIR-V to avoid this kind of suboptimal codegen.
|
|
//
|
|
// We risk calling this inside a continue block (invalid code),
|
|
// so just create a thread local copy in the current function.
|
|
arg_str = join("_", id, "_array_copy");
|
|
auto &constants = current_function->constant_arrays_needed_on_stack;
|
|
auto itr = find(begin(constants), end(constants), id);
|
|
if (itr == end(constants))
|
|
{
|
|
force_recompile();
|
|
constants.push_back(id);
|
|
}
|
|
}
|
|
else
|
|
arg_str = CompilerGLSL::to_func_call_arg(id);
|
|
|
|
// Manufacture automatic sampler arg if the arg is a SampledImage texture.
|
|
auto &type = expression_type(id);
|
|
if (type.basetype == SPIRType::SampledImage && type.image.dim != DimBuffer)
|
|
{
|
|
// Need to check the base variable in case we need to apply a qualified alias.
|
|
uint32_t var_id = 0;
|
|
auto *sampler_var = maybe_get<SPIRVariable>(id);
|
|
if (sampler_var)
|
|
var_id = sampler_var->basevariable;
|
|
|
|
arg_str += ", " + to_sampler_expression(var_id ? var_id : id);
|
|
}
|
|
if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type))
|
|
arg_str += ", " + to_swizzle_expression(id);
|
|
|
|
return arg_str;
|
|
}
|
|
|
|
// If the ID represents a sampled image that has been assigned a sampler already,
|
|
// generate an expression for the sampler, otherwise generate a fake sampler name
|
|
// by appending a suffix to the expression constructed from the ID.
|
|
string CompilerMSL::to_sampler_expression(uint32_t id)
|
|
{
|
|
auto *combined = maybe_get<SPIRCombinedImageSampler>(id);
|
|
auto expr = to_expression(combined ? combined->image : id);
|
|
auto index = expr.find_first_of('[');
|
|
|
|
uint32_t samp_id = 0;
|
|
if (combined)
|
|
samp_id = combined->sampler;
|
|
|
|
if (index == string::npos)
|
|
return samp_id ? to_expression(samp_id) : expr + sampler_name_suffix;
|
|
else
|
|
{
|
|
auto image_expr = expr.substr(0, index);
|
|
auto array_expr = expr.substr(index);
|
|
return samp_id ? to_expression(samp_id) : (image_expr + sampler_name_suffix + array_expr);
|
|
}
|
|
}
|
|
|
|
string CompilerMSL::to_swizzle_expression(uint32_t id)
|
|
{
|
|
auto *combined = maybe_get<SPIRCombinedImageSampler>(id);
|
|
auto expr = to_expression(combined ? combined->image : id);
|
|
auto index = expr.find_first_of('[');
|
|
|
|
if (index == string::npos)
|
|
return expr + swizzle_name_suffix;
|
|
else
|
|
{
|
|
auto image_expr = expr.substr(0, index);
|
|
auto array_expr = expr.substr(index);
|
|
return image_expr + swizzle_name_suffix + array_expr;
|
|
}
|
|
}
|
|
|
|
// Checks whether the type is a Block all of whose members have DecorationPatch.
|
|
bool CompilerMSL::is_patch_block(const SPIRType &type)
|
|
{
|
|
if (!has_decoration(type.self, DecorationBlock))
|
|
return false;
|
|
|
|
for (uint32_t i = 0; i < type.member_types.size(); i++)
|
|
{
|
|
if (!has_member_decoration(type.self, i, DecorationPatch))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Checks whether the ID is a row_major matrix that requires conversion before use
|
|
bool CompilerMSL::is_non_native_row_major_matrix(uint32_t id)
|
|
{
|
|
// Natively supported row-major matrices do not need to be converted.
|
|
if (backend.native_row_major_matrix)
|
|
return false;
|
|
|
|
// Non-matrix or column-major matrix types do not need to be converted.
|
|
if (!has_decoration(id, DecorationRowMajor))
|
|
return false;
|
|
|
|
// Generate a function that will swap matrix elements from row-major to column-major.
|
|
// Packed row-matrix should just use transpose() function.
|
|
if (!has_extended_decoration(id, SPIRVCrossDecorationPacked))
|
|
{
|
|
const auto type = expression_type(id);
|
|
add_convert_row_major_matrix_function(type.columns, type.vecsize);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Checks whether the member is a row_major matrix that requires conversion before use
|
|
bool CompilerMSL::member_is_non_native_row_major_matrix(const SPIRType &type, uint32_t index)
|
|
{
|
|
// Natively supported row-major matrices do not need to be converted.
|
|
if (backend.native_row_major_matrix)
|
|
return false;
|
|
|
|
// Non-matrix or column-major matrix types do not need to be converted.
|
|
if (!has_member_decoration(type.self, index, DecorationRowMajor))
|
|
return false;
|
|
|
|
// Generate a function that will swap matrix elements from row-major to column-major.
|
|
// Packed row-matrix should just use transpose() function.
|
|
if (!has_extended_member_decoration(type.self, index, SPIRVCrossDecorationPacked))
|
|
{
|
|
const auto mbr_type = get<SPIRType>(type.member_types[index]);
|
|
add_convert_row_major_matrix_function(mbr_type.columns, mbr_type.vecsize);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Adds a function suitable for converting a non-square row-major matrix to a column-major matrix.
|
|
void CompilerMSL::add_convert_row_major_matrix_function(uint32_t cols, uint32_t rows)
|
|
{
|
|
SPVFuncImpl spv_func;
|
|
if (cols == rows) // Square matrix...just use transpose() function
|
|
return;
|
|
else if (cols == 2 && rows == 3)
|
|
spv_func = SPVFuncImplRowMajor2x3;
|
|
else if (cols == 2 && rows == 4)
|
|
spv_func = SPVFuncImplRowMajor2x4;
|
|
else if (cols == 3 && rows == 2)
|
|
spv_func = SPVFuncImplRowMajor3x2;
|
|
else if (cols == 3 && rows == 4)
|
|
spv_func = SPVFuncImplRowMajor3x4;
|
|
else if (cols == 4 && rows == 2)
|
|
spv_func = SPVFuncImplRowMajor4x2;
|
|
else if (cols == 4 && rows == 3)
|
|
spv_func = SPVFuncImplRowMajor4x3;
|
|
else
|
|
SPIRV_CROSS_THROW("Could not convert row-major matrix.");
|
|
|
|
auto rslt = spv_function_implementations.insert(spv_func);
|
|
if (rslt.second)
|
|
{
|
|
suppress_missing_prototypes = true;
|
|
force_recompile();
|
|
}
|
|
}
|
|
|
|
// Wraps the expression string in a function call that converts the
|
|
// row_major matrix result of the expression to a column_major matrix.
|
|
string CompilerMSL::convert_row_major_matrix(string exp_str, const SPIRType &exp_type, bool is_packed)
|
|
{
|
|
strip_enclosed_expression(exp_str);
|
|
|
|
string func_name;
|
|
|
|
// Square and packed matrices can just use transpose
|
|
if (exp_type.columns == exp_type.vecsize || is_packed)
|
|
func_name = "transpose";
|
|
else
|
|
func_name = string("spvConvertFromRowMajor") + to_string(exp_type.columns) + "x" + to_string(exp_type.vecsize);
|
|
|
|
return join(func_name, "(", exp_str, ")");
|
|
}
|
|
|
|
// Called automatically at the end of the entry point function
|
|
void CompilerMSL::emit_fixup()
|
|
{
|
|
if ((get_execution_model() == ExecutionModelVertex ||
|
|
get_execution_model() == ExecutionModelTessellationEvaluation) &&
|
|
stage_out_var_id && !qual_pos_var_name.empty() && !capture_output_to_buffer)
|
|
{
|
|
if (options.vertex.fixup_clipspace)
|
|
statement(qual_pos_var_name, ".z = (", qual_pos_var_name, ".z + ", qual_pos_var_name,
|
|
".w) * 0.5; // Adjust clip-space for Metal");
|
|
|
|
if (options.vertex.flip_vert_y)
|
|
statement(qual_pos_var_name, ".y = -(", qual_pos_var_name, ".y);", " // Invert Y-axis for Metal");
|
|
}
|
|
}
|
|
|
|
// Return a string defining a structure member, with padding and packing.
|
|
string CompilerMSL::to_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
|
|
const string &qualifier)
|
|
{
|
|
auto &membertype = get<SPIRType>(member_type_id);
|
|
|
|
// If this member requires padding to maintain alignment, emit a dummy padding member.
|
|
MSLStructMemberKey key = get_struct_member_key(type.self, index);
|
|
uint32_t pad_len = struct_member_padding[key];
|
|
if (pad_len > 0)
|
|
statement("char _m", index, "_pad", "[", to_string(pad_len), "];");
|
|
|
|
// If this member is packed, mark it as so.
|
|
string pack_pfx = "";
|
|
|
|
const SPIRType *effective_membertype = &membertype;
|
|
SPIRType override_type;
|
|
|
|
uint32_t orig_id = 0;
|
|
if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID))
|
|
orig_id = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID);
|
|
|
|
if (member_is_packed_type(type, index))
|
|
{
|
|
// If we're packing a matrix, output an appropriate typedef
|
|
if (membertype.basetype == SPIRType::Struct)
|
|
{
|
|
pack_pfx = "/* FIXME: A padded struct is needed here. If you see this message, file a bug! */ ";
|
|
}
|
|
else if (membertype.vecsize > 1 && membertype.columns > 1)
|
|
{
|
|
pack_pfx = "packed_";
|
|
string base_type = membertype.width == 16 ? "half" : "float";
|
|
string td_line = "typedef ";
|
|
td_line += base_type + to_string(membertype.vecsize) + "x" + to_string(membertype.columns);
|
|
td_line += " " + pack_pfx;
|
|
td_line += base_type + to_string(membertype.columns) + "x" + to_string(membertype.vecsize);
|
|
td_line += ";";
|
|
add_typedef_line(td_line);
|
|
}
|
|
else if (is_array(membertype) && membertype.vecsize <= 2 && membertype.basetype != SPIRType::Struct)
|
|
{
|
|
// A "packed" float array, but we pad here instead to 4-vector.
|
|
override_type = membertype;
|
|
override_type.vecsize = 4;
|
|
effective_membertype = &override_type;
|
|
}
|
|
else
|
|
pack_pfx = "packed_";
|
|
}
|
|
|
|
// Very specifically, image load-store in argument buffers are disallowed on MSL on iOS.
|
|
if (msl_options.is_ios() && membertype.basetype == SPIRType::Image && membertype.image.sampled == 2)
|
|
{
|
|
if (!has_decoration(orig_id, DecorationNonWritable))
|
|
SPIRV_CROSS_THROW("Writable images are not allowed in argument buffers on iOS.");
|
|
}
|
|
|
|
// Array information is baked into these types.
|
|
string array_type;
|
|
if (membertype.basetype != SPIRType::Image && membertype.basetype != SPIRType::Sampler &&
|
|
membertype.basetype != SPIRType::SampledImage)
|
|
{
|
|
array_type = type_to_array_glsl(membertype);
|
|
}
|
|
|
|
return join(pack_pfx, type_to_glsl(*effective_membertype, orig_id), " ", qualifier, to_member_name(type, index),
|
|
member_attribute_qualifier(type, index), array_type, ";");
|
|
}
|
|
|
|
// Emit a structure member, padding and packing to maintain the correct memeber alignments.
|
|
void CompilerMSL::emit_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
|
|
const string &qualifier, uint32_t)
|
|
{
|
|
statement(to_struct_member(type, member_type_id, index, qualifier));
|
|
}
|
|
|
|
// Return a MSL qualifier for the specified function attribute member
|
|
string CompilerMSL::member_attribute_qualifier(const SPIRType &type, uint32_t index)
|
|
{
|
|
auto &execution = get_entry_point();
|
|
|
|
uint32_t mbr_type_id = type.member_types[index];
|
|
auto &mbr_type = get<SPIRType>(mbr_type_id);
|
|
|
|
BuiltIn builtin = BuiltInMax;
|
|
bool is_builtin = is_member_builtin(type, index, &builtin);
|
|
|
|
if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationArgumentBufferID))
|
|
return join(" [[id(", get_extended_member_decoration(type.self, index, SPIRVCrossDecorationArgumentBufferID),
|
|
")]]");
|
|
|
|
// Vertex function inputs
|
|
if (execution.model == ExecutionModelVertex && type.storage == StorageClassInput)
|
|
{
|
|
if (is_builtin)
|
|
{
|
|
switch (builtin)
|
|
{
|
|
case BuiltInVertexId:
|
|
case BuiltInVertexIndex:
|
|
case BuiltInBaseVertex:
|
|
case BuiltInInstanceId:
|
|
case BuiltInInstanceIndex:
|
|
case BuiltInBaseInstance:
|
|
return string(" [[") + builtin_qualifier(builtin) + "]]";
|
|
|
|
case BuiltInDrawIndex:
|
|
SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
|
|
|
|
default:
|
|
return "";
|
|
}
|
|
}
|
|
uint32_t locn = get_ordered_member_location(type.self, index);
|
|
if (locn != k_unknown_location)
|
|
return string(" [[attribute(") + convert_to_string(locn) + ")]]";
|
|
}
|
|
|
|
// Vertex and tessellation evaluation function outputs
|
|
if ((execution.model == ExecutionModelVertex || execution.model == ExecutionModelTessellationEvaluation) &&
|
|
type.storage == StorageClassOutput)
|
|
{
|
|
if (is_builtin)
|
|
{
|
|
switch (builtin)
|
|
{
|
|
case BuiltInPointSize:
|
|
// Only mark the PointSize builtin if really rendering points.
|
|
// Some shaders may include a PointSize builtin even when used to render
|
|
// non-point topologies, and Metal will reject this builtin when compiling
|
|
// the shader into a render pipeline that uses a non-point topology.
|
|
return msl_options.enable_point_size_builtin ? (string(" [[") + builtin_qualifier(builtin) + "]]") : "";
|
|
|
|
case BuiltInViewportIndex:
|
|
if (!msl_options.supports_msl_version(2, 0))
|
|
SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
|
|
/* fallthrough */
|
|
case BuiltInPosition:
|
|
case BuiltInLayer:
|
|
case BuiltInClipDistance:
|
|
return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
|
|
|
|
default:
|
|
return "";
|
|
}
|
|
}
|
|
uint32_t comp;
|
|
uint32_t locn = get_ordered_member_location(type.self, index, &comp);
|
|
if (locn != k_unknown_location)
|
|
{
|
|
if (comp != k_unknown_component)
|
|
return string(" [[user(locn") + convert_to_string(locn) + "_" + convert_to_string(comp) + ")]]";
|
|
else
|
|
return string(" [[user(locn") + convert_to_string(locn) + ")]]";
|
|
}
|
|
}
|
|
|
|
// Tessellation control function inputs
|
|
if (execution.model == ExecutionModelTessellationControl && type.storage == StorageClassInput)
|
|
{
|
|
if (is_builtin)
|
|
{
|
|
switch (builtin)
|
|
{
|
|
case BuiltInInvocationId:
|
|
case BuiltInPrimitiveId:
|
|
return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
|
|
case BuiltInPatchVertices:
|
|
return "";
|
|
// Others come from stage input.
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
uint32_t locn = get_ordered_member_location(type.self, index);
|
|
if (locn != k_unknown_location)
|
|
return string(" [[attribute(") + convert_to_string(locn) + ")]]";
|
|
}
|
|
|
|
// Tessellation control function outputs
|
|
if (execution.model == ExecutionModelTessellationControl && type.storage == StorageClassOutput)
|
|
{
|
|
// For this type of shader, we always arrange for it to capture its
|
|
// output to a buffer. For this reason, qualifiers are irrelevant here.
|
|
return "";
|
|
}
|
|
|
|
// Tessellation evaluation function inputs
|
|
if (execution.model == ExecutionModelTessellationEvaluation && type.storage == StorageClassInput)
|
|
{
|
|
if (is_builtin)
|
|
{
|
|
switch (builtin)
|
|
{
|
|
case BuiltInPrimitiveId:
|
|
case BuiltInTessCoord:
|
|
return string(" [[") + builtin_qualifier(builtin) + "]]";
|
|
case BuiltInPatchVertices:
|
|
return "";
|
|
// Others come from stage input.
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
// The special control point array must not be marked with an attribute.
|
|
if (get_type(type.member_types[index]).basetype == SPIRType::ControlPointArray)
|
|
return "";
|
|
uint32_t locn = get_ordered_member_location(type.self, index);
|
|
if (locn != k_unknown_location)
|
|
return string(" [[attribute(") + convert_to_string(locn) + ")]]";
|
|
}
|
|
|
|
// Tessellation evaluation function outputs were handled above.
|
|
|
|
// Fragment function inputs
|
|
if (execution.model == ExecutionModelFragment && type.storage == StorageClassInput)
|
|
{
|
|
string quals = "";
|
|
if (is_builtin)
|
|
{
|
|
switch (builtin)
|
|
{
|
|
case BuiltInFrontFacing:
|
|
case BuiltInPointCoord:
|
|
case BuiltInFragCoord:
|
|
case BuiltInSampleId:
|
|
case BuiltInSampleMask:
|
|
case BuiltInLayer:
|
|
quals = builtin_qualifier(builtin);
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
uint32_t comp;
|
|
uint32_t locn = get_ordered_member_location(type.self, index, &comp);
|
|
if (locn != k_unknown_location)
|
|
{
|
|
if (comp != k_unknown_component)
|
|
quals = string("user(locn") + convert_to_string(locn) + "_" + convert_to_string(comp) + ")";
|
|
else
|
|
quals = string("user(locn") + convert_to_string(locn) + ")";
|
|
}
|
|
}
|
|
// Don't bother decorating integers with the 'flat' attribute; it's
|
|
// the default (in fact, the only option). Also don't bother with the
|
|
// FragCoord builtin; it's always noperspective on Metal.
|
|
if (!type_is_integral(mbr_type) && (!is_builtin || builtin != BuiltInFragCoord))
|
|
{
|
|
if (has_member_decoration(type.self, index, DecorationFlat))
|
|
{
|
|
if (!quals.empty())
|
|
quals += ", ";
|
|
quals += "flat";
|
|
}
|
|
else if (has_member_decoration(type.self, index, DecorationCentroid))
|
|
{
|
|
if (!quals.empty())
|
|
quals += ", ";
|
|
if (has_member_decoration(type.self, index, DecorationNoPerspective))
|
|
quals += "centroid_no_perspective";
|
|
else
|
|
quals += "centroid_perspective";
|
|
}
|
|
else if (has_member_decoration(type.self, index, DecorationSample))
|
|
{
|
|
if (!quals.empty())
|
|
quals += ", ";
|
|
if (has_member_decoration(type.self, index, DecorationNoPerspective))
|
|
quals += "sample_no_perspective";
|
|
else
|
|
quals += "sample_perspective";
|
|
}
|
|
else if (has_member_decoration(type.self, index, DecorationNoPerspective))
|
|
{
|
|
if (!quals.empty())
|
|
quals += ", ";
|
|
quals += "center_no_perspective";
|
|
}
|
|
}
|
|
if (!quals.empty())
|
|
return " [[" + quals + "]]";
|
|
}
|
|
|
|
// Fragment function outputs
|
|
if (execution.model == ExecutionModelFragment && type.storage == StorageClassOutput)
|
|
{
|
|
if (is_builtin)
|
|
{
|
|
switch (builtin)
|
|
{
|
|
case BuiltInSampleMask:
|
|
case BuiltInFragDepth:
|
|
return string(" [[") + builtin_qualifier(builtin) + "]]";
|
|
|
|
default:
|
|
return "";
|
|
}
|
|
}
|
|
uint32_t locn = get_ordered_member_location(type.self, index);
|
|
if (locn != k_unknown_location && has_member_decoration(type.self, index, DecorationIndex))
|
|
return join(" [[color(", locn, "), index(", get_member_decoration(type.self, index, DecorationIndex),
|
|
")]]");
|
|
else if (locn != k_unknown_location)
|
|
return join(" [[color(", locn, ")]]");
|
|
else if (has_member_decoration(type.self, index, DecorationIndex))
|
|
return join(" [[index(", get_member_decoration(type.self, index, DecorationIndex), ")]]");
|
|
else
|
|
return "";
|
|
}
|
|
|
|
// Compute function inputs
|
|
if (execution.model == ExecutionModelGLCompute && type.storage == StorageClassInput)
|
|
{
|
|
if (is_builtin)
|
|
{
|
|
switch (builtin)
|
|
{
|
|
case BuiltInGlobalInvocationId:
|
|
case BuiltInWorkgroupId:
|
|
case BuiltInNumWorkgroups:
|
|
case BuiltInLocalInvocationId:
|
|
case BuiltInLocalInvocationIndex:
|
|
return string(" [[") + builtin_qualifier(builtin) + "]]";
|
|
|
|
default:
|
|
return "";
|
|
}
|
|
}
|
|
}
|
|
|
|
return "";
|
|
}
|
|
|
|
// Returns the location decoration of the member with the specified index in the specified type.
|
|
// If the location of the member has been explicitly set, that location is used. If not, this
|
|
// function assumes the members are ordered in their location order, and simply returns the
|
|
// index as the location.
|
|
uint32_t CompilerMSL::get_ordered_member_location(uint32_t type_id, uint32_t index, uint32_t *comp)
|
|
{
|
|
auto &m = ir.meta[type_id];
|
|
if (index < m.members.size())
|
|
{
|
|
auto &dec = m.members[index];
|
|
if (comp)
|
|
{
|
|
if (dec.decoration_flags.get(DecorationComponent))
|
|
*comp = dec.component;
|
|
else
|
|
*comp = k_unknown_component;
|
|
}
|
|
if (dec.decoration_flags.get(DecorationLocation))
|
|
return dec.location;
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
// Returns the type declaration for a function, including the
|
|
// entry type if the current function is the entry point function
|
|
string CompilerMSL::func_type_decl(SPIRType &type)
|
|
{
|
|
// The regular function return type. If not processing the entry point function, that's all we need
|
|
string return_type = type_to_glsl(type) + type_to_array_glsl(type);
|
|
if (!processing_entry_point)
|
|
return return_type;
|
|
|
|
// If an outgoing interface block has been defined, and it should be returned, override the entry point return type
|
|
bool ep_should_return_output = !get_is_rasterization_disabled();
|
|
if (stage_out_var_id && ep_should_return_output)
|
|
return_type = type_to_glsl(get_stage_out_struct_type()) + type_to_array_glsl(type);
|
|
|
|
// Prepend a entry type, based on the execution model
|
|
string entry_type;
|
|
auto &execution = get_entry_point();
|
|
switch (execution.model)
|
|
{
|
|
case ExecutionModelVertex:
|
|
entry_type = "vertex";
|
|
break;
|
|
case ExecutionModelTessellationEvaluation:
|
|
if (!msl_options.supports_msl_version(1, 2))
|
|
SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
|
|
if (execution.flags.get(ExecutionModeIsolines))
|
|
SPIRV_CROSS_THROW("Metal does not support isoline tessellation.");
|
|
if (msl_options.is_ios())
|
|
entry_type =
|
|
join("[[ patch(", execution.flags.get(ExecutionModeTriangles) ? "triangle" : "quad", ") ]] vertex");
|
|
else
|
|
entry_type = join("[[ patch(", execution.flags.get(ExecutionModeTriangles) ? "triangle" : "quad", ", ",
|
|
execution.output_vertices, ") ]] vertex");
|
|
break;
|
|
case ExecutionModelFragment:
|
|
entry_type =
|
|
execution.flags.get(ExecutionModeEarlyFragmentTests) ? "[[ early_fragment_tests ]] fragment" : "fragment";
|
|
break;
|
|
case ExecutionModelTessellationControl:
|
|
if (!msl_options.supports_msl_version(1, 2))
|
|
SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
|
|
if (execution.flags.get(ExecutionModeIsolines))
|
|
SPIRV_CROSS_THROW("Metal does not support isoline tessellation.");
|
|
/* fallthrough */
|
|
case ExecutionModelGLCompute:
|
|
case ExecutionModelKernel:
|
|
entry_type = "kernel";
|
|
break;
|
|
default:
|
|
entry_type = "unknown";
|
|
break;
|
|
}
|
|
|
|
return entry_type + " " + return_type;
|
|
}
|
|
|
|
// In MSL, address space qualifiers are required for all pointer or reference variables
|
|
string CompilerMSL::get_argument_address_space(const SPIRVariable &argument)
|
|
{
|
|
const auto &type = get<SPIRType>(argument.basetype);
|
|
|
|
switch (type.storage)
|
|
{
|
|
case StorageClassWorkgroup:
|
|
return "threadgroup";
|
|
|
|
case StorageClassStorageBuffer:
|
|
{
|
|
// For arguments from variable pointers, we use the write count deduction, so
|
|
// we should not assume any constness here. Only for global SSBOs.
|
|
bool readonly = false;
|
|
if (has_decoration(type.self, DecorationBlock))
|
|
readonly = ir.get_buffer_block_flags(argument).get(DecorationNonWritable);
|
|
|
|
return readonly ? "const device" : "device";
|
|
}
|
|
|
|
case StorageClassUniform:
|
|
case StorageClassUniformConstant:
|
|
case StorageClassPushConstant:
|
|
if (type.basetype == SPIRType::Struct)
|
|
{
|
|
bool ssbo = has_decoration(type.self, DecorationBufferBlock);
|
|
if (ssbo)
|
|
{
|
|
bool readonly = ir.get_buffer_block_flags(argument).get(DecorationNonWritable);
|
|
return readonly ? "const device" : "device";
|
|
}
|
|
else
|
|
return "constant";
|
|
}
|
|
break;
|
|
|
|
case StorageClassFunction:
|
|
case StorageClassGeneric:
|
|
// No address space for plain values.
|
|
return type.pointer ? "thread" : "";
|
|
|
|
case StorageClassInput:
|
|
if (get_execution_model() == ExecutionModelTessellationControl && argument.basevariable == stage_in_ptr_var_id)
|
|
return "threadgroup";
|
|
break;
|
|
|
|
case StorageClassOutput:
|
|
if (capture_output_to_buffer)
|
|
return "device";
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return "thread";
|
|
}
|
|
|
|
string CompilerMSL::get_type_address_space(const SPIRType &type, uint32_t id)
|
|
{
|
|
switch (type.storage)
|
|
{
|
|
case StorageClassWorkgroup:
|
|
return "threadgroup";
|
|
|
|
case StorageClassStorageBuffer:
|
|
{
|
|
// This can be called for variable pointer contexts as well, so be very careful about which method we choose.
|
|
Bitset flags;
|
|
if (ir.ids[id].get_type() == TypeVariable && has_decoration(type.self, DecorationBlock))
|
|
flags = get_buffer_block_flags(id);
|
|
else
|
|
flags = get_decoration_bitset(id);
|
|
|
|
return flags.get(DecorationNonWritable) ? "const device" : "device";
|
|
}
|
|
|
|
case StorageClassUniform:
|
|
case StorageClassUniformConstant:
|
|
case StorageClassPushConstant:
|
|
if (type.basetype == SPIRType::Struct)
|
|
{
|
|
bool ssbo = has_decoration(type.self, DecorationBufferBlock);
|
|
if (ssbo)
|
|
{
|
|
// This can be called for variable pointer contexts as well, so be very careful about which method we choose.
|
|
Bitset flags;
|
|
if (ir.ids[id].get_type() == TypeVariable && has_decoration(type.self, DecorationBlock))
|
|
flags = get_buffer_block_flags(id);
|
|
else
|
|
flags = get_decoration_bitset(id);
|
|
|
|
return flags.get(DecorationNonWritable) ? "const device" : "device";
|
|
}
|
|
else
|
|
return "constant";
|
|
}
|
|
break;
|
|
|
|
case StorageClassFunction:
|
|
case StorageClassGeneric:
|
|
// No address space for plain values.
|
|
return type.pointer ? "thread" : "";
|
|
|
|
case StorageClassOutput:
|
|
if (capture_output_to_buffer)
|
|
return "device";
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return "thread";
|
|
}
|
|
|
|
string CompilerMSL::entry_point_arg_stage_in()
|
|
{
|
|
string decl;
|
|
|
|
// Stage-in structure
|
|
uint32_t stage_in_id;
|
|
if (get_execution_model() == ExecutionModelTessellationEvaluation)
|
|
stage_in_id = patch_stage_in_var_id;
|
|
else
|
|
stage_in_id = stage_in_var_id;
|
|
|
|
if (stage_in_id)
|
|
{
|
|
auto &var = get<SPIRVariable>(stage_in_id);
|
|
auto &type = get_variable_data_type(var);
|
|
|
|
add_resource_name(var.self);
|
|
decl = join(type_to_glsl(type), " ", to_name(var.self), " [[stage_in]]");
|
|
}
|
|
|
|
return decl;
|
|
}
|
|
|
|
void CompilerMSL::entry_point_args_builtin(string &ep_args)
|
|
{
|
|
// Builtin variables
|
|
ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) {
|
|
BuiltIn bi_type = ir.meta[var_id].decoration.builtin_type;
|
|
|
|
// Don't emit SamplePosition as a separate parameter. In the entry
|
|
// point, we get that by calling get_sample_position() on the sample ID.
|
|
if (var.storage == StorageClassInput && is_builtin_variable(var) &&
|
|
get_variable_data_type(var).basetype != SPIRType::Struct &&
|
|
get_variable_data_type(var).basetype != SPIRType::ControlPointArray)
|
|
{
|
|
if (bi_type != BuiltInSamplePosition && bi_type != BuiltInHelperInvocation &&
|
|
bi_type != BuiltInPatchVertices && bi_type != BuiltInTessLevelInner &&
|
|
bi_type != BuiltInTessLevelOuter && bi_type != BuiltInPosition && bi_type != BuiltInPointSize &&
|
|
bi_type != BuiltInClipDistance && bi_type != BuiltInCullDistance)
|
|
{
|
|
if (!ep_args.empty())
|
|
ep_args += ", ";
|
|
|
|
ep_args += builtin_type_decl(bi_type) + " " + to_expression(var_id);
|
|
ep_args += " [[" + builtin_qualifier(bi_type) + "]]";
|
|
}
|
|
}
|
|
});
|
|
|
|
// Vertex and instance index built-ins
|
|
if (needs_vertex_idx_arg)
|
|
ep_args += built_in_func_arg(BuiltInVertexIndex, !ep_args.empty());
|
|
|
|
if (needs_instance_idx_arg)
|
|
ep_args += built_in_func_arg(BuiltInInstanceIndex, !ep_args.empty());
|
|
|
|
if (capture_output_to_buffer)
|
|
{
|
|
// Add parameters to hold the indirect draw parameters and the shader output. This has to be handled
|
|
// specially because it needs to be a pointer, not a reference.
|
|
if (stage_out_var_id)
|
|
{
|
|
if (!ep_args.empty())
|
|
ep_args += ", ";
|
|
ep_args += join("device ", type_to_glsl(get_stage_out_struct_type()), "* ", output_buffer_var_name,
|
|
" [[buffer(", msl_options.shader_output_buffer_index, ")]]");
|
|
}
|
|
|
|
if (get_execution_model() == ExecutionModelTessellationControl)
|
|
{
|
|
if (!ep_args.empty())
|
|
ep_args += ", ";
|
|
ep_args +=
|
|
join("constant uint* spvIndirectParams [[buffer(", msl_options.indirect_params_buffer_index, ")]]");
|
|
}
|
|
else if (stage_out_var_id)
|
|
{
|
|
if (!ep_args.empty())
|
|
ep_args += ", ";
|
|
ep_args +=
|
|
join("device uint* spvIndirectParams [[buffer(", msl_options.indirect_params_buffer_index, ")]]");
|
|
}
|
|
|
|
// Tessellation control shaders get three additional parameters:
|
|
// a buffer to hold the per-patch data, a buffer to hold the per-patch
|
|
// tessellation levels, and a block of workgroup memory to hold the
|
|
// input control point data.
|
|
if (get_execution_model() == ExecutionModelTessellationControl)
|
|
{
|
|
if (patch_stage_out_var_id)
|
|
{
|
|
if (!ep_args.empty())
|
|
ep_args += ", ";
|
|
ep_args +=
|
|
join("device ", type_to_glsl(get_patch_stage_out_struct_type()), "* ", patch_output_buffer_var_name,
|
|
" [[buffer(", convert_to_string(msl_options.shader_patch_output_buffer_index), ")]]");
|
|
}
|
|
if (!ep_args.empty())
|
|
ep_args += ", ";
|
|
ep_args += join("device ", get_tess_factor_struct_name(), "* ", tess_factor_buffer_var_name, " [[buffer(",
|
|
convert_to_string(msl_options.shader_tess_factor_buffer_index), ")]]");
|
|
if (stage_in_var_id)
|
|
{
|
|
if (!ep_args.empty())
|
|
ep_args += ", ";
|
|
ep_args += join("threadgroup ", type_to_glsl(get_stage_in_struct_type()), "* ", input_wg_var_name,
|
|
" [[threadgroup(", convert_to_string(msl_options.shader_input_wg_index), ")]]");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
string CompilerMSL::entry_point_args_argument_buffer(bool append_comma)
|
|
{
|
|
string ep_args = entry_point_arg_stage_in();
|
|
|
|
for (uint32_t i = 0; i < kMaxArgumentBuffers; i++)
|
|
{
|
|
uint32_t id = argument_buffer_ids[i];
|
|
if (id == 0)
|
|
continue;
|
|
|
|
add_resource_name(id);
|
|
auto &var = get<SPIRVariable>(id);
|
|
auto &type = get_variable_data_type(var);
|
|
|
|
if (!ep_args.empty())
|
|
ep_args += ", ";
|
|
|
|
ep_args += get_argument_address_space(var) + " " + type_to_glsl(type) + "& " + to_name(id);
|
|
ep_args += " [[buffer(" + convert_to_string(i) + ")]]";
|
|
|
|
// Makes it more practical for testing, since the push constant block can occupy the first available
|
|
// buffer slot if it's not bound explicitly.
|
|
next_metal_resource_index_buffer = i + 1;
|
|
}
|
|
|
|
entry_point_args_discrete_descriptors(ep_args);
|
|
entry_point_args_builtin(ep_args);
|
|
|
|
if (!ep_args.empty() && append_comma)
|
|
ep_args += ", ";
|
|
|
|
return ep_args;
|
|
}
|
|
|
|
void CompilerMSL::entry_point_args_discrete_descriptors(string &ep_args)
|
|
{
|
|
// Output resources, sorted by resource index & type
|
|
// We need to sort to work around a bug on macOS 10.13 with NVidia drivers where switching between shaders
|
|
// with different order of buffers can result in issues with buffer assignments inside the driver.
|
|
struct Resource
|
|
{
|
|
SPIRVariable *var;
|
|
string name;
|
|
SPIRType::BaseType basetype;
|
|
uint32_t index;
|
|
};
|
|
|
|
SmallVector<Resource> resources;
|
|
|
|
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
|
|
if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
|
|
var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer) &&
|
|
!is_hidden_variable(var))
|
|
{
|
|
auto &type = get_variable_data_type(var);
|
|
uint32_t var_id = var.self;
|
|
|
|
if (var.storage != StorageClassPushConstant)
|
|
{
|
|
uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
|
|
if (descriptor_set_is_argument_buffer(desc_set))
|
|
return;
|
|
}
|
|
|
|
if (type.basetype == SPIRType::SampledImage)
|
|
{
|
|
add_resource_name(var_id);
|
|
resources.push_back(
|
|
{ &var, to_name(var_id), SPIRType::Image, get_metal_resource_index(var, SPIRType::Image) });
|
|
|
|
if (type.image.dim != DimBuffer && constexpr_samplers.count(var_id) == 0)
|
|
{
|
|
resources.push_back({ &var, to_sampler_expression(var_id), SPIRType::Sampler,
|
|
get_metal_resource_index(var, SPIRType::Sampler) });
|
|
}
|
|
}
|
|
else if (constexpr_samplers.count(var_id) == 0)
|
|
{
|
|
// constexpr samplers are not declared as resources.
|
|
add_resource_name(var_id);
|
|
resources.push_back(
|
|
{ &var, to_name(var_id), type.basetype, get_metal_resource_index(var, type.basetype) });
|
|
}
|
|
}
|
|
});
|
|
|
|
sort(resources.begin(), resources.end(), [](const Resource &lhs, const Resource &rhs) {
|
|
return tie(lhs.basetype, lhs.index) < tie(rhs.basetype, rhs.index);
|
|
});
|
|
|
|
for (auto &r : resources)
|
|
{
|
|
auto &var = *r.var;
|
|
auto &type = get_variable_data_type(var);
|
|
|
|
uint32_t var_id = var.self;
|
|
|
|
switch (r.basetype)
|
|
{
|
|
case SPIRType::Struct:
|
|
{
|
|
auto &m = ir.meta[type.self];
|
|
if (m.members.size() == 0)
|
|
break;
|
|
if (!type.array.empty())
|
|
{
|
|
if (type.array.size() > 1)
|
|
SPIRV_CROSS_THROW("Arrays of arrays of buffers are not supported.");
|
|
|
|
// Metal doesn't directly support this, so we must expand the
|
|
// array. We'll declare a local array to hold these elements
|
|
// later.
|
|
uint32_t array_size = to_array_size_literal(type);
|
|
|
|
if (array_size == 0)
|
|
SPIRV_CROSS_THROW("Unsized arrays of buffers are not supported in MSL.");
|
|
|
|
buffer_arrays.push_back(var_id);
|
|
for (uint32_t i = 0; i < array_size; ++i)
|
|
{
|
|
if (!ep_args.empty())
|
|
ep_args += ", ";
|
|
ep_args += get_argument_address_space(var) + " " + type_to_glsl(type) + "* " + r.name + "_" +
|
|
convert_to_string(i);
|
|
ep_args += " [[buffer(" + convert_to_string(r.index + i) + ")]]";
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!ep_args.empty())
|
|
ep_args += ", ";
|
|
ep_args += get_argument_address_space(var) + " " + type_to_glsl(type) + "& " + r.name;
|
|
ep_args += " [[buffer(" + convert_to_string(r.index) + ")]]";
|
|
}
|
|
break;
|
|
}
|
|
case SPIRType::Sampler:
|
|
if (!ep_args.empty())
|
|
ep_args += ", ";
|
|
ep_args += sampler_type(type) + " " + r.name;
|
|
ep_args += " [[sampler(" + convert_to_string(r.index) + ")]]";
|
|
break;
|
|
case SPIRType::Image:
|
|
if (!ep_args.empty())
|
|
ep_args += ", ";
|
|
ep_args += image_type_glsl(type, var_id) + " " + r.name;
|
|
ep_args += " [[texture(" + convert_to_string(r.index) + ")]]";
|
|
break;
|
|
default:
|
|
SPIRV_CROSS_THROW("Unexpected resource type");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns a string containing a comma-delimited list of args for the entry point function
|
|
// This is the "classic" method of MSL 1 when we don't have argument buffer support.
|
|
string CompilerMSL::entry_point_args_classic(bool append_comma)
|
|
{
|
|
string ep_args = entry_point_arg_stage_in();
|
|
entry_point_args_discrete_descriptors(ep_args);
|
|
entry_point_args_builtin(ep_args);
|
|
|
|
if (!ep_args.empty() && append_comma)
|
|
ep_args += ", ";
|
|
|
|
return ep_args;
|
|
}
|
|
|
|
void CompilerMSL::fix_up_shader_inputs_outputs()
|
|
{
|
|
// Look for sampled images. Add hooks to set up the swizzle constants.
|
|
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
|
|
auto &type = get_variable_data_type(var);
|
|
|
|
uint32_t var_id = var.self;
|
|
|
|
if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
|
|
var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer) &&
|
|
!is_hidden_variable(var))
|
|
{
|
|
if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type))
|
|
{
|
|
auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point);
|
|
entry_func.fixup_hooks_in.push_back([this, &var, var_id]() {
|
|
auto &aux_type = expression_type(aux_buffer_id);
|
|
statement("constant uint32_t& ", to_swizzle_expression(var_id), " = ", to_name(aux_buffer_id), ".",
|
|
to_member_name(aux_type, k_aux_mbr_idx_swizzle_const), "[",
|
|
convert_to_string(get_metal_resource_index(var, SPIRType::Image)), "];");
|
|
});
|
|
}
|
|
}
|
|
});
|
|
|
|
// Builtin variables
|
|
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
|
|
uint32_t var_id = var.self;
|
|
BuiltIn bi_type = ir.meta[var_id].decoration.builtin_type;
|
|
|
|
if (var.storage == StorageClassInput && is_builtin_variable(var))
|
|
{
|
|
auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point);
|
|
switch (bi_type)
|
|
{
|
|
case BuiltInSamplePosition:
|
|
entry_func.fixup_hooks_in.push_back([=]() {
|
|
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = get_sample_position(",
|
|
to_expression(builtin_sample_id_id), ");");
|
|
});
|
|
break;
|
|
case BuiltInHelperInvocation:
|
|
if (msl_options.is_ios())
|
|
SPIRV_CROSS_THROW("simd_is_helper_thread() is only supported on macOS.");
|
|
else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1))
|
|
SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.1 on macOS.");
|
|
|
|
entry_func.fixup_hooks_in.push_back([=]() {
|
|
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = simd_is_helper_thread();");
|
|
});
|
|
break;
|
|
case BuiltInPatchVertices:
|
|
if (get_execution_model() == ExecutionModelTessellationEvaluation)
|
|
entry_func.fixup_hooks_in.push_back([=]() {
|
|
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
|
|
to_expression(patch_stage_in_var_id), ".gl_in.size();");
|
|
});
|
|
else
|
|
entry_func.fixup_hooks_in.push_back([=]() {
|
|
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = spvIndirectParams[0];");
|
|
});
|
|
break;
|
|
case BuiltInTessCoord:
|
|
// Emit a fixup to account for the shifted domain. Don't do this for triangles;
|
|
// MoltenVK will just reverse the winding order instead.
|
|
if (msl_options.tess_domain_origin_lower_left && !get_entry_point().flags.get(ExecutionModeTriangles))
|
|
{
|
|
string tc = to_expression(var_id);
|
|
entry_func.fixup_hooks_in.push_back([=]() { statement(tc, ".y = 1.0 - ", tc, ".y;"); });
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
// Returns the Metal index of the resource of the specified type as used by the specified variable.
|
|
uint32_t CompilerMSL::get_metal_resource_index(SPIRVariable &var, SPIRType::BaseType basetype)
|
|
{
|
|
auto &execution = get_entry_point();
|
|
auto &var_dec = ir.meta[var.self].decoration;
|
|
uint32_t var_desc_set = (var.storage == StorageClassPushConstant) ? kPushConstDescSet : var_dec.set;
|
|
uint32_t var_binding = (var.storage == StorageClassPushConstant) ? kPushConstBinding : var_dec.binding;
|
|
|
|
// If a matching binding has been specified, find and use it
|
|
auto itr = find_if(begin(resource_bindings), end(resource_bindings),
|
|
[&](const pair<MSLResourceBinding, bool> &resource) -> bool {
|
|
return var_desc_set == resource.first.desc_set && var_binding == resource.first.binding &&
|
|
execution.model == resource.first.stage;
|
|
});
|
|
|
|
if (itr != end(resource_bindings))
|
|
{
|
|
itr->second = true;
|
|
switch (basetype)
|
|
{
|
|
case SPIRType::Struct:
|
|
return itr->first.msl_buffer;
|
|
case SPIRType::Image:
|
|
return itr->first.msl_texture;
|
|
case SPIRType::Sampler:
|
|
return itr->first.msl_sampler;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// If there is no explicit mapping of bindings to MSL, use the declared binding.
|
|
if (has_decoration(var.self, DecorationBinding))
|
|
return get_decoration(var.self, DecorationBinding);
|
|
|
|
uint32_t binding_stride = 1;
|
|
auto &type = get<SPIRType>(var.basetype);
|
|
for (uint32_t i = 0; i < uint32_t(type.array.size()); i++)
|
|
binding_stride *= type.array_size_literal[i] ? type.array[i] : get<SPIRConstant>(type.array[i]).scalar();
|
|
|
|
// If a binding has not been specified, revert to incrementing resource indices
|
|
uint32_t resource_index;
|
|
switch (basetype)
|
|
{
|
|
case SPIRType::Struct:
|
|
resource_index = next_metal_resource_index_buffer;
|
|
next_metal_resource_index_buffer += binding_stride;
|
|
break;
|
|
case SPIRType::Image:
|
|
resource_index = next_metal_resource_index_texture;
|
|
next_metal_resource_index_texture += binding_stride;
|
|
break;
|
|
case SPIRType::Sampler:
|
|
resource_index = next_metal_resource_index_sampler;
|
|
next_metal_resource_index_sampler += binding_stride;
|
|
break;
|
|
default:
|
|
resource_index = 0;
|
|
break;
|
|
}
|
|
return resource_index;
|
|
}
|
|
|
|
string CompilerMSL::argument_decl(const SPIRFunction::Parameter &arg)
|
|
{
|
|
auto &var = get<SPIRVariable>(arg.id);
|
|
auto &type = get_variable_data_type(var);
|
|
auto &var_type = get<SPIRType>(arg.type);
|
|
StorageClass storage = var_type.storage;
|
|
bool is_pointer = var_type.pointer;
|
|
|
|
// If we need to modify the name of the variable, make sure we use the original variable.
|
|
// Our alias is just a shadow variable.
|
|
uint32_t name_id = var.self;
|
|
if (arg.alias_global_variable && var.basevariable)
|
|
name_id = var.basevariable;
|
|
|
|
bool constref = !arg.alias_global_variable && is_pointer && arg.write_count == 0;
|
|
|
|
bool type_is_image = type.basetype == SPIRType::Image || type.basetype == SPIRType::SampledImage ||
|
|
type.basetype == SPIRType::Sampler;
|
|
|
|
// Arrays of images/samplers in MSL are always const.
|
|
if (!type.array.empty() && type_is_image)
|
|
constref = true;
|
|
|
|
string decl;
|
|
if (constref)
|
|
decl += "const ";
|
|
|
|
bool builtin = is_builtin_variable(var);
|
|
if (var.basevariable == stage_in_ptr_var_id || var.basevariable == stage_out_ptr_var_id)
|
|
decl += type_to_glsl(type, arg.id);
|
|
else if (builtin)
|
|
decl += builtin_type_decl(static_cast<BuiltIn>(get_decoration(arg.id, DecorationBuiltIn)));
|
|
else if ((storage == StorageClassUniform || storage == StorageClassStorageBuffer) && is_array(type))
|
|
decl += join(type_to_glsl(type, arg.id), "*");
|
|
else
|
|
decl += type_to_glsl(type, arg.id);
|
|
|
|
bool opaque_handle = storage == StorageClassUniformConstant;
|
|
|
|
string address_space = get_argument_address_space(var);
|
|
|
|
if (!builtin && !opaque_handle && !is_pointer &&
|
|
(storage == StorageClassFunction || storage == StorageClassGeneric))
|
|
{
|
|
// If the argument is a pure value and not an opaque type, we will pass by value.
|
|
if (is_array(type))
|
|
{
|
|
// We are receiving an array by value. This is problematic.
|
|
// We cannot be sure of the target address space since we are supposed to receive a copy,
|
|
// but this is not possible with MSL without some extra work.
|
|
// We will have to assume we're getting a reference in thread address space.
|
|
// If we happen to get a reference in constant address space, the caller must emit a copy and pass that.
|
|
// Thread const therefore becomes the only logical choice, since we cannot "create" a constant array from
|
|
// non-constant arrays, but we can create thread const from constant.
|
|
decl = string("thread const ") + decl;
|
|
decl += " (&";
|
|
decl += to_expression(name_id);
|
|
decl += ")";
|
|
decl += type_to_array_glsl(type);
|
|
}
|
|
else
|
|
{
|
|
if (!address_space.empty())
|
|
decl = join(address_space, " ", decl);
|
|
decl += " ";
|
|
decl += to_expression(name_id);
|
|
}
|
|
}
|
|
else if (is_array(type) && !type_is_image)
|
|
{
|
|
// Arrays of images and samplers are special cased.
|
|
if (!address_space.empty())
|
|
decl = join(address_space, " ", decl);
|
|
|
|
if (msl_options.argument_buffers)
|
|
{
|
|
// An awkward case where we need to emit *more* address space declarations (yay!).
|
|
// An example is where we pass down an array of buffer pointers to leaf functions.
|
|
// It's a constant array containing pointers to constants.
|
|
// The pointer array is always constant however. E.g.
|
|
// device SSBO * constant (&array)[N].
|
|
// const device SSBO * constant (&array)[N].
|
|
// constant SSBO * constant (&array)[N].
|
|
// However, this only matters for argument buffers, since for MSL 1.0 style codegen,
|
|
// we emit the buffer array on stack instead, and that seems to work just fine apparently.
|
|
if (storage == StorageClassUniform || storage == StorageClassStorageBuffer)
|
|
decl += " constant";
|
|
}
|
|
|
|
decl += " (&";
|
|
decl += to_expression(name_id);
|
|
decl += ")";
|
|
decl += type_to_array_glsl(type);
|
|
}
|
|
else if (!opaque_handle)
|
|
{
|
|
// If this is going to be a reference to a variable pointer, the address space
|
|
// for the reference has to go before the '&', but after the '*'.
|
|
if (!address_space.empty())
|
|
{
|
|
if (decl.back() == '*')
|
|
decl += join(" ", address_space, " ");
|
|
else
|
|
decl = join(address_space, " ", decl);
|
|
}
|
|
decl += "&";
|
|
decl += " ";
|
|
decl += to_expression(name_id);
|
|
}
|
|
else
|
|
{
|
|
if (!address_space.empty())
|
|
decl = join(address_space, " ", decl);
|
|
decl += " ";
|
|
decl += to_expression(name_id);
|
|
}
|
|
|
|
return decl;
|
|
}
|
|
|
|
// If we're currently in the entry point function, and the object
|
|
// has a qualified name, use it, otherwise use the standard name.
|
|
string CompilerMSL::to_name(uint32_t id, bool allow_alias) const
|
|
{
|
|
if (current_function && (current_function->self == ir.default_entry_point))
|
|
{
|
|
auto *m = ir.find_meta(id);
|
|
if (m && !m->decoration.qualified_alias.empty())
|
|
return m->decoration.qualified_alias;
|
|
}
|
|
return Compiler::to_name(id, allow_alias);
|
|
}
|
|
|
|
// Returns a name that combines the name of the struct with the name of the member, except for Builtins
|
|
string CompilerMSL::to_qualified_member_name(const SPIRType &type, uint32_t index)
|
|
{
|
|
// Don't qualify Builtin names because they are unique and are treated as such when building expressions
|
|
BuiltIn builtin = BuiltInMax;
|
|
if (is_member_builtin(type, index, &builtin))
|
|
return builtin_to_glsl(builtin, type.storage);
|
|
|
|
// Strip any underscore prefix from member name
|
|
string mbr_name = to_member_name(type, index);
|
|
size_t startPos = mbr_name.find_first_not_of("_");
|
|
mbr_name = (startPos != string::npos) ? mbr_name.substr(startPos) : "";
|
|
return join(to_name(type.self), "_", mbr_name);
|
|
}
|
|
|
|
// Ensures that the specified name is permanently usable by prepending a prefix
|
|
// if the first chars are _ and a digit, which indicate a transient name.
|
|
string CompilerMSL::ensure_valid_name(string name, string pfx)
|
|
{
|
|
return (name.size() >= 2 && name[0] == '_' && isdigit(name[1])) ? (pfx + name) : name;
|
|
}
|
|
|
|
// Replace all names that match MSL keywords or Metal Standard Library functions.
|
|
void CompilerMSL::replace_illegal_names()
|
|
{
|
|
// FIXME: MSL and GLSL are doing two different things here.
|
|
// Agree on convention and remove this override.
|
|
static const unordered_set<string> keywords = {
|
|
"kernel",
|
|
"vertex",
|
|
"fragment",
|
|
"compute",
|
|
"bias",
|
|
"assert",
|
|
"VARIABLE_TRACEPOINT",
|
|
"STATIC_DATA_TRACEPOINT",
|
|
"STATIC_DATA_TRACEPOINT_V",
|
|
"METAL_ALIGN",
|
|
"METAL_ASM",
|
|
"METAL_CONST",
|
|
"METAL_DEPRECATED",
|
|
"METAL_ENABLE_IF",
|
|
"METAL_FUNC",
|
|
"METAL_INTERNAL",
|
|
"METAL_NON_NULL_RETURN",
|
|
"METAL_NORETURN",
|
|
"METAL_NOTHROW",
|
|
"METAL_PURE",
|
|
"METAL_UNAVAILABLE",
|
|
"METAL_IMPLICIT",
|
|
"METAL_EXPLICIT",
|
|
"METAL_CONST_ARG",
|
|
"METAL_ARG_UNIFORM",
|
|
"METAL_ZERO_ARG",
|
|
"METAL_VALID_LOD_ARG",
|
|
"METAL_VALID_LEVEL_ARG",
|
|
"METAL_VALID_STORE_ORDER",
|
|
"METAL_VALID_LOAD_ORDER",
|
|
"METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER",
|
|
"METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS",
|
|
"METAL_VALID_RENDER_TARGET",
|
|
"is_function_constant_defined",
|
|
"CHAR_BIT",
|
|
"SCHAR_MAX",
|
|
"SCHAR_MIN",
|
|
"UCHAR_MAX",
|
|
"CHAR_MAX",
|
|
"CHAR_MIN",
|
|
"USHRT_MAX",
|
|
"SHRT_MAX",
|
|
"SHRT_MIN",
|
|
"UINT_MAX",
|
|
"INT_MAX",
|
|
"INT_MIN",
|
|
"FLT_DIG",
|
|
"FLT_MANT_DIG",
|
|
"FLT_MAX_10_EXP",
|
|
"FLT_MAX_EXP",
|
|
"FLT_MIN_10_EXP",
|
|
"FLT_MIN_EXP",
|
|
"FLT_RADIX",
|
|
"FLT_MAX",
|
|
"FLT_MIN",
|
|
"FLT_EPSILON",
|
|
"FP_ILOGB0",
|
|
"FP_ILOGBNAN",
|
|
"MAXFLOAT",
|
|
"HUGE_VALF",
|
|
"INFINITY",
|
|
"NAN",
|
|
"M_E_F",
|
|
"M_LOG2E_F",
|
|
"M_LOG10E_F",
|
|
"M_LN2_F",
|
|
"M_LN10_F",
|
|
"M_PI_F",
|
|
"M_PI_2_F",
|
|
"M_PI_4_F",
|
|
"M_1_PI_F",
|
|
"M_2_PI_F",
|
|
"M_2_SQRTPI_F",
|
|
"M_SQRT2_F",
|
|
"M_SQRT1_2_F",
|
|
"HALF_DIG",
|
|
"HALF_MANT_DIG",
|
|
"HALF_MAX_10_EXP",
|
|
"HALF_MAX_EXP",
|
|
"HALF_MIN_10_EXP",
|
|
"HALF_MIN_EXP",
|
|
"HALF_RADIX",
|
|
"HALF_MAX",
|
|
"HALF_MIN",
|
|
"HALF_EPSILON",
|
|
"MAXHALF",
|
|
"HUGE_VALH",
|
|
"M_E_H",
|
|
"M_LOG2E_H",
|
|
"M_LOG10E_H",
|
|
"M_LN2_H",
|
|
"M_LN10_H",
|
|
"M_PI_H",
|
|
"M_PI_2_H",
|
|
"M_PI_4_H",
|
|
"M_1_PI_H",
|
|
"M_2_PI_H",
|
|
"M_2_SQRTPI_H",
|
|
"M_SQRT2_H",
|
|
"M_SQRT1_2_H",
|
|
"DBL_DIG",
|
|
"DBL_MANT_DIG",
|
|
"DBL_MAX_10_EXP",
|
|
"DBL_MAX_EXP",
|
|
"DBL_MIN_10_EXP",
|
|
"DBL_MIN_EXP",
|
|
"DBL_RADIX",
|
|
"DBL_MAX",
|
|
"DBL_MIN",
|
|
"DBL_EPSILON",
|
|
"HUGE_VAL",
|
|
"M_E",
|
|
"M_LOG2E",
|
|
"M_LOG10E",
|
|
"M_LN2",
|
|
"M_LN10",
|
|
"M_PI",
|
|
"M_PI_2",
|
|
"M_PI_4",
|
|
"M_1_PI",
|
|
"M_2_PI",
|
|
"M_2_SQRTPI",
|
|
"M_SQRT2",
|
|
"M_SQRT1_2",
|
|
};
|
|
|
|
static const unordered_set<string> illegal_func_names = {
|
|
"main",
|
|
"saturate",
|
|
"assert",
|
|
"VARIABLE_TRACEPOINT",
|
|
"STATIC_DATA_TRACEPOINT",
|
|
"STATIC_DATA_TRACEPOINT_V",
|
|
"METAL_ALIGN",
|
|
"METAL_ASM",
|
|
"METAL_CONST",
|
|
"METAL_DEPRECATED",
|
|
"METAL_ENABLE_IF",
|
|
"METAL_FUNC",
|
|
"METAL_INTERNAL",
|
|
"METAL_NON_NULL_RETURN",
|
|
"METAL_NORETURN",
|
|
"METAL_NOTHROW",
|
|
"METAL_PURE",
|
|
"METAL_UNAVAILABLE",
|
|
"METAL_IMPLICIT",
|
|
"METAL_EXPLICIT",
|
|
"METAL_CONST_ARG",
|
|
"METAL_ARG_UNIFORM",
|
|
"METAL_ZERO_ARG",
|
|
"METAL_VALID_LOD_ARG",
|
|
"METAL_VALID_LEVEL_ARG",
|
|
"METAL_VALID_STORE_ORDER",
|
|
"METAL_VALID_LOAD_ORDER",
|
|
"METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER",
|
|
"METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS",
|
|
"METAL_VALID_RENDER_TARGET",
|
|
"is_function_constant_defined",
|
|
"CHAR_BIT",
|
|
"SCHAR_MAX",
|
|
"SCHAR_MIN",
|
|
"UCHAR_MAX",
|
|
"CHAR_MAX",
|
|
"CHAR_MIN",
|
|
"USHRT_MAX",
|
|
"SHRT_MAX",
|
|
"SHRT_MIN",
|
|
"UINT_MAX",
|
|
"INT_MAX",
|
|
"INT_MIN",
|
|
"FLT_DIG",
|
|
"FLT_MANT_DIG",
|
|
"FLT_MAX_10_EXP",
|
|
"FLT_MAX_EXP",
|
|
"FLT_MIN_10_EXP",
|
|
"FLT_MIN_EXP",
|
|
"FLT_RADIX",
|
|
"FLT_MAX",
|
|
"FLT_MIN",
|
|
"FLT_EPSILON",
|
|
"FP_ILOGB0",
|
|
"FP_ILOGBNAN",
|
|
"MAXFLOAT",
|
|
"HUGE_VALF",
|
|
"INFINITY",
|
|
"NAN",
|
|
"M_E_F",
|
|
"M_LOG2E_F",
|
|
"M_LOG10E_F",
|
|
"M_LN2_F",
|
|
"M_LN10_F",
|
|
"M_PI_F",
|
|
"M_PI_2_F",
|
|
"M_PI_4_F",
|
|
"M_1_PI_F",
|
|
"M_2_PI_F",
|
|
"M_2_SQRTPI_F",
|
|
"M_SQRT2_F",
|
|
"M_SQRT1_2_F",
|
|
"HALF_DIG",
|
|
"HALF_MANT_DIG",
|
|
"HALF_MAX_10_EXP",
|
|
"HALF_MAX_EXP",
|
|
"HALF_MIN_10_EXP",
|
|
"HALF_MIN_EXP",
|
|
"HALF_RADIX",
|
|
"HALF_MAX",
|
|
"HALF_MIN",
|
|
"HALF_EPSILON",
|
|
"MAXHALF",
|
|
"HUGE_VALH",
|
|
"M_E_H",
|
|
"M_LOG2E_H",
|
|
"M_LOG10E_H",
|
|
"M_LN2_H",
|
|
"M_LN10_H",
|
|
"M_PI_H",
|
|
"M_PI_2_H",
|
|
"M_PI_4_H",
|
|
"M_1_PI_H",
|
|
"M_2_PI_H",
|
|
"M_2_SQRTPI_H",
|
|
"M_SQRT2_H",
|
|
"M_SQRT1_2_H",
|
|
"DBL_DIG",
|
|
"DBL_MANT_DIG",
|
|
"DBL_MAX_10_EXP",
|
|
"DBL_MAX_EXP",
|
|
"DBL_MIN_10_EXP",
|
|
"DBL_MIN_EXP",
|
|
"DBL_RADIX",
|
|
"DBL_MAX",
|
|
"DBL_MIN",
|
|
"DBL_EPSILON",
|
|
"HUGE_VAL",
|
|
"M_E",
|
|
"M_LOG2E",
|
|
"M_LOG10E",
|
|
"M_LN2",
|
|
"M_LN10",
|
|
"M_PI",
|
|
"M_PI_2",
|
|
"M_PI_4",
|
|
"M_1_PI",
|
|
"M_2_PI",
|
|
"M_2_SQRTPI",
|
|
"M_SQRT2",
|
|
"M_SQRT1_2",
|
|
};
|
|
|
|
ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, SPIRVariable &) {
|
|
auto &dec = ir.meta[self].decoration;
|
|
if (keywords.find(dec.alias) != end(keywords))
|
|
dec.alias += "0";
|
|
});
|
|
|
|
ir.for_each_typed_id<SPIRFunction>([&](uint32_t self, SPIRFunction &) {
|
|
auto &dec = ir.meta[self].decoration;
|
|
if (illegal_func_names.find(dec.alias) != end(illegal_func_names))
|
|
dec.alias += "0";
|
|
});
|
|
|
|
ir.for_each_typed_id<SPIRType>([&](uint32_t self, SPIRType &) {
|
|
for (auto &mbr_dec : ir.meta[self].members)
|
|
if (keywords.find(mbr_dec.alias) != end(keywords))
|
|
mbr_dec.alias += "0";
|
|
});
|
|
|
|
for (auto &entry : ir.entry_points)
|
|
{
|
|
// Change both the entry point name and the alias, to keep them synced.
|
|
string &ep_name = entry.second.name;
|
|
if (illegal_func_names.find(ep_name) != end(illegal_func_names))
|
|
ep_name += "0";
|
|
|
|
// Always write this because entry point might have been renamed earlier.
|
|
ir.meta[entry.first].decoration.alias = ep_name;
|
|
}
|
|
|
|
CompilerGLSL::replace_illegal_names();
|
|
}
|
|
|
|
string CompilerMSL::to_member_reference(uint32_t base, const SPIRType &type, uint32_t index, bool ptr_chain)
|
|
{
|
|
auto *var = maybe_get<SPIRVariable>(base);
|
|
// If this is a buffer array, we have to dereference the buffer pointers.
|
|
// Otherwise, if this is a pointer expression, dereference it.
|
|
|
|
bool declared_as_pointer = false;
|
|
|
|
if (var)
|
|
{
|
|
bool is_buffer_variable = var->storage == StorageClassUniform || var->storage == StorageClassStorageBuffer;
|
|
declared_as_pointer = is_buffer_variable && is_array(get<SPIRType>(var->basetype));
|
|
}
|
|
|
|
if (declared_as_pointer || (!ptr_chain && should_dereference(base)))
|
|
return join("->", to_member_name(type, index));
|
|
else
|
|
return join(".", to_member_name(type, index));
|
|
}
|
|
|
|
string CompilerMSL::to_qualifiers_glsl(uint32_t id)
|
|
{
|
|
string quals;
|
|
|
|
auto &type = expression_type(id);
|
|
if (type.storage == StorageClassWorkgroup)
|
|
quals += "threadgroup ";
|
|
|
|
return quals;
|
|
}
|
|
|
|
// The optional id parameter indicates the object whose type we are trying
|
|
// to find the description for. It is optional. Most type descriptions do not
|
|
// depend on a specific object's use of that type.
|
|
string CompilerMSL::type_to_glsl(const SPIRType &type, uint32_t id)
|
|
{
|
|
string type_name;
|
|
|
|
// Pointer?
|
|
if (type.pointer)
|
|
{
|
|
type_name = join(get_type_address_space(type, id), " ", type_to_glsl(get<SPIRType>(type.parent_type), id));
|
|
switch (type.basetype)
|
|
{
|
|
case SPIRType::Image:
|
|
case SPIRType::SampledImage:
|
|
case SPIRType::Sampler:
|
|
// These are handles.
|
|
break;
|
|
default:
|
|
// Anything else can be a raw pointer.
|
|
type_name += "*";
|
|
break;
|
|
}
|
|
return type_name;
|
|
}
|
|
|
|
switch (type.basetype)
|
|
{
|
|
case SPIRType::Struct:
|
|
// Need OpName lookup here to get a "sensible" name for a struct.
|
|
return to_name(type.self);
|
|
|
|
case SPIRType::Image:
|
|
case SPIRType::SampledImage:
|
|
return image_type_glsl(type, id);
|
|
|
|
case SPIRType::Sampler:
|
|
return sampler_type(type);
|
|
|
|
case SPIRType::Void:
|
|
return "void";
|
|
|
|
case SPIRType::AtomicCounter:
|
|
return "atomic_uint";
|
|
|
|
case SPIRType::ControlPointArray:
|
|
return join("patch_control_point<", type_to_glsl(get<SPIRType>(type.parent_type), id), ">");
|
|
|
|
// Scalars
|
|
case SPIRType::Boolean:
|
|
type_name = "bool";
|
|
break;
|
|
case SPIRType::Char:
|
|
case SPIRType::SByte:
|
|
type_name = "char";
|
|
break;
|
|
case SPIRType::UByte:
|
|
type_name = "uchar";
|
|
break;
|
|
case SPIRType::Short:
|
|
type_name = "short";
|
|
break;
|
|
case SPIRType::UShort:
|
|
type_name = "ushort";
|
|
break;
|
|
case SPIRType::Int:
|
|
type_name = "int";
|
|
break;
|
|
case SPIRType::UInt:
|
|
type_name = "uint";
|
|
break;
|
|
case SPIRType::Int64:
|
|
type_name = "long"; // Currently unsupported
|
|
break;
|
|
case SPIRType::UInt64:
|
|
type_name = "size_t";
|
|
break;
|
|
case SPIRType::Half:
|
|
type_name = "half";
|
|
break;
|
|
case SPIRType::Float:
|
|
type_name = "float";
|
|
break;
|
|
case SPIRType::Double:
|
|
type_name = "double"; // Currently unsupported
|
|
break;
|
|
|
|
default:
|
|
return "unknown_type";
|
|
}
|
|
|
|
// Matrix?
|
|
if (type.columns > 1)
|
|
type_name += to_string(type.columns) + "x";
|
|
|
|
// Vector or Matrix?
|
|
if (type.vecsize > 1)
|
|
type_name += to_string(type.vecsize);
|
|
|
|
return type_name;
|
|
}
|
|
|
|
std::string CompilerMSL::sampler_type(const SPIRType &type)
|
|
{
|
|
if (!type.array.empty())
|
|
{
|
|
if (!msl_options.supports_msl_version(2))
|
|
SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of samplers.");
|
|
|
|
if (type.array.size() > 1)
|
|
SPIRV_CROSS_THROW("Arrays of arrays of samplers are not supported in MSL.");
|
|
|
|
// Arrays of samplers in MSL must be declared with a special array<T, N> syntax ala C++11 std::array.
|
|
uint32_t array_size = to_array_size_literal(type);
|
|
if (array_size == 0)
|
|
SPIRV_CROSS_THROW("Unsized array of samplers is not supported in MSL.");
|
|
|
|
auto &parent = get<SPIRType>(get_pointee_type(type).parent_type);
|
|
return join("array<", sampler_type(parent), ", ", array_size, ">");
|
|
}
|
|
else
|
|
return "sampler";
|
|
}
|
|
|
|
// Returns an MSL string describing the SPIR-V image type
|
|
string CompilerMSL::image_type_glsl(const SPIRType &type, uint32_t id)
|
|
{
|
|
auto *var = maybe_get<SPIRVariable>(id);
|
|
if (var && var->basevariable)
|
|
{
|
|
// For comparison images, check against the base variable,
|
|
// and not the fake ID which might have been generated for this variable.
|
|
id = var->basevariable;
|
|
}
|
|
|
|
if (!type.array.empty())
|
|
{
|
|
uint32_t major = 2, minor = 0;
|
|
if (msl_options.is_ios())
|
|
{
|
|
major = 1;
|
|
minor = 2;
|
|
}
|
|
if (!msl_options.supports_msl_version(major, minor))
|
|
{
|
|
if (msl_options.is_ios())
|
|
SPIRV_CROSS_THROW("MSL 1.2 or greater is required for arrays of textures.");
|
|
else
|
|
SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of textures.");
|
|
}
|
|
|
|
if (type.array.size() > 1)
|
|
SPIRV_CROSS_THROW("Arrays of arrays of textures are not supported in MSL.");
|
|
|
|
// Arrays of images in MSL must be declared with a special array<T, N> syntax ala C++11 std::array.
|
|
uint32_t array_size = to_array_size_literal(type);
|
|
if (array_size == 0)
|
|
SPIRV_CROSS_THROW("Unsized array of images is not supported in MSL.");
|
|
|
|
auto &parent = get<SPIRType>(get_pointee_type(type).parent_type);
|
|
return join("array<", image_type_glsl(parent, id), ", ", array_size, ">");
|
|
}
|
|
|
|
string img_type_name;
|
|
|
|
// Bypass pointers because we need the real image struct
|
|
auto &img_type = get<SPIRType>(type.self).image;
|
|
if (image_is_comparison(type, id))
|
|
{
|
|
switch (img_type.dim)
|
|
{
|
|
case Dim1D:
|
|
img_type_name += "depth1d_unsupported_by_metal";
|
|
break;
|
|
case Dim2D:
|
|
if (img_type.ms && img_type.arrayed)
|
|
{
|
|
if (!msl_options.supports_msl_version(2, 1))
|
|
SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1.");
|
|
img_type_name += "depth2d_ms_array";
|
|
}
|
|
else if (img_type.ms)
|
|
img_type_name += "depth2d_ms";
|
|
else if (img_type.arrayed)
|
|
img_type_name += "depth2d_array";
|
|
else
|
|
img_type_name += "depth2d";
|
|
break;
|
|
case Dim3D:
|
|
img_type_name += "depth3d_unsupported_by_metal";
|
|
break;
|
|
case DimCube:
|
|
img_type_name += (img_type.arrayed ? "depthcube_array" : "depthcube");
|
|
break;
|
|
default:
|
|
img_type_name += "unknown_depth_texture_type";
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (img_type.dim)
|
|
{
|
|
case Dim1D:
|
|
img_type_name += (img_type.arrayed ? "texture1d_array" : "texture1d");
|
|
break;
|
|
case DimBuffer:
|
|
if (img_type.ms || img_type.arrayed)
|
|
SPIRV_CROSS_THROW("Cannot use texel buffers with multisampling or array layers.");
|
|
|
|
if (msl_options.texture_buffer_native)
|
|
{
|
|
if (!msl_options.supports_msl_version(2, 1))
|
|
SPIRV_CROSS_THROW("Native texture_buffer type is only supported in MSL 2.1.");
|
|
img_type_name = "texture_buffer";
|
|
}
|
|
else
|
|
img_type_name += "texture2d";
|
|
break;
|
|
case Dim2D:
|
|
case DimSubpassData:
|
|
if (img_type.ms && img_type.arrayed)
|
|
{
|
|
if (!msl_options.supports_msl_version(2, 1))
|
|
SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1.");
|
|
img_type_name += "texture2d_ms_array";
|
|
}
|
|
else if (img_type.ms)
|
|
img_type_name += "texture2d_ms";
|
|
else if (img_type.arrayed)
|
|
img_type_name += "texture2d_array";
|
|
else
|
|
img_type_name += "texture2d";
|
|
break;
|
|
case Dim3D:
|
|
img_type_name += "texture3d";
|
|
break;
|
|
case DimCube:
|
|
img_type_name += (img_type.arrayed ? "texturecube_array" : "texturecube");
|
|
break;
|
|
default:
|
|
img_type_name += "unknown_texture_type";
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Append the pixel type
|
|
img_type_name += "<";
|
|
img_type_name += type_to_glsl(get<SPIRType>(img_type.type));
|
|
|
|
// For unsampled images, append the sample/read/write access qualifier.
|
|
// For kernel images, the access qualifier my be supplied directly by SPIR-V.
|
|
// Otherwise it may be set based on whether the image is read from or written to within the shader.
|
|
if (type.basetype == SPIRType::Image && type.image.sampled == 2 && type.image.dim != DimSubpassData)
|
|
{
|
|
switch (img_type.access)
|
|
{
|
|
case AccessQualifierReadOnly:
|
|
img_type_name += ", access::read";
|
|
break;
|
|
|
|
case AccessQualifierWriteOnly:
|
|
img_type_name += ", access::write";
|
|
break;
|
|
|
|
case AccessQualifierReadWrite:
|
|
img_type_name += ", access::read_write";
|
|
break;
|
|
|
|
default:
|
|
{
|
|
auto *p_var = maybe_get_backing_variable(id);
|
|
if (p_var && p_var->basevariable)
|
|
p_var = maybe_get<SPIRVariable>(p_var->basevariable);
|
|
if (p_var && !has_decoration(p_var->self, DecorationNonWritable))
|
|
{
|
|
img_type_name += ", access::";
|
|
|
|
if (!has_decoration(p_var->self, DecorationNonReadable))
|
|
img_type_name += "read_";
|
|
|
|
img_type_name += "write";
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
img_type_name += ">";
|
|
|
|
return img_type_name;
|
|
}
|
|
|
|
string CompilerMSL::bitcast_glsl_op(const SPIRType &out_type, const SPIRType &in_type)
|
|
{
|
|
if (out_type.basetype == in_type.basetype)
|
|
return "";
|
|
|
|
assert(out_type.basetype != SPIRType::Boolean);
|
|
assert(in_type.basetype != SPIRType::Boolean);
|
|
|
|
bool integral_cast = type_is_integral(out_type) && type_is_integral(in_type);
|
|
bool same_size_cast = out_type.width == in_type.width;
|
|
|
|
if (integral_cast && same_size_cast)
|
|
{
|
|
// Trivial bitcast case, casts between integers.
|
|
return type_to_glsl(out_type);
|
|
}
|
|
else
|
|
{
|
|
// Fall back to the catch-all bitcast in MSL.
|
|
return "as_type<" + type_to_glsl(out_type) + ">";
|
|
}
|
|
}
|
|
|
|
// Returns an MSL string identifying the name of a SPIR-V builtin.
|
|
// Output builtins are qualified with the name of the stage out structure.
|
|
string CompilerMSL::builtin_to_glsl(BuiltIn builtin, StorageClass storage)
|
|
{
|
|
switch (builtin)
|
|
{
|
|
|
|
// Override GLSL compiler strictness
|
|
case BuiltInVertexId:
|
|
return "gl_VertexID";
|
|
case BuiltInInstanceId:
|
|
return "gl_InstanceID";
|
|
case BuiltInVertexIndex:
|
|
return "gl_VertexIndex";
|
|
case BuiltInInstanceIndex:
|
|
return "gl_InstanceIndex";
|
|
case BuiltInBaseVertex:
|
|
return "gl_BaseVertex";
|
|
case BuiltInBaseInstance:
|
|
return "gl_BaseInstance";
|
|
case BuiltInDrawIndex:
|
|
SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
|
|
|
|
// When used in the entry function, output builtins are qualified with output struct name.
|
|
// Test storage class as NOT Input, as output builtins might be part of generic type.
|
|
// Also don't do this for tessellation control shaders.
|
|
case BuiltInViewportIndex:
|
|
if (!msl_options.supports_msl_version(2, 0))
|
|
SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
|
|
/* fallthrough */
|
|
case BuiltInPosition:
|
|
case BuiltInPointSize:
|
|
case BuiltInClipDistance:
|
|
case BuiltInCullDistance:
|
|
case BuiltInLayer:
|
|
case BuiltInFragDepth:
|
|
case BuiltInSampleMask:
|
|
if (get_execution_model() == ExecutionModelTessellationControl)
|
|
break;
|
|
if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point))
|
|
return stage_out_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage);
|
|
|
|
break;
|
|
|
|
case BuiltInTessLevelOuter:
|
|
if (get_execution_model() == ExecutionModelTessellationEvaluation)
|
|
{
|
|
if (storage != StorageClassOutput && !get_entry_point().flags.get(ExecutionModeTriangles) &&
|
|
current_function && (current_function->self == ir.default_entry_point))
|
|
return join(patch_stage_in_var_name, ".", CompilerGLSL::builtin_to_glsl(builtin, storage));
|
|
else
|
|
break;
|
|
}
|
|
if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point))
|
|
return join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
|
|
"].edgeTessellationFactor");
|
|
break;
|
|
|
|
case BuiltInTessLevelInner:
|
|
if (get_execution_model() == ExecutionModelTessellationEvaluation)
|
|
{
|
|
if (storage != StorageClassOutput && !get_entry_point().flags.get(ExecutionModeTriangles) &&
|
|
current_function && (current_function->self == ir.default_entry_point))
|
|
return join(patch_stage_in_var_name, ".", CompilerGLSL::builtin_to_glsl(builtin, storage));
|
|
else
|
|
break;
|
|
}
|
|
if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point))
|
|
return join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
|
|
"].insideTessellationFactor");
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return CompilerGLSL::builtin_to_glsl(builtin, storage);
|
|
}
|
|
|
|
// Returns an MSL string attribute qualifer for a SPIR-V builtin
|
|
string CompilerMSL::builtin_qualifier(BuiltIn builtin)
|
|
{
|
|
auto &execution = get_entry_point();
|
|
|
|
switch (builtin)
|
|
{
|
|
// Vertex function in
|
|
case BuiltInVertexId:
|
|
return "vertex_id";
|
|
case BuiltInVertexIndex:
|
|
return "vertex_id";
|
|
case BuiltInBaseVertex:
|
|
return "base_vertex";
|
|
case BuiltInInstanceId:
|
|
return "instance_id";
|
|
case BuiltInInstanceIndex:
|
|
return "instance_id";
|
|
case BuiltInBaseInstance:
|
|
return "base_instance";
|
|
case BuiltInDrawIndex:
|
|
SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
|
|
|
|
// Vertex function out
|
|
case BuiltInClipDistance:
|
|
return "clip_distance";
|
|
case BuiltInPointSize:
|
|
return "point_size";
|
|
case BuiltInPosition:
|
|
return "position";
|
|
case BuiltInLayer:
|
|
return "render_target_array_index";
|
|
case BuiltInViewportIndex:
|
|
if (!msl_options.supports_msl_version(2, 0))
|
|
SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
|
|
return "viewport_array_index";
|
|
|
|
// Tess. control function in
|
|
case BuiltInInvocationId:
|
|
return "thread_index_in_threadgroup";
|
|
case BuiltInPatchVertices:
|
|
// Shouldn't be reached.
|
|
SPIRV_CROSS_THROW("PatchVertices is derived from the auxiliary buffer in MSL.");
|
|
case BuiltInPrimitiveId:
|
|
switch (execution.model)
|
|
{
|
|
case ExecutionModelTessellationControl:
|
|
return "threadgroup_position_in_grid";
|
|
case ExecutionModelTessellationEvaluation:
|
|
return "patch_id";
|
|
default:
|
|
SPIRV_CROSS_THROW("PrimitiveId is not supported in this execution model.");
|
|
}
|
|
|
|
// Tess. control function out
|
|
case BuiltInTessLevelOuter:
|
|
case BuiltInTessLevelInner:
|
|
// Shouldn't be reached.
|
|
SPIRV_CROSS_THROW("Tessellation levels are handled specially in MSL.");
|
|
|
|
// Tess. evaluation function in
|
|
case BuiltInTessCoord:
|
|
return "position_in_patch";
|
|
|
|
// Fragment function in
|
|
case BuiltInFrontFacing:
|
|
return "front_facing";
|
|
case BuiltInPointCoord:
|
|
return "point_coord";
|
|
case BuiltInFragCoord:
|
|
return "position";
|
|
case BuiltInSampleId:
|
|
return "sample_id";
|
|
case BuiltInSampleMask:
|
|
return "sample_mask";
|
|
case BuiltInSamplePosition:
|
|
// Shouldn't be reached.
|
|
SPIRV_CROSS_THROW("Sample position is retrieved by a function in MSL.");
|
|
|
|
// Fragment function out
|
|
case BuiltInFragDepth:
|
|
if (execution.flags.get(ExecutionModeDepthGreater))
|
|
return "depth(greater)";
|
|
else if (execution.flags.get(ExecutionModeDepthLess))
|
|
return "depth(less)";
|
|
else
|
|
return "depth(any)";
|
|
|
|
// Compute function in
|
|
case BuiltInGlobalInvocationId:
|
|
return "thread_position_in_grid";
|
|
|
|
case BuiltInWorkgroupId:
|
|
return "threadgroup_position_in_grid";
|
|
|
|
case BuiltInNumWorkgroups:
|
|
return "threadgroups_per_grid";
|
|
|
|
case BuiltInLocalInvocationId:
|
|
return "thread_position_in_threadgroup";
|
|
|
|
case BuiltInLocalInvocationIndex:
|
|
return "thread_index_in_threadgroup";
|
|
|
|
default:
|
|
return "unsupported-built-in";
|
|
}
|
|
}
|
|
|
|
// Returns an MSL string type declaration for a SPIR-V builtin
|
|
string CompilerMSL::builtin_type_decl(BuiltIn builtin)
|
|
{
|
|
const SPIREntryPoint &execution = get_entry_point();
|
|
switch (builtin)
|
|
{
|
|
// Vertex function in
|
|
case BuiltInVertexId:
|
|
return "uint";
|
|
case BuiltInVertexIndex:
|
|
return "uint";
|
|
case BuiltInBaseVertex:
|
|
return "uint";
|
|
case BuiltInInstanceId:
|
|
return "uint";
|
|
case BuiltInInstanceIndex:
|
|
return "uint";
|
|
case BuiltInBaseInstance:
|
|
return "uint";
|
|
case BuiltInDrawIndex:
|
|
SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
|
|
|
|
// Vertex function out
|
|
case BuiltInClipDistance:
|
|
return "float";
|
|
case BuiltInPointSize:
|
|
return "float";
|
|
case BuiltInPosition:
|
|
return "float4";
|
|
case BuiltInLayer:
|
|
return "uint";
|
|
case BuiltInViewportIndex:
|
|
if (!msl_options.supports_msl_version(2, 0))
|
|
SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
|
|
return "uint";
|
|
|
|
// Tess. control function in
|
|
case BuiltInInvocationId:
|
|
return "uint";
|
|
case BuiltInPatchVertices:
|
|
return "uint";
|
|
case BuiltInPrimitiveId:
|
|
return "uint";
|
|
|
|
// Tess. control function out
|
|
case BuiltInTessLevelInner:
|
|
if (execution.model == ExecutionModelTessellationEvaluation)
|
|
return !execution.flags.get(ExecutionModeTriangles) ? "float2" : "float";
|
|
return "half";
|
|
case BuiltInTessLevelOuter:
|
|
if (execution.model == ExecutionModelTessellationEvaluation)
|
|
return !execution.flags.get(ExecutionModeTriangles) ? "float4" : "float";
|
|
return "half";
|
|
|
|
// Tess. evaluation function in
|
|
case BuiltInTessCoord:
|
|
return execution.flags.get(ExecutionModeTriangles) ? "float3" : "float2";
|
|
|
|
// Fragment function in
|
|
case BuiltInFrontFacing:
|
|
return "bool";
|
|
case BuiltInPointCoord:
|
|
return "float2";
|
|
case BuiltInFragCoord:
|
|
return "float4";
|
|
case BuiltInSampleId:
|
|
return "uint";
|
|
case BuiltInSampleMask:
|
|
return "uint";
|
|
case BuiltInSamplePosition:
|
|
return "float2";
|
|
|
|
// Fragment function out
|
|
case BuiltInFragDepth:
|
|
return "float";
|
|
|
|
// Compute function in
|
|
case BuiltInGlobalInvocationId:
|
|
case BuiltInLocalInvocationId:
|
|
case BuiltInNumWorkgroups:
|
|
case BuiltInWorkgroupId:
|
|
return "uint3";
|
|
case BuiltInLocalInvocationIndex:
|
|
return "uint";
|
|
|
|
case BuiltInHelperInvocation:
|
|
return "bool";
|
|
|
|
default:
|
|
return "unsupported-built-in-type";
|
|
}
|
|
}
|
|
|
|
// Returns the declaration of a built-in argument to a function
|
|
string CompilerMSL::built_in_func_arg(BuiltIn builtin, bool prefix_comma)
|
|
{
|
|
string bi_arg;
|
|
if (prefix_comma)
|
|
bi_arg += ", ";
|
|
|
|
bi_arg += builtin_type_decl(builtin);
|
|
bi_arg += " " + builtin_to_glsl(builtin, StorageClassInput);
|
|
bi_arg += " [[" + builtin_qualifier(builtin) + "]]";
|
|
|
|
return bi_arg;
|
|
}
|
|
|
|
// Returns the byte size of a struct member.
|
|
size_t CompilerMSL::get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const
|
|
{
|
|
auto &type = get<SPIRType>(struct_type.member_types[index]);
|
|
|
|
switch (type.basetype)
|
|
{
|
|
case SPIRType::Unknown:
|
|
case SPIRType::Void:
|
|
case SPIRType::AtomicCounter:
|
|
case SPIRType::Image:
|
|
case SPIRType::SampledImage:
|
|
case SPIRType::Sampler:
|
|
SPIRV_CROSS_THROW("Querying size of opaque object.");
|
|
|
|
default:
|
|
{
|
|
// For arrays, we can use ArrayStride to get an easy check.
|
|
// Runtime arrays will have zero size so force to min of one.
|
|
if (!type.array.empty())
|
|
{
|
|
uint32_t array_size = to_array_size_literal(type);
|
|
return type_struct_member_array_stride(struct_type, index) * max(array_size, 1u);
|
|
}
|
|
|
|
if (type.basetype == SPIRType::Struct)
|
|
{
|
|
// The size of a struct in Metal is aligned up to its natural alignment.
|
|
auto size = get_declared_struct_size(type);
|
|
auto alignment = get_declared_struct_member_alignment(struct_type, index);
|
|
return (size + alignment - 1) & ~(alignment - 1);
|
|
}
|
|
|
|
uint32_t component_size = type.width / 8;
|
|
uint32_t vecsize = type.vecsize;
|
|
uint32_t columns = type.columns;
|
|
|
|
// An unpacked 3-element vector or matrix column is the same memory size as a 4-element.
|
|
if (vecsize == 3 && !has_extended_member_decoration(struct_type.self, index, SPIRVCrossDecorationPacked))
|
|
vecsize = 4;
|
|
|
|
return component_size * vecsize * columns;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns the byte alignment of a struct member.
|
|
size_t CompilerMSL::get_declared_struct_member_alignment(const SPIRType &struct_type, uint32_t index) const
|
|
{
|
|
auto &type = get<SPIRType>(struct_type.member_types[index]);
|
|
|
|
switch (type.basetype)
|
|
{
|
|
case SPIRType::Unknown:
|
|
case SPIRType::Void:
|
|
case SPIRType::AtomicCounter:
|
|
case SPIRType::Image:
|
|
case SPIRType::SampledImage:
|
|
case SPIRType::Sampler:
|
|
SPIRV_CROSS_THROW("Querying alignment of opaque object.");
|
|
|
|
case SPIRType::Struct:
|
|
{
|
|
// In MSL, a struct's alignment is equal to the maximum alignment of any of its members.
|
|
uint32_t alignment = 1;
|
|
for (uint32_t i = 0; i < type.member_types.size(); i++)
|
|
alignment = max(alignment, uint32_t(get_declared_struct_member_alignment(type, i)));
|
|
return alignment;
|
|
}
|
|
|
|
default:
|
|
{
|
|
// Alignment of packed type is the same as the underlying component or column size.
|
|
// Alignment of unpacked type is the same as the vector size.
|
|
// Alignment of 3-elements vector is the same as 4-elements (including packed using column).
|
|
if (member_is_packed_type(struct_type, index))
|
|
{
|
|
// This is getting pretty complicated.
|
|
// The special case of array of float/float2 needs to be handled here.
|
|
uint32_t packed_type_id =
|
|
get_extended_member_decoration(struct_type.self, index, SPIRVCrossDecorationPackedType);
|
|
const SPIRType *packed_type = packed_type_id != 0 ? &get<SPIRType>(packed_type_id) : nullptr;
|
|
if (packed_type && is_array(*packed_type) && !is_matrix(*packed_type) &&
|
|
packed_type->basetype != SPIRType::Struct)
|
|
return (packed_type->width / 8) * 4;
|
|
else
|
|
return (type.width / 8) * (type.columns == 3 ? 4 : type.columns);
|
|
}
|
|
else
|
|
return (type.width / 8) * (type.vecsize == 3 ? 4 : type.vecsize);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool CompilerMSL::skip_argument(uint32_t) const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
void CompilerMSL::analyze_sampled_image_usage()
|
|
{
|
|
if (msl_options.swizzle_texture_samples)
|
|
{
|
|
SampledImageScanner scanner(*this);
|
|
traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), scanner);
|
|
}
|
|
}
|
|
|
|
bool CompilerMSL::SampledImageScanner::handle(spv::Op opcode, const uint32_t *args, uint32_t length)
|
|
{
|
|
switch (opcode)
|
|
{
|
|
case OpLoad:
|
|
case OpImage:
|
|
case OpSampledImage:
|
|
{
|
|
if (length < 3)
|
|
return false;
|
|
|
|
uint32_t result_type = args[0];
|
|
auto &type = compiler.get<SPIRType>(result_type);
|
|
if ((type.basetype != SPIRType::Image && type.basetype != SPIRType::SampledImage) || type.image.sampled != 1)
|
|
return true;
|
|
|
|
uint32_t id = args[1];
|
|
compiler.set<SPIRExpression>(id, "", result_type, true);
|
|
break;
|
|
}
|
|
case OpImageSampleExplicitLod:
|
|
case OpImageSampleProjExplicitLod:
|
|
case OpImageSampleDrefExplicitLod:
|
|
case OpImageSampleProjDrefExplicitLod:
|
|
case OpImageSampleImplicitLod:
|
|
case OpImageSampleProjImplicitLod:
|
|
case OpImageSampleDrefImplicitLod:
|
|
case OpImageSampleProjDrefImplicitLod:
|
|
case OpImageFetch:
|
|
case OpImageGather:
|
|
case OpImageDrefGather:
|
|
compiler.has_sampled_images =
|
|
compiler.has_sampled_images || compiler.is_sampled_image_type(compiler.expression_type(args[2]));
|
|
compiler.needs_aux_buffer_def = compiler.needs_aux_buffer_def || compiler.has_sampled_images;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool CompilerMSL::OpCodePreprocessor::handle(Op opcode, const uint32_t *args, uint32_t length)
|
|
{
|
|
// Since MSL exists in a single execution scope, function prototype declarations are not
|
|
// needed, and clutter the output. If secondary functions are output (either as a SPIR-V
|
|
// function implementation or as indicated by the presence of OpFunctionCall), then set
|
|
// suppress_missing_prototypes to suppress compiler warnings of missing function prototypes.
|
|
|
|
// Mark if the input requires the implementation of an SPIR-V function that does not exist in Metal.
|
|
SPVFuncImpl spv_func = get_spv_func_impl(opcode, args);
|
|
if (spv_func != SPVFuncImplNone)
|
|
{
|
|
compiler.spv_function_implementations.insert(spv_func);
|
|
suppress_missing_prototypes = true;
|
|
}
|
|
|
|
switch (opcode)
|
|
{
|
|
|
|
case OpFunctionCall:
|
|
suppress_missing_prototypes = true;
|
|
break;
|
|
|
|
case OpImageWrite:
|
|
uses_resource_write = true;
|
|
break;
|
|
|
|
case OpStore:
|
|
check_resource_write(args[0]);
|
|
break;
|
|
|
|
case OpAtomicExchange:
|
|
case OpAtomicCompareExchange:
|
|
case OpAtomicCompareExchangeWeak:
|
|
case OpAtomicIIncrement:
|
|
case OpAtomicIDecrement:
|
|
case OpAtomicIAdd:
|
|
case OpAtomicISub:
|
|
case OpAtomicSMin:
|
|
case OpAtomicUMin:
|
|
case OpAtomicSMax:
|
|
case OpAtomicUMax:
|
|
case OpAtomicAnd:
|
|
case OpAtomicOr:
|
|
case OpAtomicXor:
|
|
uses_atomics = true;
|
|
check_resource_write(args[2]);
|
|
break;
|
|
|
|
case OpAtomicLoad:
|
|
uses_atomics = true;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// If it has one, keep track of the instruction's result type, mapped by ID
|
|
uint32_t result_type, result_id;
|
|
if (compiler.instruction_to_result_type(result_type, result_id, opcode, args, length))
|
|
result_types[result_id] = result_type;
|
|
|
|
return true;
|
|
}
|
|
|
|
// If the variable is a Uniform or StorageBuffer, mark that a resource has been written to.
|
|
void CompilerMSL::OpCodePreprocessor::check_resource_write(uint32_t var_id)
|
|
{
|
|
auto *p_var = compiler.maybe_get_backing_variable(var_id);
|
|
StorageClass sc = p_var ? p_var->storage : StorageClassMax;
|
|
if (sc == StorageClassUniform || sc == StorageClassStorageBuffer)
|
|
uses_resource_write = true;
|
|
}
|
|
|
|
// Returns an enumeration of a SPIR-V function that needs to be output for certain Op codes.
|
|
CompilerMSL::SPVFuncImpl CompilerMSL::OpCodePreprocessor::get_spv_func_impl(Op opcode, const uint32_t *args)
|
|
{
|
|
switch (opcode)
|
|
{
|
|
case OpFMod:
|
|
return SPVFuncImplMod;
|
|
|
|
case OpFunctionCall:
|
|
{
|
|
auto &return_type = compiler.get<SPIRType>(args[0]);
|
|
if (return_type.array.size() > 1)
|
|
{
|
|
if (return_type.array.size() > SPVFuncImplArrayCopyMultidimMax)
|
|
SPIRV_CROSS_THROW("Cannot support this many dimensions for arrays of arrays.");
|
|
return static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + return_type.array.size());
|
|
}
|
|
else if (return_type.array.size() > 0)
|
|
return SPVFuncImplArrayCopy;
|
|
|
|
break;
|
|
}
|
|
|
|
case OpStore:
|
|
{
|
|
// Get the result type of the RHS. Since this is run as a pre-processing stage,
|
|
// we must extract the result type directly from the Instruction, rather than the ID.
|
|
uint32_t id_lhs = args[0];
|
|
uint32_t id_rhs = args[1];
|
|
|
|
const SPIRType *type = nullptr;
|
|
if (compiler.ir.ids[id_rhs].get_type() != TypeNone)
|
|
{
|
|
// Could be a constant, or similar.
|
|
type = &compiler.expression_type(id_rhs);
|
|
}
|
|
else
|
|
{
|
|
// Or ... an expression.
|
|
uint32_t tid = result_types[id_rhs];
|
|
if (tid)
|
|
type = &compiler.get<SPIRType>(tid);
|
|
}
|
|
|
|
auto *var = compiler.maybe_get<SPIRVariable>(id_lhs);
|
|
|
|
// Are we simply assigning to a statically assigned variable which takes a constant?
|
|
// Don't bother emitting this function.
|
|
bool static_expression_lhs =
|
|
var && var->storage == StorageClassFunction && var->statically_assigned && var->remapped_variable;
|
|
if (type && compiler.is_array(*type) && !static_expression_lhs)
|
|
{
|
|
if (type->array.size() > 1)
|
|
{
|
|
if (type->array.size() > SPVFuncImplArrayCopyMultidimMax)
|
|
SPIRV_CROSS_THROW("Cannot support this many dimensions for arrays of arrays.");
|
|
return static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + type->array.size());
|
|
}
|
|
else
|
|
return SPVFuncImplArrayCopy;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case OpImageFetch:
|
|
case OpImageRead:
|
|
case OpImageWrite:
|
|
{
|
|
// Retrieve the image type, and if it's a Buffer, emit a texel coordinate function
|
|
uint32_t tid = result_types[args[opcode == OpImageWrite ? 0 : 2]];
|
|
if (tid && compiler.get<SPIRType>(tid).image.dim == DimBuffer && !compiler.msl_options.texture_buffer_native)
|
|
return SPVFuncImplTexelBufferCoords;
|
|
|
|
if (opcode == OpImageFetch && compiler.msl_options.swizzle_texture_samples)
|
|
return SPVFuncImplTextureSwizzle;
|
|
|
|
break;
|
|
}
|
|
|
|
case OpImageSampleExplicitLod:
|
|
case OpImageSampleProjExplicitLod:
|
|
case OpImageSampleDrefExplicitLod:
|
|
case OpImageSampleProjDrefExplicitLod:
|
|
case OpImageSampleImplicitLod:
|
|
case OpImageSampleProjImplicitLod:
|
|
case OpImageSampleDrefImplicitLod:
|
|
case OpImageSampleProjDrefImplicitLod:
|
|
case OpImageGather:
|
|
case OpImageDrefGather:
|
|
if (compiler.msl_options.swizzle_texture_samples)
|
|
return SPVFuncImplTextureSwizzle;
|
|
break;
|
|
|
|
case OpCompositeConstruct:
|
|
{
|
|
auto &type = compiler.get<SPIRType>(args[0]);
|
|
if (type.array.size() > 1) // We need to use copies to build the composite.
|
|
return static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + type.array.size() - 1);
|
|
break;
|
|
}
|
|
|
|
case OpExtInst:
|
|
{
|
|
uint32_t extension_set = args[2];
|
|
if (compiler.get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
|
|
{
|
|
GLSLstd450 op_450 = static_cast<GLSLstd450>(args[3]);
|
|
switch (op_450)
|
|
{
|
|
case GLSLstd450Radians:
|
|
return SPVFuncImplRadians;
|
|
case GLSLstd450Degrees:
|
|
return SPVFuncImplDegrees;
|
|
case GLSLstd450FindILsb:
|
|
return SPVFuncImplFindILsb;
|
|
case GLSLstd450FindSMsb:
|
|
return SPVFuncImplFindSMsb;
|
|
case GLSLstd450FindUMsb:
|
|
return SPVFuncImplFindUMsb;
|
|
case GLSLstd450SSign:
|
|
return SPVFuncImplSSign;
|
|
case GLSLstd450MatrixInverse:
|
|
{
|
|
auto &mat_type = compiler.get<SPIRType>(args[0]);
|
|
switch (mat_type.columns)
|
|
{
|
|
case 2:
|
|
return SPVFuncImplInverse2x2;
|
|
case 3:
|
|
return SPVFuncImplInverse3x3;
|
|
case 4:
|
|
return SPVFuncImplInverse4x4;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return SPVFuncImplNone;
|
|
}
|
|
|
|
// Sort both type and meta member content based on builtin status (put builtins at end),
|
|
// then by the required sorting aspect.
|
|
void CompilerMSL::MemberSorter::sort()
|
|
{
|
|
// Create a temporary array of consecutive member indices and sort it based on how
|
|
// the members should be reordered, based on builtin and sorting aspect meta info.
|
|
size_t mbr_cnt = type.member_types.size();
|
|
SmallVector<uint32_t> mbr_idxs(mbr_cnt);
|
|
iota(mbr_idxs.begin(), mbr_idxs.end(), 0); // Fill with consecutive indices
|
|
std::sort(mbr_idxs.begin(), mbr_idxs.end(), *this); // Sort member indices based on sorting aspect
|
|
|
|
// Move type and meta member info to the order defined by the sorted member indices.
|
|
// This is done by creating temporary copies of both member types and meta, and then
|
|
// copying back to the original content at the sorted indices.
|
|
auto mbr_types_cpy = type.member_types;
|
|
auto mbr_meta_cpy = meta.members;
|
|
for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
|
|
{
|
|
type.member_types[mbr_idx] = mbr_types_cpy[mbr_idxs[mbr_idx]];
|
|
meta.members[mbr_idx] = mbr_meta_cpy[mbr_idxs[mbr_idx]];
|
|
}
|
|
}
|
|
|
|
// Sort first by builtin status (put builtins at end), then by the sorting aspect.
|
|
bool CompilerMSL::MemberSorter::operator()(uint32_t mbr_idx1, uint32_t mbr_idx2)
|
|
{
|
|
auto &mbr_meta1 = meta.members[mbr_idx1];
|
|
auto &mbr_meta2 = meta.members[mbr_idx2];
|
|
if (mbr_meta1.builtin != mbr_meta2.builtin)
|
|
return mbr_meta2.builtin;
|
|
else
|
|
switch (sort_aspect)
|
|
{
|
|
case Location:
|
|
return mbr_meta1.location < mbr_meta2.location;
|
|
case LocationReverse:
|
|
return mbr_meta1.location > mbr_meta2.location;
|
|
case Offset:
|
|
return mbr_meta1.offset < mbr_meta2.offset;
|
|
case OffsetThenLocationReverse:
|
|
return (mbr_meta1.offset < mbr_meta2.offset) ||
|
|
((mbr_meta1.offset == mbr_meta2.offset) && (mbr_meta1.location > mbr_meta2.location));
|
|
case Alphabetical:
|
|
return mbr_meta1.alias < mbr_meta2.alias;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
CompilerMSL::MemberSorter::MemberSorter(SPIRType &t, Meta &m, SortAspect sa)
|
|
: type(t)
|
|
, meta(m)
|
|
, sort_aspect(sa)
|
|
{
|
|
// Ensure enough meta info is available
|
|
meta.members.resize(max(type.member_types.size(), meta.members.size()));
|
|
}
|
|
|
|
void CompilerMSL::remap_constexpr_sampler(uint32_t id, const MSLConstexprSampler &sampler)
|
|
{
|
|
auto &type = get<SPIRType>(get<SPIRVariable>(id).basetype);
|
|
if (type.basetype != SPIRType::SampledImage && type.basetype != SPIRType::Sampler)
|
|
SPIRV_CROSS_THROW("Can only remap SampledImage and Sampler type.");
|
|
if (!type.array.empty())
|
|
SPIRV_CROSS_THROW("Can not remap array of samplers.");
|
|
constexpr_samplers[id] = sampler;
|
|
}
|
|
|
|
void CompilerMSL::bitcast_from_builtin_load(uint32_t source_id, std::string &expr, const SPIRType &expr_type)
|
|
{
|
|
auto *var = maybe_get_backing_variable(source_id);
|
|
if (var)
|
|
source_id = var->self;
|
|
|
|
// Only interested in standalone builtin variables.
|
|
if (!has_decoration(source_id, DecorationBuiltIn))
|
|
return;
|
|
|
|
auto builtin = static_cast<BuiltIn>(get_decoration(source_id, DecorationBuiltIn));
|
|
auto expected_type = expr_type.basetype;
|
|
switch (builtin)
|
|
{
|
|
case BuiltInGlobalInvocationId:
|
|
case BuiltInLocalInvocationId:
|
|
case BuiltInWorkgroupId:
|
|
case BuiltInLocalInvocationIndex:
|
|
case BuiltInWorkgroupSize:
|
|
case BuiltInNumWorkgroups:
|
|
case BuiltInLayer:
|
|
case BuiltInViewportIndex:
|
|
expected_type = SPIRType::UInt;
|
|
break;
|
|
|
|
case BuiltInTessLevelInner:
|
|
case BuiltInTessLevelOuter:
|
|
if (get_execution_model() == ExecutionModelTessellationControl)
|
|
expected_type = SPIRType::Half;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (expected_type != expr_type.basetype)
|
|
expr = bitcast_expression(expr_type, expected_type, expr);
|
|
|
|
if (builtin == BuiltInTessCoord && get_entry_point().flags.get(ExecutionModeQuads) && expr_type.vecsize == 3)
|
|
{
|
|
// In SPIR-V, this is always a vec3, even for quads. In Metal, though, it's a float2 for quads.
|
|
// The code is expecting a float3, so we need to widen this.
|
|
expr = join("float3(", expr, ", 0)");
|
|
}
|
|
}
|
|
|
|
void CompilerMSL::bitcast_to_builtin_store(uint32_t target_id, std::string &expr, const SPIRType &expr_type)
|
|
{
|
|
auto *var = maybe_get_backing_variable(target_id);
|
|
if (var)
|
|
target_id = var->self;
|
|
|
|
// Only interested in standalone builtin variables.
|
|
if (!has_decoration(target_id, DecorationBuiltIn))
|
|
return;
|
|
|
|
auto builtin = static_cast<BuiltIn>(get_decoration(target_id, DecorationBuiltIn));
|
|
auto expected_type = expr_type.basetype;
|
|
switch (builtin)
|
|
{
|
|
case BuiltInLayer:
|
|
case BuiltInViewportIndex:
|
|
expected_type = SPIRType::UInt;
|
|
break;
|
|
|
|
case BuiltInTessLevelInner:
|
|
case BuiltInTessLevelOuter:
|
|
expected_type = SPIRType::Half;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (expected_type != expr_type.basetype)
|
|
{
|
|
if (expected_type == SPIRType::Half && expr_type.basetype == SPIRType::Float)
|
|
{
|
|
// These are of different widths, so we cannot do a straight bitcast.
|
|
expr = join("half(", expr, ")");
|
|
}
|
|
else
|
|
{
|
|
auto type = expr_type;
|
|
type.basetype = expected_type;
|
|
expr = bitcast_expression(type, expr_type.basetype, expr);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::string CompilerMSL::to_initializer_expression(const SPIRVariable &var)
|
|
{
|
|
// We risk getting an array initializer here with MSL. If we have an array.
|
|
// FIXME: We cannot handle non-constant arrays being initialized.
|
|
// We will need to inject spvArrayCopy here somehow ...
|
|
auto &type = get<SPIRType>(var.basetype);
|
|
if (ir.ids[var.initializer].get_type() == TypeConstant &&
|
|
(!type.array.empty() || type.basetype == SPIRType::Struct))
|
|
return constant_expression(get<SPIRConstant>(var.initializer));
|
|
else
|
|
return CompilerGLSL::to_initializer_expression(var);
|
|
}
|
|
|
|
bool CompilerMSL::descriptor_set_is_argument_buffer(uint32_t desc_set) const
|
|
{
|
|
if (!msl_options.argument_buffers)
|
|
return false;
|
|
if (desc_set >= kMaxArgumentBuffers)
|
|
return false;
|
|
|
|
return (argument_buffer_discrete_mask & (1u << desc_set)) == 0;
|
|
}
|
|
|
|
void CompilerMSL::analyze_argument_buffers()
|
|
{
|
|
// Gather all used resources and sort them out into argument buffers.
|
|
// Each argument buffer corresponds to a descriptor set in SPIR-V.
|
|
// The [[id(N)]] values used correspond to the resource mapping we have for MSL.
|
|
// Otherwise, the binding number is used, but this is generally not safe some types like
|
|
// combined image samplers and arrays of resources. Metal needs different indices here,
|
|
// while SPIR-V can have one descriptor set binding. To use argument buffers in practice,
|
|
// you will need to use the remapping from the API.
|
|
for (auto &id : argument_buffer_ids)
|
|
id = 0;
|
|
|
|
// Output resources, sorted by resource index & type.
|
|
struct Resource
|
|
{
|
|
SPIRVariable *var;
|
|
string name;
|
|
SPIRType::BaseType basetype;
|
|
uint32_t index;
|
|
};
|
|
SmallVector<Resource> resources_in_set[kMaxArgumentBuffers];
|
|
|
|
ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, SPIRVariable &var) {
|
|
if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
|
|
var.storage == StorageClassStorageBuffer) &&
|
|
!is_hidden_variable(var))
|
|
{
|
|
uint32_t desc_set = get_decoration(self, DecorationDescriptorSet);
|
|
// Ignore if it's part of a push descriptor set.
|
|
if (!descriptor_set_is_argument_buffer(desc_set))
|
|
return;
|
|
|
|
uint32_t var_id = var.self;
|
|
auto &type = get_variable_data_type(var);
|
|
|
|
if (desc_set >= kMaxArgumentBuffers)
|
|
SPIRV_CROSS_THROW("Descriptor set index is out of range.");
|
|
|
|
if (type.basetype == SPIRType::SampledImage)
|
|
{
|
|
add_resource_name(var_id);
|
|
|
|
uint32_t image_resource_index = get_metal_resource_index(var, SPIRType::Image);
|
|
uint32_t sampler_resource_index = get_metal_resource_index(var, SPIRType::Sampler);
|
|
|
|
// Avoid trivial conflicts where we didn't remap.
|
|
// This will let us at least compile test cases without having to instrument remaps.
|
|
if (sampler_resource_index == image_resource_index)
|
|
sampler_resource_index += type.array.empty() ? 1 : to_array_size_literal(type);
|
|
|
|
resources_in_set[desc_set].push_back({ &var, to_name(var_id), SPIRType::Image, image_resource_index });
|
|
|
|
if (type.image.dim != DimBuffer && constexpr_samplers.count(var_id) == 0)
|
|
{
|
|
resources_in_set[desc_set].push_back(
|
|
{ &var, to_sampler_expression(var_id), SPIRType::Sampler, sampler_resource_index });
|
|
}
|
|
}
|
|
else if (constexpr_samplers.count(var_id) == 0)
|
|
{
|
|
// constexpr samplers are not declared as resources.
|
|
add_resource_name(var_id);
|
|
resources_in_set[desc_set].push_back(
|
|
{ &var, to_name(var_id), type.basetype, get_metal_resource_index(var, type.basetype) });
|
|
}
|
|
}
|
|
});
|
|
|
|
for (uint32_t desc_set = 0; desc_set < kMaxArgumentBuffers; desc_set++)
|
|
{
|
|
auto &resources = resources_in_set[desc_set];
|
|
if (resources.empty())
|
|
continue;
|
|
|
|
assert(descriptor_set_is_argument_buffer(desc_set));
|
|
|
|
uint32_t next_id = ir.increase_bound_by(3);
|
|
uint32_t type_id = next_id + 1;
|
|
uint32_t ptr_type_id = next_id + 2;
|
|
argument_buffer_ids[desc_set] = next_id;
|
|
|
|
auto &buffer_type = set<SPIRType>(type_id);
|
|
buffer_type.storage = StorageClassUniform;
|
|
buffer_type.basetype = SPIRType::Struct;
|
|
set_name(type_id, join("spvDescriptorSetBuffer", desc_set));
|
|
|
|
auto &ptr_type = set<SPIRType>(ptr_type_id);
|
|
ptr_type = buffer_type;
|
|
ptr_type.pointer = true;
|
|
ptr_type.pointer_depth = 1;
|
|
ptr_type.parent_type = type_id;
|
|
|
|
uint32_t buffer_variable_id = next_id;
|
|
set<SPIRVariable>(buffer_variable_id, ptr_type_id, StorageClassUniform);
|
|
set_name(buffer_variable_id, join("spvDescriptorSet", desc_set));
|
|
|
|
// Ids must be emitted in ID order.
|
|
sort(begin(resources), end(resources), [&](const Resource &lhs, const Resource &rhs) -> bool {
|
|
return tie(lhs.index, lhs.basetype) < tie(rhs.index, rhs.basetype);
|
|
});
|
|
|
|
uint32_t member_index = 0;
|
|
for (auto &resource : resources)
|
|
{
|
|
auto &var = *resource.var;
|
|
auto &type = get_variable_data_type(var);
|
|
string mbr_name = ensure_valid_name(resource.name, "m");
|
|
set_member_name(buffer_type.self, member_index, mbr_name);
|
|
|
|
if (resource.basetype == SPIRType::Sampler && type.basetype != SPIRType::Sampler)
|
|
{
|
|
// Have to synthesize a sampler type here.
|
|
|
|
bool type_is_array = !type.array.empty();
|
|
uint32_t sampler_type_id = ir.increase_bound_by(type_is_array ? 2 : 1);
|
|
auto &new_sampler_type = set<SPIRType>(sampler_type_id);
|
|
new_sampler_type.basetype = SPIRType::Sampler;
|
|
new_sampler_type.storage = StorageClassUniformConstant;
|
|
|
|
if (type_is_array)
|
|
{
|
|
uint32_t sampler_type_array_id = sampler_type_id + 1;
|
|
auto &sampler_type_array = set<SPIRType>(sampler_type_array_id);
|
|
sampler_type_array = new_sampler_type;
|
|
sampler_type_array.array = type.array;
|
|
sampler_type_array.array_size_literal = type.array_size_literal;
|
|
sampler_type_array.parent_type = sampler_type_id;
|
|
buffer_type.member_types.push_back(sampler_type_array_id);
|
|
}
|
|
else
|
|
buffer_type.member_types.push_back(sampler_type_id);
|
|
}
|
|
else
|
|
{
|
|
if (resource.basetype == SPIRType::Image || resource.basetype == SPIRType::Sampler ||
|
|
resource.basetype == SPIRType::SampledImage)
|
|
{
|
|
// Drop pointer information when we emit the resources into a struct.
|
|
buffer_type.member_types.push_back(get_variable_data_type_id(var));
|
|
set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name));
|
|
}
|
|
else
|
|
{
|
|
// Resources will be declared as pointers not references, so automatically dereference as appropriate.
|
|
buffer_type.member_types.push_back(var.basetype);
|
|
if (type.array.empty())
|
|
set_qualified_name(var.self, join("(*", to_name(buffer_variable_id), ".", mbr_name, ")"));
|
|
else
|
|
set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name));
|
|
}
|
|
}
|
|
|
|
set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationArgumentBufferID,
|
|
resource.index);
|
|
set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationInterfaceOrigID,
|
|
var.self);
|
|
member_index++;
|
|
}
|
|
}
|
|
}
|