SPIRV-Cross/spirv_msl.cpp
Hans-Kristian Arntzen 2cc374a0c8 GLSL: Implement GL_EXT_buffer_reference.
Buffer objects can contain arbitrary pointers to blocks.
We can also implement ConvertPtrToU and ConvertUToPtr.
The latter can cast a uint64_t to any type as it pleases,
so we will need to generate fake buffer reference blocks to be able to
cast the type.
2019-04-26 11:43:51 +02:00

7775 lines
252 KiB
C++

/*
* Copyright 2016-2019 The Brenwill Workshop Ltd.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "spirv_msl.hpp"
#include "GLSL.std.450.h"
#include <algorithm>
#include <assert.h>
#include <numeric>
using namespace spv;
using namespace SPIRV_CROSS_NAMESPACE;
using namespace std;
static const uint32_t k_unknown_location = ~0u;
static const uint32_t k_unknown_component = ~0u;
static const uint32_t k_aux_mbr_idx_swizzle_const = 0u;
CompilerMSL::CompilerMSL(std::vector<uint32_t> spirv_)
: CompilerGLSL(move(spirv_))
{
}
CompilerMSL::CompilerMSL(const uint32_t *ir_, size_t word_count)
: CompilerGLSL(ir_, word_count)
{
}
CompilerMSL::CompilerMSL(const ParsedIR &ir_)
: CompilerGLSL(ir_)
{
}
CompilerMSL::CompilerMSL(ParsedIR &&ir_)
: CompilerGLSL(std::move(ir_))
{
}
void CompilerMSL::add_msl_vertex_attribute(const MSLVertexAttr &va)
{
vtx_attrs_by_location[va.location] = va;
if (va.builtin != BuiltInMax && !vtx_attrs_by_builtin.count(va.builtin))
vtx_attrs_by_builtin[va.builtin] = va;
}
void CompilerMSL::add_msl_resource_binding(const MSLResourceBinding &binding)
{
resource_bindings.push_back({ binding, false });
}
void CompilerMSL::add_discrete_descriptor_set(uint32_t desc_set)
{
if (desc_set < kMaxArgumentBuffers)
argument_buffer_discrete_mask |= 1u << desc_set;
}
bool CompilerMSL::is_msl_vertex_attribute_used(uint32_t location)
{
return vtx_attrs_in_use.count(location) != 0;
}
bool CompilerMSL::is_msl_resource_binding_used(ExecutionModel model, uint32_t desc_set, uint32_t binding)
{
auto itr = find_if(begin(resource_bindings), end(resource_bindings),
[&](const std::pair<MSLResourceBinding, bool> &resource) -> bool {
return model == resource.first.stage && desc_set == resource.first.desc_set &&
binding == resource.first.binding;
});
return itr != end(resource_bindings) && itr->second;
}
void CompilerMSL::set_fragment_output_components(uint32_t location, uint32_t components)
{
fragment_output_components[location] = components;
}
void CompilerMSL::build_implicit_builtins()
{
bool need_sample_pos = active_input_builtins.get(BuiltInSamplePosition);
bool need_vertex_params = capture_output_to_buffer && get_execution_model() == ExecutionModelVertex;
bool need_tesc_params = get_execution_model() == ExecutionModelTessellationControl;
if (need_subpass_input || need_sample_pos || need_vertex_params || need_tesc_params)
{
bool has_frag_coord = false;
bool has_sample_id = false;
bool has_vertex_idx = false;
bool has_base_vertex = false;
bool has_instance_idx = false;
bool has_base_instance = false;
bool has_invocation_id = false;
bool has_primitive_id = false;
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
if (var.storage != StorageClassInput || !ir.meta[var.self].decoration.builtin)
return;
if (need_subpass_input && ir.meta[var.self].decoration.builtin_type == BuiltInFragCoord)
{
builtin_frag_coord_id = var.self;
has_frag_coord = true;
}
if (need_sample_pos && ir.meta[var.self].decoration.builtin_type == BuiltInSampleId)
{
builtin_sample_id_id = var.self;
has_sample_id = true;
}
if (need_vertex_params)
{
switch (ir.meta[var.self].decoration.builtin_type)
{
case BuiltInVertexIndex:
builtin_vertex_idx_id = var.self;
has_vertex_idx = true;
break;
case BuiltInBaseVertex:
builtin_base_vertex_id = var.self;
has_base_vertex = true;
break;
case BuiltInInstanceIndex:
builtin_instance_idx_id = var.self;
has_instance_idx = true;
break;
case BuiltInBaseInstance:
builtin_base_instance_id = var.self;
has_base_instance = true;
break;
default:
break;
}
}
if (need_tesc_params)
{
switch (ir.meta[var.self].decoration.builtin_type)
{
case BuiltInInvocationId:
builtin_invocation_id_id = var.self;
has_invocation_id = true;
break;
case BuiltInPrimitiveId:
builtin_primitive_id_id = var.self;
has_primitive_id = true;
break;
default:
break;
}
}
});
if (!has_frag_coord && need_subpass_input)
{
uint32_t offset = ir.increase_bound_by(3);
uint32_t type_id = offset;
uint32_t type_ptr_id = offset + 1;
uint32_t var_id = offset + 2;
// Create gl_FragCoord.
SPIRType vec4_type;
vec4_type.basetype = SPIRType::Float;
vec4_type.width = 32;
vec4_type.vecsize = 4;
set<SPIRType>(type_id, vec4_type);
SPIRType vec4_type_ptr;
vec4_type_ptr = vec4_type;
vec4_type_ptr.pointer = true;
vec4_type_ptr.parent_type = type_id;
vec4_type_ptr.storage = StorageClassInput;
auto &ptr_type = set<SPIRType>(type_ptr_id, vec4_type_ptr);
ptr_type.self = type_id;
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInFragCoord);
builtin_frag_coord_id = var_id;
}
if (!has_sample_id && need_sample_pos)
{
uint32_t offset = ir.increase_bound_by(3);
uint32_t type_id = offset;
uint32_t type_ptr_id = offset + 1;
uint32_t var_id = offset + 2;
// Create gl_SampleID.
SPIRType uint_type;
uint_type.basetype = SPIRType::UInt;
uint_type.width = 32;
set<SPIRType>(type_id, uint_type);
SPIRType uint_type_ptr;
uint_type_ptr = uint_type;
uint_type_ptr.pointer = true;
uint_type_ptr.parent_type = type_id;
uint_type_ptr.storage = StorageClassInput;
auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
ptr_type.self = type_id;
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInSampleId);
builtin_sample_id_id = var_id;
}
if (need_vertex_params && (!has_vertex_idx || !has_base_vertex || !has_instance_idx || !has_base_instance))
{
uint32_t offset = ir.increase_bound_by(2);
uint32_t type_id = offset;
uint32_t type_ptr_id = offset + 1;
SPIRType uint_type;
uint_type.basetype = SPIRType::UInt;
uint_type.width = 32;
set<SPIRType>(type_id, uint_type);
SPIRType uint_type_ptr;
uint_type_ptr = uint_type;
uint_type_ptr.pointer = true;
uint_type_ptr.parent_type = type_id;
uint_type_ptr.storage = StorageClassInput;
auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
ptr_type.self = type_id;
if (!has_vertex_idx)
{
uint32_t var_id = ir.increase_bound_by(1);
// Create gl_VertexIndex.
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInVertexIndex);
builtin_vertex_idx_id = var_id;
}
if (!has_base_vertex)
{
uint32_t var_id = ir.increase_bound_by(1);
// Create gl_BaseVertex.
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInBaseVertex);
builtin_base_vertex_id = var_id;
}
if (!has_instance_idx)
{
uint32_t var_id = ir.increase_bound_by(1);
// Create gl_InstanceIndex.
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInInstanceIndex);
builtin_instance_idx_id = var_id;
}
if (!has_base_instance)
{
uint32_t var_id = ir.increase_bound_by(1);
// Create gl_BaseInstance.
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInBaseInstance);
builtin_base_instance_id = var_id;
}
}
if (need_tesc_params && (!has_invocation_id || !has_primitive_id))
{
uint32_t offset = ir.increase_bound_by(2);
uint32_t type_id = offset;
uint32_t type_ptr_id = offset + 1;
SPIRType uint_type;
uint_type.basetype = SPIRType::UInt;
uint_type.width = 32;
set<SPIRType>(type_id, uint_type);
SPIRType uint_type_ptr;
uint_type_ptr = uint_type;
uint_type_ptr.pointer = true;
uint_type_ptr.parent_type = type_id;
uint_type_ptr.storage = StorageClassInput;
auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
ptr_type.self = type_id;
if (!has_invocation_id)
{
uint32_t var_id = ir.increase_bound_by(1);
// Create gl_InvocationID.
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInInvocationId);
builtin_invocation_id_id = var_id;
}
if (!has_primitive_id)
{
uint32_t var_id = ir.increase_bound_by(1);
// Create gl_PrimitiveID.
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInPrimitiveId);
builtin_primitive_id_id = var_id;
}
}
}
if (needs_aux_buffer_def)
{
uint32_t offset = ir.increase_bound_by(5);
uint32_t type_id = offset;
uint32_t type_arr_id = offset + 1;
uint32_t struct_id = offset + 2;
uint32_t struct_ptr_id = offset + 3;
uint32_t var_id = offset + 4;
// Create a buffer to hold extra data, including the swizzle constants.
SPIRType uint_type;
uint_type.basetype = SPIRType::UInt;
uint_type.width = 32;
set<SPIRType>(type_id, uint_type);
SPIRType uint_type_arr = uint_type;
uint_type_arr.array.push_back(0);
uint_type_arr.array_size_literal.push_back(true);
uint_type_arr.parent_type = type_id;
set<SPIRType>(type_arr_id, uint_type_arr);
set_decoration(type_arr_id, DecorationArrayStride, 4);
SPIRType struct_type;
struct_type.basetype = SPIRType::Struct;
struct_type.member_types.push_back(type_arr_id);
auto &type = set<SPIRType>(struct_id, struct_type);
type.self = struct_id;
set_decoration(struct_id, DecorationBlock);
set_name(struct_id, "spvAux");
set_member_name(struct_id, k_aux_mbr_idx_swizzle_const, "swizzleConst");
set_member_decoration(struct_id, k_aux_mbr_idx_swizzle_const, DecorationOffset, 0);
SPIRType struct_type_ptr = struct_type;
struct_type_ptr.pointer = true;
struct_type_ptr.parent_type = struct_id;
struct_type_ptr.storage = StorageClassUniform;
auto &ptr_type = set<SPIRType>(struct_ptr_id, struct_type_ptr);
ptr_type.self = struct_id;
set<SPIRVariable>(var_id, struct_ptr_id, StorageClassUniform);
set_name(var_id, "spvAuxBuffer");
// This should never match anything.
set_decoration(var_id, DecorationDescriptorSet, 0xFFFFFFFE);
set_decoration(var_id, DecorationBinding, msl_options.aux_buffer_index);
aux_buffer_id = var_id;
}
}
static string create_sampler_address(const char *prefix, MSLSamplerAddress addr)
{
switch (addr)
{
case MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE:
return join(prefix, "address::clamp_to_edge");
case MSL_SAMPLER_ADDRESS_CLAMP_TO_ZERO:
return join(prefix, "address::clamp_to_zero");
case MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER:
return join(prefix, "address::clamp_to_border");
case MSL_SAMPLER_ADDRESS_REPEAT:
return join(prefix, "address::repeat");
case MSL_SAMPLER_ADDRESS_MIRRORED_REPEAT:
return join(prefix, "address::mirrored_repeat");
default:
SPIRV_CROSS_THROW("Invalid sampler addressing mode.");
}
}
SPIRType &CompilerMSL::get_stage_in_struct_type()
{
auto &si_var = get<SPIRVariable>(stage_in_var_id);
return get_variable_data_type(si_var);
}
SPIRType &CompilerMSL::get_stage_out_struct_type()
{
auto &so_var = get<SPIRVariable>(stage_out_var_id);
return get_variable_data_type(so_var);
}
SPIRType &CompilerMSL::get_patch_stage_in_struct_type()
{
auto &si_var = get<SPIRVariable>(patch_stage_in_var_id);
return get_variable_data_type(si_var);
}
SPIRType &CompilerMSL::get_patch_stage_out_struct_type()
{
auto &so_var = get<SPIRVariable>(patch_stage_out_var_id);
return get_variable_data_type(so_var);
}
std::string CompilerMSL::get_tess_factor_struct_name()
{
if (get_entry_point().flags.get(ExecutionModeTriangles))
return "MTLTriangleTessellationFactorsHalf";
return "MTLQuadTessellationFactorsHalf";
}
void CompilerMSL::emit_entry_point_declarations()
{
// FIXME: Get test coverage here ...
// Emit constexpr samplers here.
for (auto &samp : constexpr_samplers)
{
auto &var = get<SPIRVariable>(samp.first);
auto &type = get<SPIRType>(var.basetype);
if (type.basetype == SPIRType::Sampler)
add_resource_name(samp.first);
SmallVector<string> args;
auto &s = samp.second;
if (s.coord != MSL_SAMPLER_COORD_NORMALIZED)
args.push_back("coord::pixel");
if (s.min_filter == s.mag_filter)
{
if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST)
args.push_back("filter::linear");
}
else
{
if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST)
args.push_back("min_filter::linear");
if (s.mag_filter != MSL_SAMPLER_FILTER_NEAREST)
args.push_back("mag_filter::linear");
}
switch (s.mip_filter)
{
case MSL_SAMPLER_MIP_FILTER_NONE:
// Default
break;
case MSL_SAMPLER_MIP_FILTER_NEAREST:
args.push_back("mip_filter::nearest");
break;
case MSL_SAMPLER_MIP_FILTER_LINEAR:
args.push_back("mip_filter::linear");
break;
default:
SPIRV_CROSS_THROW("Invalid mip filter.");
}
if (s.s_address == s.t_address && s.s_address == s.r_address)
{
if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
args.push_back(create_sampler_address("", s.s_address));
}
else
{
if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
args.push_back(create_sampler_address("s_", s.s_address));
if (s.t_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
args.push_back(create_sampler_address("t_", s.t_address));
if (s.r_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
args.push_back(create_sampler_address("r_", s.r_address));
}
if (s.compare_enable)
{
switch (s.compare_func)
{
case MSL_SAMPLER_COMPARE_FUNC_ALWAYS:
args.push_back("compare_func::always");
break;
case MSL_SAMPLER_COMPARE_FUNC_NEVER:
args.push_back("compare_func::never");
break;
case MSL_SAMPLER_COMPARE_FUNC_EQUAL:
args.push_back("compare_func::equal");
break;
case MSL_SAMPLER_COMPARE_FUNC_NOT_EQUAL:
args.push_back("compare_func::not_equal");
break;
case MSL_SAMPLER_COMPARE_FUNC_LESS:
args.push_back("compare_func::less");
break;
case MSL_SAMPLER_COMPARE_FUNC_LESS_EQUAL:
args.push_back("compare_func::less_equal");
break;
case MSL_SAMPLER_COMPARE_FUNC_GREATER:
args.push_back("compare_func::greater");
break;
case MSL_SAMPLER_COMPARE_FUNC_GREATER_EQUAL:
args.push_back("compare_func::greater_equal");
break;
default:
SPIRV_CROSS_THROW("Invalid sampler compare function.");
}
}
if (s.s_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER || s.t_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER ||
s.r_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER)
{
switch (s.border_color)
{
case MSL_SAMPLER_BORDER_COLOR_OPAQUE_BLACK:
args.push_back("border_color::opaque_black");
break;
case MSL_SAMPLER_BORDER_COLOR_OPAQUE_WHITE:
args.push_back("border_color::opaque_white");
break;
case MSL_SAMPLER_BORDER_COLOR_TRANSPARENT_BLACK:
args.push_back("border_color::transparent_black");
break;
default:
SPIRV_CROSS_THROW("Invalid sampler border color.");
}
}
if (s.anisotropy_enable)
args.push_back(join("max_anisotropy(", s.max_anisotropy, ")"));
if (s.lod_clamp_enable)
{
args.push_back(join("lod_clamp(", convert_to_string(s.lod_clamp_min, current_locale_radix_character), ", ",
convert_to_string(s.lod_clamp_max, current_locale_radix_character), ")"));
}
statement("constexpr sampler ",
type.basetype == SPIRType::SampledImage ? to_sampler_expression(samp.first) : to_name(samp.first),
"(", merge(args), ");");
}
// Emit buffer arrays here.
for (uint32_t array_id : buffer_arrays)
{
const auto &var = get<SPIRVariable>(array_id);
const auto &type = get_variable_data_type(var);
string name = to_name(array_id);
statement(get_argument_address_space(var) + " " + type_to_glsl(type) + "* " + name + "[] =");
begin_scope();
for (uint32_t i = 0; i < type.array[0]; ++i)
statement(name + "_" + convert_to_string(i) + ",");
end_scope_decl();
statement_no_indent("");
}
// For some reason, without this, we end up emitting the arrays twice.
buffer_arrays.clear();
}
string CompilerMSL::compile()
{
// Do not deal with GLES-isms like precision, older extensions and such.
options.vulkan_semantics = true;
options.es = false;
options.version = 450;
backend.null_pointer_literal = "nullptr";
backend.float_literal_suffix = false;
backend.uint32_t_literal_suffix = true;
backend.int16_t_literal_suffix = "";
backend.uint16_t_literal_suffix = "u";
backend.basic_int_type = "int";
backend.basic_uint_type = "uint";
backend.basic_int8_type = "char";
backend.basic_uint8_type = "uchar";
backend.basic_int16_type = "short";
backend.basic_uint16_type = "ushort";
backend.discard_literal = "discard_fragment()";
backend.swizzle_is_function = false;
backend.shared_is_implied = false;
backend.use_initializer_list = true;
backend.use_typed_initializer_list = true;
backend.native_row_major_matrix = false;
backend.flexible_member_array_supported = false;
backend.can_declare_arrays_inline = false;
backend.can_return_array = false;
backend.boolean_mix_support = false;
backend.allow_truncated_access_chain = true;
backend.array_is_value_type = false;
backend.comparison_image_samples_scalar = true;
backend.native_pointers = true;
capture_output_to_buffer = msl_options.capture_output_to_buffer;
is_rasterization_disabled = msl_options.disable_rasterization || capture_output_to_buffer;
replace_illegal_names();
struct_member_padding.clear();
build_function_control_flow_graphs_and_analyze();
update_active_builtins();
analyze_image_and_sampler_usage();
analyze_sampled_image_usage();
build_implicit_builtins();
fixup_image_load_store_access();
set_enabled_interface_variables(get_active_interface_variables());
if (aux_buffer_id)
active_interface_variables.insert(aux_buffer_id);
// Preprocess OpCodes to extract the need to output additional header content
preprocess_op_codes();
// Create structs to hold input, output and uniform variables.
// Do output first to ensure out. is declared at top of entry function.
qual_pos_var_name = "";
stage_out_var_id = add_interface_block(StorageClassOutput);
patch_stage_out_var_id = add_interface_block(StorageClassOutput, true);
stage_in_var_id = add_interface_block(StorageClassInput);
if (get_execution_model() == ExecutionModelTessellationEvaluation)
patch_stage_in_var_id = add_interface_block(StorageClassInput, true);
if (get_execution_model() == ExecutionModelTessellationControl)
stage_out_ptr_var_id = add_interface_block_pointer(stage_out_var_id, StorageClassOutput);
if (is_tessellation_shader())
stage_in_ptr_var_id = add_interface_block_pointer(stage_in_var_id, StorageClassInput);
// Metal vertex functions that define no output must disable rasterization and return void.
if (!stage_out_var_id)
is_rasterization_disabled = true;
// Convert the use of global variables to recursively-passed function parameters
localize_global_variables();
extract_global_variables_from_functions();
// Mark any non-stage-in structs to be tightly packed.
mark_packable_structs();
// Add fixup hooks required by shader inputs and outputs. This needs to happen before
// the loop, so the hooks aren't added multiple times.
fix_up_shader_inputs_outputs();
// If we are using argument buffers, we create argument buffer structures for them here.
// These buffers will be used in the entry point, not the individual resources.
if (msl_options.argument_buffers)
{
if (!msl_options.supports_msl_version(2, 0))
SPIRV_CROSS_THROW("Argument buffers can only be used with MSL 2.0 and up.");
analyze_argument_buffers();
}
uint32_t pass_count = 0;
do
{
if (pass_count >= 3)
SPIRV_CROSS_THROW("Over 3 compilation loops detected. Must be a bug!");
reset();
// Start bindings at zero.
next_metal_resource_index_buffer = 0;
next_metal_resource_index_texture = 0;
next_metal_resource_index_sampler = 0;
// Move constructor for this type is broken on GCC 4.9 ...
buffer.reset();
emit_header();
emit_specialization_constants_and_structs();
emit_resources();
emit_custom_functions();
emit_function(get<SPIRFunction>(ir.default_entry_point), Bitset());
pass_count++;
} while (is_forcing_recompilation());
return buffer.str();
}
// Register the need to output any custom functions.
void CompilerMSL::preprocess_op_codes()
{
OpCodePreprocessor preproc(*this);
traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), preproc);
suppress_missing_prototypes = preproc.suppress_missing_prototypes;
if (preproc.uses_atomics)
{
add_header_line("#include <metal_atomic>");
add_pragma_line("#pragma clang diagnostic ignored \"-Wunused-variable\"");
}
// Metal vertex functions that write to resources must disable rasterization and return void.
if (preproc.uses_resource_write)
is_rasterization_disabled = true;
// Tessellation control shaders are run as compute functions in Metal, and so
// must capture their output to a buffer.
if (get_execution_model() == ExecutionModelTessellationControl)
{
is_rasterization_disabled = true;
capture_output_to_buffer = true;
}
}
// Move the Private and Workgroup global variables to the entry function.
// Non-constant variables cannot have global scope in Metal.
void CompilerMSL::localize_global_variables()
{
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
auto iter = global_variables.begin();
while (iter != global_variables.end())
{
uint32_t v_id = *iter;
auto &var = get<SPIRVariable>(v_id);
if (var.storage == StorageClassPrivate || var.storage == StorageClassWorkgroup)
{
if (!variable_is_lut(var))
entry_func.add_local_variable(v_id);
iter = global_variables.erase(iter);
}
else
iter++;
}
}
// For any global variable accessed directly by a function,
// extract that variable and add it as an argument to that function.
void CompilerMSL::extract_global_variables_from_functions()
{
// Uniforms
unordered_set<uint32_t> global_var_ids;
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
if (var.storage == StorageClassInput || var.storage == StorageClassOutput ||
var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer)
{
global_var_ids.insert(var.self);
}
});
// Local vars that are declared in the main function and accessed directly by a function
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
for (auto &var : entry_func.local_variables)
if (get<SPIRVariable>(var).storage != StorageClassFunction)
global_var_ids.insert(var);
std::set<uint32_t> added_arg_ids;
unordered_set<uint32_t> processed_func_ids;
extract_global_variables_from_function(ir.default_entry_point, added_arg_ids, global_var_ids, processed_func_ids);
}
// MSL does not support the use of global variables for shader input content.
// For any global variable accessed directly by the specified function, extract that variable,
// add it as an argument to that function, and the arg to the added_arg_ids collection.
void CompilerMSL::extract_global_variables_from_function(uint32_t func_id, std::set<uint32_t> &added_arg_ids,
unordered_set<uint32_t> &global_var_ids,
unordered_set<uint32_t> &processed_func_ids)
{
// Avoid processing a function more than once
if (processed_func_ids.find(func_id) != processed_func_ids.end())
{
// Return function global variables
added_arg_ids = function_global_vars[func_id];
return;
}
processed_func_ids.insert(func_id);
auto &func = get<SPIRFunction>(func_id);
// Recursively establish global args added to functions on which we depend.
for (auto block : func.blocks)
{
auto &b = get<SPIRBlock>(block);
for (auto &i : b.ops)
{
auto ops = stream(i);
auto op = static_cast<Op>(i.op);
switch (op)
{
case OpLoad:
case OpInBoundsAccessChain:
case OpAccessChain:
case OpPtrAccessChain:
{
uint32_t base_id = ops[2];
if (global_var_ids.find(base_id) != global_var_ids.end())
added_arg_ids.insert(base_id);
auto &type = get<SPIRType>(ops[0]);
if (type.basetype == SPIRType::Image && type.image.dim == DimSubpassData)
{
// Implicitly reads gl_FragCoord.
assert(builtin_frag_coord_id != 0);
added_arg_ids.insert(builtin_frag_coord_id);
}
break;
}
case OpFunctionCall:
{
// First see if any of the function call args are globals
for (uint32_t arg_idx = 3; arg_idx < i.length; arg_idx++)
{
uint32_t arg_id = ops[arg_idx];
if (global_var_ids.find(arg_id) != global_var_ids.end())
added_arg_ids.insert(arg_id);
}
// Then recurse into the function itself to extract globals used internally in the function
uint32_t inner_func_id = ops[2];
std::set<uint32_t> inner_func_args;
extract_global_variables_from_function(inner_func_id, inner_func_args, global_var_ids,
processed_func_ids);
added_arg_ids.insert(inner_func_args.begin(), inner_func_args.end());
break;
}
case OpStore:
{
uint32_t base_id = ops[0];
if (global_var_ids.find(base_id) != global_var_ids.end())
added_arg_ids.insert(base_id);
break;
}
case OpSelect:
{
uint32_t base_id = ops[3];
if (global_var_ids.find(base_id) != global_var_ids.end())
added_arg_ids.insert(base_id);
base_id = ops[4];
if (global_var_ids.find(base_id) != global_var_ids.end())
added_arg_ids.insert(base_id);
break;
}
default:
break;
}
// TODO: Add all other operations which can affect memory.
// We should consider a more unified system here to reduce boiler-plate.
// This kind of analysis is done in several places ...
}
}
function_global_vars[func_id] = added_arg_ids;
// Add the global variables as arguments to the function
if (func_id != ir.default_entry_point)
{
bool added_in = false;
bool added_out = false;
for (uint32_t arg_id : added_arg_ids)
{
auto &var = get<SPIRVariable>(arg_id);
uint32_t type_id = var.basetype;
auto *p_type = &get<SPIRType>(type_id);
BuiltIn bi_type = BuiltIn(get_decoration(arg_id, DecorationBuiltIn));
if (((is_tessellation_shader() && var.storage == StorageClassInput) ||
(get_execution_model() == ExecutionModelTessellationControl && var.storage == StorageClassOutput)) &&
!(has_decoration(arg_id, DecorationPatch) || is_patch_block(*p_type)) &&
(!is_builtin_variable(var) || bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance ||
p_type->basetype == SPIRType::Struct))
{
// Tessellation control shaders see inputs and per-vertex outputs as arrays.
// Similarly, tessellation evaluation shaders see per-vertex inputs as arrays.
// We collected them into a structure; we must pass the array of this
// structure to the function.
std::string name;
if (var.storage == StorageClassInput)
{
if (added_in)
continue;
name = input_wg_var_name;
arg_id = stage_in_ptr_var_id;
added_in = true;
}
else if (var.storage == StorageClassOutput)
{
if (added_out)
continue;
name = "gl_out";
arg_id = stage_out_ptr_var_id;
added_out = true;
}
type_id = get<SPIRVariable>(arg_id).basetype;
p_type = &get<SPIRType>(type_id);
uint32_t next_id = ir.increase_bound_by(1);
func.add_parameter(type_id, next_id, true);
set<SPIRVariable>(next_id, type_id, StorageClassFunction, 0, arg_id);
set_name(next_id, name);
}
else if (is_builtin_variable(var) && p_type->basetype == SPIRType::Struct)
{
// Get the pointee type
type_id = get_pointee_type_id(type_id);
p_type = &get<SPIRType>(type_id);
uint32_t mbr_idx = 0;
for (auto &mbr_type_id : p_type->member_types)
{
BuiltIn builtin = BuiltInMax;
bool is_builtin = is_member_builtin(*p_type, mbr_idx, &builtin);
if (is_builtin && has_active_builtin(builtin, var.storage))
{
// Add a arg variable with the same type and decorations as the member
uint32_t next_ids = ir.increase_bound_by(2);
uint32_t ptr_type_id = next_ids + 0;
uint32_t var_id = next_ids + 1;
// Make sure we have an actual pointer type,
// so that we will get the appropriate address space when declaring these builtins.
auto &ptr = set<SPIRType>(ptr_type_id, get<SPIRType>(mbr_type_id));
ptr.self = mbr_type_id;
ptr.storage = var.storage;
ptr.pointer = true;
ptr.parent_type = mbr_type_id;
func.add_parameter(mbr_type_id, var_id, true);
set<SPIRVariable>(var_id, ptr_type_id, StorageClassFunction);
ir.meta[var_id].decoration = ir.meta[type_id].members[mbr_idx];
}
mbr_idx++;
}
}
else
{
uint32_t next_id = ir.increase_bound_by(1);
func.add_parameter(type_id, next_id, true);
set<SPIRVariable>(next_id, type_id, StorageClassFunction, 0, arg_id);
// Ensure the existing variable has a valid name and the new variable has all the same meta info
set_name(arg_id, ensure_valid_name(to_name(arg_id), "v"));
ir.meta[next_id] = ir.meta[arg_id];
}
}
}
}
// For all variables that are some form of non-input-output interface block, mark that all the structs
// that are recursively contained within the type referenced by that variable should be packed tightly.
void CompilerMSL::mark_packable_structs()
{
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
if (var.storage != StorageClassFunction && !is_hidden_variable(var))
{
auto &type = this->get<SPIRType>(var.basetype);
if (type.pointer &&
(type.storage == StorageClassUniform || type.storage == StorageClassUniformConstant ||
type.storage == StorageClassPushConstant || type.storage == StorageClassStorageBuffer) &&
(has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock)))
mark_as_packable(type);
}
});
}
// If the specified type is a struct, it and any nested structs
// are marked as packable with the SPIRVCrossDecorationPacked decoration,
void CompilerMSL::mark_as_packable(SPIRType &type)
{
// If this is not the base type (eg. it's a pointer or array), tunnel down
if (type.parent_type)
{
mark_as_packable(get<SPIRType>(type.parent_type));
return;
}
if (type.basetype == SPIRType::Struct)
{
set_extended_decoration(type.self, SPIRVCrossDecorationPacked);
// Recurse
size_t mbr_cnt = type.member_types.size();
for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
{
uint32_t mbr_type_id = type.member_types[mbr_idx];
auto &mbr_type = get<SPIRType>(mbr_type_id);
mark_as_packable(mbr_type);
if (mbr_type.type_alias)
{
auto &mbr_type_alias = get<SPIRType>(mbr_type.type_alias);
mark_as_packable(mbr_type_alias);
}
}
}
}
// If a vertex attribute exists at the location, it is marked as being used by this shader
void CompilerMSL::mark_location_as_used_by_shader(uint32_t location, StorageClass storage)
{
if ((get_execution_model() == ExecutionModelVertex || is_tessellation_shader()) && (storage == StorageClassInput))
vtx_attrs_in_use.insert(location);
}
uint32_t CompilerMSL::get_target_components_for_fragment_location(uint32_t location) const
{
auto itr = fragment_output_components.find(location);
if (itr == end(fragment_output_components))
return 4;
else
return itr->second;
}
uint32_t CompilerMSL::build_extended_vector_type(uint32_t type_id, uint32_t components)
{
uint32_t new_type_id = ir.increase_bound_by(1);
auto &type = set<SPIRType>(new_type_id, get<SPIRType>(type_id));
type.vecsize = components;
type.self = new_type_id;
type.parent_type = type_id;
type.pointer = false;
return new_type_id;
}
void CompilerMSL::add_plain_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
SPIRType &ib_type, SPIRVariable &var, bool strip_array)
{
bool is_builtin = is_builtin_variable(var);
BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
bool is_flat = has_decoration(var.self, DecorationFlat);
bool is_noperspective = has_decoration(var.self, DecorationNoPerspective);
bool is_centroid = has_decoration(var.self, DecorationCentroid);
bool is_sample = has_decoration(var.self, DecorationSample);
// Add a reference to the variable type to the interface struct.
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
uint32_t type_id = ensure_correct_builtin_type(var.basetype, builtin);
var.basetype = type_id;
type_id = get_pointee_type_id(var.basetype);
if (strip_array && is_array(get<SPIRType>(type_id)))
type_id = get<SPIRType>(type_id).parent_type;
auto &type = get<SPIRType>(type_id);
uint32_t target_components = 0;
uint32_t type_components = type.vecsize;
bool padded_output = false;
// Check if we need to pad fragment output to match a certain number of components.
if (get_decoration_bitset(var.self).get(DecorationLocation) && msl_options.pad_fragment_output_components &&
get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput)
{
uint32_t locn = get_decoration(var.self, DecorationLocation);
target_components = get_target_components_for_fragment_location(locn);
if (type_components < target_components)
{
// Make a new type here.
type_id = build_extended_vector_type(type_id, target_components);
padded_output = true;
}
}
ib_type.member_types.push_back(type_id);
// Give the member a name
string mbr_name = ensure_valid_name(to_expression(var.self), "m");
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
// Update the original variable reference to include the structure reference
string qual_var_name = ib_var_ref + "." + mbr_name;
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
if (padded_output)
{
entry_func.add_local_variable(var.self);
vars_needing_early_declaration.push_back(var.self);
entry_func.fixup_hooks_out.push_back([=, &var]() {
SPIRType &padded_type = this->get<SPIRType>(type_id);
statement(qual_var_name, " = ", remap_swizzle(padded_type, type_components, to_name(var.self)), ";");
});
}
else if (!strip_array)
ir.meta[var.self].decoration.qualified_alias = qual_var_name;
if (var.storage == StorageClassOutput && var.initializer != 0)
{
entry_func.fixup_hooks_in.push_back(
[=, &var]() { statement(qual_var_name, " = ", to_expression(var.initializer), ";"); });
}
// Copy the variable location from the original variable to the member
if (get_decoration_bitset(var.self).get(DecorationLocation))
{
uint32_t locn = get_decoration(var.self, DecorationLocation);
if (storage == StorageClassInput && (get_execution_model() == ExecutionModelVertex || is_tessellation_shader()))
{
type_id = ensure_correct_attribute_type(var.basetype, locn);
var.basetype = type_id;
type_id = get_pointee_type_id(type_id);
if (strip_array && is_array(get<SPIRType>(type_id)))
type_id = get<SPIRType>(type_id).parent_type;
ib_type.member_types[ib_mbr_idx] = type_id;
}
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, storage);
}
else if (is_builtin && is_tessellation_shader() && vtx_attrs_by_builtin.count(builtin))
{
uint32_t locn = vtx_attrs_by_builtin[builtin].location;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, storage);
}
if (get_decoration_bitset(var.self).get(DecorationComponent))
{
uint32_t comp = get_decoration(var.self, DecorationComponent);
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp);
}
if (get_decoration_bitset(var.self).get(DecorationIndex))
{
uint32_t index = get_decoration(var.self, DecorationIndex);
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, index);
}
// Mark the member as builtin if needed
if (is_builtin)
{
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
if (builtin == BuiltInPosition && storage == StorageClassOutput)
qual_pos_var_name = qual_var_name;
}
// Copy interpolation decorations if needed
if (is_flat)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
if (is_noperspective)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
if (is_centroid)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
if (is_sample)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
}
void CompilerMSL::add_composite_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
SPIRType &ib_type, SPIRVariable &var, bool strip_array)
{
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
auto &var_type = strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
uint32_t elem_cnt = 0;
if (is_matrix(var_type))
{
if (is_array(var_type))
SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");
elem_cnt = var_type.columns;
}
else if (is_array(var_type))
{
if (var_type.array.size() != 1)
SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");
elem_cnt = to_array_size_literal(var_type);
}
bool is_builtin = is_builtin_variable(var);
BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
bool is_flat = has_decoration(var.self, DecorationFlat);
bool is_noperspective = has_decoration(var.self, DecorationNoPerspective);
bool is_centroid = has_decoration(var.self, DecorationCentroid);
bool is_sample = has_decoration(var.self, DecorationSample);
auto *usable_type = &var_type;
if (usable_type->pointer)
usable_type = &get<SPIRType>(usable_type->parent_type);
while (is_array(*usable_type) || is_matrix(*usable_type))
usable_type = &get<SPIRType>(usable_type->parent_type);
// If a builtin, force it to have the proper name.
if (is_builtin)
set_name(var.self, builtin_to_glsl(builtin, StorageClassFunction));
entry_func.add_local_variable(var.self);
// We need to declare the variable early and at entry-point scope.
vars_needing_early_declaration.push_back(var.self);
for (uint32_t i = 0; i < elem_cnt; i++)
{
// Add a reference to the variable type to the interface struct.
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
uint32_t target_components = 0;
bool padded_output = false;
uint32_t type_id = usable_type->self;
// Check if we need to pad fragment output to match a certain number of components.
if (get_decoration_bitset(var.self).get(DecorationLocation) && msl_options.pad_fragment_output_components &&
get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput)
{
uint32_t locn = get_decoration(var.self, DecorationLocation) + i;
target_components = get_target_components_for_fragment_location(locn);
if (usable_type->vecsize < target_components)
{
// Make a new type here.
type_id = build_extended_vector_type(usable_type->self, target_components);
padded_output = true;
}
}
ib_type.member_types.push_back(get_pointee_type_id(type_id));
// Give the member a name
string mbr_name = ensure_valid_name(join(to_expression(var.self), "_", i), "m");
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
// There is no qualified alias since we need to flatten the internal array on return.
if (get_decoration_bitset(var.self).get(DecorationLocation))
{
uint32_t locn = get_decoration(var.self, DecorationLocation) + i;
if (storage == StorageClassInput &&
(get_execution_model() == ExecutionModelVertex || is_tessellation_shader()))
{
var.basetype = ensure_correct_attribute_type(var.basetype, locn);
uint32_t mbr_type_id = ensure_correct_attribute_type(usable_type->self, locn);
ib_type.member_types[ib_mbr_idx] = mbr_type_id;
}
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, storage);
}
else if (is_builtin && is_tessellation_shader() && vtx_attrs_by_builtin.count(builtin))
{
uint32_t locn = vtx_attrs_by_builtin[builtin].location + i;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, storage);
}
if (get_decoration_bitset(var.self).get(DecorationIndex))
{
uint32_t index = get_decoration(var.self, DecorationIndex);
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, index);
}
// Copy interpolation decorations if needed
if (is_flat)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
if (is_noperspective)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
if (is_centroid)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
if (is_sample)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
if (!strip_array)
{
switch (storage)
{
case StorageClassInput:
entry_func.fixup_hooks_in.push_back(
[=, &var]() { statement(to_name(var.self), "[", i, "] = ", ib_var_ref, ".", mbr_name, ";"); });
break;
case StorageClassOutput:
entry_func.fixup_hooks_out.push_back([=, &var]() {
if (padded_output)
{
auto &padded_type = this->get<SPIRType>(type_id);
statement(
ib_var_ref, ".", mbr_name, " = ",
remap_swizzle(padded_type, usable_type->vecsize, join(to_name(var.self), "[", i, "]")),
";");
}
else
statement(ib_var_ref, ".", mbr_name, " = ", to_name(var.self), "[", i, "];");
});
break;
default:
break;
}
}
}
}
uint32_t CompilerMSL::get_accumulated_member_location(const SPIRVariable &var, uint32_t mbr_idx, bool strip_array)
{
auto &type = strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
uint32_t location = get_decoration(var.self, DecorationLocation);
for (uint32_t i = 0; i < mbr_idx; i++)
{
auto &mbr_type = get<SPIRType>(type.member_types[i]);
// Start counting from any place we have a new location decoration.
if (has_member_decoration(type.self, mbr_idx, DecorationLocation))
location = get_member_decoration(type.self, mbr_idx, DecorationLocation);
uint32_t location_count = 1;
if (mbr_type.columns > 1)
location_count = mbr_type.columns;
if (!mbr_type.array.empty())
for (uint32_t j = 0; j < uint32_t(mbr_type.array.size()); j++)
location_count *= to_array_size_literal(mbr_type, j);
location += location_count;
}
return location;
}
void CompilerMSL::add_composite_member_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
SPIRType &ib_type, SPIRVariable &var,
uint32_t mbr_idx, bool strip_array)
{
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
auto &var_type = strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
BuiltIn builtin;
bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
bool is_flat =
has_member_decoration(var_type.self, mbr_idx, DecorationFlat) || has_decoration(var.self, DecorationFlat);
bool is_noperspective = has_member_decoration(var_type.self, mbr_idx, DecorationNoPerspective) ||
has_decoration(var.self, DecorationNoPerspective);
bool is_centroid = has_member_decoration(var_type.self, mbr_idx, DecorationCentroid) ||
has_decoration(var.self, DecorationCentroid);
bool is_sample =
has_member_decoration(var_type.self, mbr_idx, DecorationSample) || has_decoration(var.self, DecorationSample);
uint32_t mbr_type_id = var_type.member_types[mbr_idx];
auto &mbr_type = get<SPIRType>(mbr_type_id);
uint32_t elem_cnt = 0;
if (is_matrix(mbr_type))
{
if (is_array(mbr_type))
SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");
elem_cnt = mbr_type.columns;
}
else if (is_array(mbr_type))
{
if (mbr_type.array.size() != 1)
SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");
elem_cnt = to_array_size_literal(mbr_type);
}
auto *usable_type = &mbr_type;
if (usable_type->pointer)
usable_type = &get<SPIRType>(usable_type->parent_type);
while (is_array(*usable_type) || is_matrix(*usable_type))
usable_type = &get<SPIRType>(usable_type->parent_type);
for (uint32_t i = 0; i < elem_cnt; i++)
{
// Add a reference to the variable type to the interface struct.
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
ib_type.member_types.push_back(usable_type->self);
// Give the member a name
string mbr_name = ensure_valid_name(join(to_qualified_member_name(var_type, mbr_idx), "_", i), "m");
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
if (has_member_decoration(var_type.self, mbr_idx, DecorationLocation))
{
uint32_t locn = get_member_decoration(var_type.self, mbr_idx, DecorationLocation) + i;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, storage);
}
else if (has_decoration(var.self, DecorationLocation))
{
uint32_t locn = get_accumulated_member_location(var, mbr_idx, strip_array) + i;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, storage);
}
else if (is_builtin && is_tessellation_shader() && vtx_attrs_by_builtin.count(builtin))
{
uint32_t locn = vtx_attrs_by_builtin[builtin].location + i;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, storage);
}
if (has_member_decoration(var_type.self, mbr_idx, DecorationComponent))
SPIRV_CROSS_THROW("DecorationComponent on matrices and arrays make little sense.");
// Copy interpolation decorations if needed
if (is_flat)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
if (is_noperspective)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
if (is_centroid)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
if (is_sample)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, mbr_idx);
// Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate.
if (!strip_array)
{
switch (storage)
{
case StorageClassInput:
entry_func.fixup_hooks_in.push_back([=, &var, &var_type]() {
statement(to_name(var.self), ".", to_member_name(var_type, mbr_idx), "[", i, "] = ", ib_var_ref,
".", mbr_name, ";");
});
break;
case StorageClassOutput:
entry_func.fixup_hooks_out.push_back([=, &var, &var_type]() {
statement(ib_var_ref, ".", mbr_name, " = ", to_name(var.self), ".",
to_member_name(var_type, mbr_idx), "[", i, "];");
});
break;
default:
break;
}
}
}
}
void CompilerMSL::add_plain_member_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
SPIRType &ib_type, SPIRVariable &var, uint32_t mbr_idx,
bool strip_array)
{
auto &var_type = strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
BuiltIn builtin = BuiltInMax;
bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
bool is_flat =
has_member_decoration(var_type.self, mbr_idx, DecorationFlat) || has_decoration(var.self, DecorationFlat);
bool is_noperspective = has_member_decoration(var_type.self, mbr_idx, DecorationNoPerspective) ||
has_decoration(var.self, DecorationNoPerspective);
bool is_centroid = has_member_decoration(var_type.self, mbr_idx, DecorationCentroid) ||
has_decoration(var.self, DecorationCentroid);
bool is_sample =
has_member_decoration(var_type.self, mbr_idx, DecorationSample) || has_decoration(var.self, DecorationSample);
// Add a reference to the member to the interface struct.
uint32_t mbr_type_id = var_type.member_types[mbr_idx];
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
mbr_type_id = ensure_correct_builtin_type(mbr_type_id, builtin);
var_type.member_types[mbr_idx] = mbr_type_id;
ib_type.member_types.push_back(mbr_type_id);
// Give the member a name
string mbr_name = ensure_valid_name(to_qualified_member_name(var_type, mbr_idx), "m");
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
// Update the original variable reference to include the structure reference
string qual_var_name = ib_var_ref + "." + mbr_name;
if (is_builtin && !strip_array)
{
// For the builtin gl_PerVertex, we cannot treat it as a block anyways,
// so redirect to qualified name.
set_member_qualified_name(var_type.self, mbr_idx, qual_var_name);
}
else if (!strip_array)
{
// Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate.
switch (storage)
{
case StorageClassInput:
entry_func.fixup_hooks_in.push_back([=, &var, &var_type]() {
statement(to_name(var.self), ".", to_member_name(var_type, mbr_idx), " = ", qual_var_name, ";");
});
break;
case StorageClassOutput:
entry_func.fixup_hooks_out.push_back([=, &var, &var_type]() {
statement(qual_var_name, " = ", to_name(var.self), ".", to_member_name(var_type, mbr_idx), ";");
});
break;
default:
break;
}
}
// Copy the variable location from the original variable to the member
if (has_member_decoration(var_type.self, mbr_idx, DecorationLocation))
{
uint32_t locn = get_member_decoration(var_type.self, mbr_idx, DecorationLocation);
if (storage == StorageClassInput && (get_execution_model() == ExecutionModelVertex || is_tessellation_shader()))
{
mbr_type_id = ensure_correct_attribute_type(mbr_type_id, locn);
var_type.member_types[mbr_idx] = mbr_type_id;
ib_type.member_types[ib_mbr_idx] = mbr_type_id;
}
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, storage);
}
else if (has_decoration(var.self, DecorationLocation))
{
// The block itself might have a location and in this case, all members of the block
// receive incrementing locations.
uint32_t locn = get_accumulated_member_location(var, mbr_idx, strip_array);
if (storage == StorageClassInput && (get_execution_model() == ExecutionModelVertex || is_tessellation_shader()))
{
mbr_type_id = ensure_correct_attribute_type(mbr_type_id, locn);
var_type.member_types[mbr_idx] = mbr_type_id;
ib_type.member_types[ib_mbr_idx] = mbr_type_id;
}
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, storage);
}
else if (is_builtin && is_tessellation_shader() && vtx_attrs_by_builtin.count(builtin))
{
uint32_t locn = 0;
auto builtin_itr = vtx_attrs_by_builtin.find(builtin);
if (builtin_itr != end(vtx_attrs_by_builtin))
locn = builtin_itr->second.location;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, storage);
}
// Copy the component location, if present.
if (has_member_decoration(var_type.self, mbr_idx, DecorationComponent))
{
uint32_t comp = get_member_decoration(var_type.self, mbr_idx, DecorationComponent);
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp);
}
// Mark the member as builtin if needed
if (is_builtin)
{
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
if (builtin == BuiltInPosition && storage == StorageClassOutput)
qual_pos_var_name = qual_var_name;
}
// Copy interpolation decorations if needed
if (is_flat)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
if (is_noperspective)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
if (is_centroid)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
if (is_sample)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, mbr_idx);
}
// In Metal, the tessellation levels are stored as tightly packed half-precision floating point values.
// But, stage-in attribute offsets and strides must be multiples of four, so we can't pass the levels
// individually. Therefore, we must pass them as vectors. Triangles get a single float4, with the outer
// levels in 'xyz' and the inner level in 'w'. Quads get a float4 containing the outer levels and a
// float2 containing the inner levels.
void CompilerMSL::add_tess_level_input_to_interface_block(const std::string &ib_var_ref, SPIRType &ib_type,
SPIRVariable &var)
{
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
auto &var_type = get_variable_element_type(var);
BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
// Force the variable to have the proper name.
set_name(var.self, builtin_to_glsl(builtin, StorageClassFunction));
if (get_entry_point().flags.get(ExecutionModeTriangles))
{
// Triangles are tricky, because we want only one member in the struct.
// We need to declare the variable early and at entry-point scope.
entry_func.add_local_variable(var.self);
vars_needing_early_declaration.push_back(var.self);
string mbr_name = "gl_TessLevel";
// If we already added the other one, we can skip this step.
if (!added_builtin_tess_level)
{
// Add a reference to the variable type to the interface struct.
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
uint32_t type_id = build_extended_vector_type(var_type.self, 4);
ib_type.member_types.push_back(type_id);
// Give the member a name
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
// There is no qualified alias since we need to flatten the internal array on return.
if (get_decoration_bitset(var.self).get(DecorationLocation))
{
uint32_t locn = get_decoration(var.self, DecorationLocation);
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, StorageClassInput);
}
else if (vtx_attrs_by_builtin.count(builtin))
{
uint32_t locn = vtx_attrs_by_builtin[builtin].location;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, StorageClassInput);
}
added_builtin_tess_level = true;
}
switch (builtin)
{
case BuiltInTessLevelOuter:
entry_func.fixup_hooks_in.push_back([=, &var]() {
statement(to_name(var.self), "[0] = ", ib_var_ref, ".", mbr_name, ".x;");
statement(to_name(var.self), "[1] = ", ib_var_ref, ".", mbr_name, ".y;");
statement(to_name(var.self), "[2] = ", ib_var_ref, ".", mbr_name, ".z;");
});
break;
case BuiltInTessLevelInner:
entry_func.fixup_hooks_in.push_back(
[=, &var]() { statement(to_name(var.self), "[0] = ", ib_var_ref, ".", mbr_name, ".w;"); });
break;
default:
assert(false);
break;
}
}
else
{
// Add a reference to the variable type to the interface struct.
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
uint32_t type_id = build_extended_vector_type(var_type.self, builtin == BuiltInTessLevelOuter ? 4 : 2);
// Change the type of the variable, too.
uint32_t ptr_type_id = ir.increase_bound_by(1);
auto &new_var_type = set<SPIRType>(ptr_type_id, get<SPIRType>(type_id));
new_var_type.pointer = true;
new_var_type.storage = StorageClassInput;
new_var_type.parent_type = type_id;
var.basetype = ptr_type_id;
ib_type.member_types.push_back(type_id);
// Give the member a name
string mbr_name = to_expression(var.self);
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
// Since vectors can be indexed like arrays, there is no need to unpack this. We can
// just refer to the vector directly. So give it a qualified alias.
string qual_var_name = ib_var_ref + "." + mbr_name;
ir.meta[var.self].decoration.qualified_alias = qual_var_name;
if (get_decoration_bitset(var.self).get(DecorationLocation))
{
uint32_t locn = get_decoration(var.self, DecorationLocation);
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, StorageClassInput);
}
else if (vtx_attrs_by_builtin.count(builtin))
{
uint32_t locn = vtx_attrs_by_builtin[builtin].location;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, StorageClassInput);
}
}
}
void CompilerMSL::add_variable_to_interface_block(StorageClass storage, const string &ib_var_ref, SPIRType &ib_type,
SPIRVariable &var, bool strip_array)
{
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
// Tessellation control I/O variables and tessellation evaluation per-point inputs are
// usually declared as arrays. In these cases, we want to add the element type to the
// interface block, since in Metal it's the interface block itself which is arrayed.
auto &var_type = strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
bool is_builtin = is_builtin_variable(var);
auto builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
if (var_type.basetype == SPIRType::Struct)
{
if (!is_builtin_type(var_type) && (!capture_output_to_buffer || storage == StorageClassInput) && !strip_array)
{
// For I/O blocks or structs, we will need to pass the block itself around
// to functions if they are used globally in leaf functions.
// Rather than passing down member by member,
// we unflatten I/O blocks while running the shader,
// and pass the actual struct type down to leaf functions.
// We then unflatten inputs, and flatten outputs in the "fixup" stages.
entry_func.add_local_variable(var.self);
vars_needing_early_declaration.push_back(var.self);
}
if (capture_output_to_buffer && storage != StorageClassInput && !has_decoration(var_type.self, DecorationBlock))
{
// In Metal tessellation shaders, the interface block itself is arrayed. This makes things
// very complicated, since stage-in structures in MSL don't support nested structures.
// Luckily, for stage-out when capturing output, we can avoid this and just add
// composite members directly, because the stage-out structure is stored to a buffer,
// not returned.
add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, strip_array);
}
else
{
// Flatten the struct members into the interface struct
for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(var_type.member_types.size()); mbr_idx++)
{
builtin = BuiltInMax;
is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
auto &mbr_type = get<SPIRType>(var_type.member_types[mbr_idx]);
if (!is_builtin || has_active_builtin(builtin, storage))
{
if ((!is_builtin ||
(storage == StorageClassInput && get_execution_model() != ExecutionModelFragment)) &&
(storage == StorageClassInput || storage == StorageClassOutput) &&
(is_matrix(mbr_type) || is_array(mbr_type)))
{
add_composite_member_variable_to_interface_block(storage, ib_var_ref, ib_type, var, mbr_idx,
strip_array);
}
else
{
add_plain_member_variable_to_interface_block(storage, ib_var_ref, ib_type, var, mbr_idx,
strip_array);
}
}
}
}
}
else if (get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput &&
!strip_array && is_builtin && (builtin == BuiltInTessLevelOuter || builtin == BuiltInTessLevelInner))
{
add_tess_level_input_to_interface_block(ib_var_ref, ib_type, var);
}
else if (var_type.basetype == SPIRType::Boolean || var_type.basetype == SPIRType::Char ||
type_is_integral(var_type) || type_is_floating_point(var_type) || var_type.basetype == SPIRType::Boolean)
{
if (!is_builtin || has_active_builtin(builtin, storage))
{
// MSL does not allow matrices or arrays in input or output variables, so need to handle it specially.
if ((!is_builtin || (storage == StorageClassInput && get_execution_model() != ExecutionModelFragment)) &&
(storage == StorageClassInput || (storage == StorageClassOutput && !capture_output_to_buffer)) &&
(is_matrix(var_type) || is_array(var_type)))
{
add_composite_variable_to_interface_block(storage, ib_var_ref, ib_type, var, strip_array);
}
else
{
add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, strip_array);
}
}
}
}
// Fix up the mapping of variables to interface member indices, which is used to compile access chains
// for per-vertex variables in a tessellation control shader.
void CompilerMSL::fix_up_interface_member_indices(StorageClass storage, uint32_t ib_type_id)
{
// Only needed for tessellation shaders.
if (get_execution_model() != ExecutionModelTessellationControl &&
!(get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput))
return;
bool in_array = false;
for (uint32_t i = 0; i < ir.meta[ib_type_id].members.size(); i++)
{
auto &mbr_dec = ir.meta[ib_type_id].members[i];
uint32_t var_id = mbr_dec.extended.ib_orig_id;
if (!var_id)
continue;
auto &var = get<SPIRVariable>(var_id);
// Unfortunately, all this complexity is needed to handle flattened structs and/or
// arrays.
if (storage == StorageClassInput)
{
auto &type = get_variable_element_type(var);
if (is_array(type) || is_matrix(type))
{
if (in_array)
continue;
in_array = true;
set_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex, i);
}
else
{
if (type.basetype == SPIRType::Struct)
{
uint32_t mbr_idx =
get_extended_member_decoration(ib_type_id, i, SPIRVCrossDecorationInterfaceMemberIndex);
auto &mbr_type = get<SPIRType>(type.member_types[mbr_idx]);
if (is_array(mbr_type) || is_matrix(mbr_type))
{
if (in_array)
continue;
in_array = true;
set_extended_member_decoration(var_id, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, i);
}
else
{
in_array = false;
set_extended_member_decoration(var_id, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, i);
}
}
else
{
in_array = false;
set_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex, i);
}
}
}
else
set_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex, i);
}
}
// Add an interface structure for the type of storage, which is either StorageClassInput or StorageClassOutput.
// Returns the ID of the newly added variable, or zero if no variable was added.
uint32_t CompilerMSL::add_interface_block(StorageClass storage, bool patch)
{
// Accumulate the variables that should appear in the interface struct
SmallVector<SPIRVariable *> vars;
bool incl_builtins = (storage == StorageClassOutput || is_tessellation_shader());
ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) {
auto &type = this->get<SPIRType>(var.basetype);
BuiltIn bi_type = BuiltIn(get_decoration(var_id, DecorationBuiltIn));
if (var.storage == storage && interface_variable_exists_in_entry_point(var.self) &&
!is_hidden_variable(var, incl_builtins) && type.pointer &&
(has_decoration(var_id, DecorationPatch) || is_patch_block(type)) == patch &&
(!is_builtin_variable(var) || bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance || bi_type == BuiltInLayer ||
bi_type == BuiltInViewportIndex || bi_type == BuiltInFragDepth || bi_type == BuiltInSampleMask ||
(get_execution_model() == ExecutionModelTessellationEvaluation &&
(bi_type == BuiltInTessLevelOuter || bi_type == BuiltInTessLevelInner))))
{
vars.push_back(&var);
}
});
// If no variables qualify, leave.
// For patch input in a tessellation evaluation shader, the per-vertex stage inputs
// are included in a special patch control point array.
if (vars.empty() && !(storage == StorageClassInput && patch && stage_in_var_id))
return 0;
// Add a new typed variable for this interface structure.
// The initializer expression is allocated here, but populated when the function
// declaraion is emitted, because it is cleared after each compilation pass.
uint32_t next_id = ir.increase_bound_by(3);
uint32_t ib_type_id = next_id++;
auto &ib_type = set<SPIRType>(ib_type_id);
ib_type.basetype = SPIRType::Struct;
ib_type.storage = storage;
set_decoration(ib_type_id, DecorationBlock);
uint32_t ib_var_id = next_id++;
auto &var = set<SPIRVariable>(ib_var_id, ib_type_id, storage, 0);
var.initializer = next_id++;
string ib_var_ref;
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
switch (storage)
{
case StorageClassInput:
ib_var_ref = patch ? patch_stage_in_var_name : stage_in_var_name;
if (get_execution_model() == ExecutionModelTessellationControl)
{
// Add a hook to populate the shared workgroup memory containing
// the gl_in array.
entry_func.fixup_hooks_in.push_back([=]() {
// Can't use PatchVertices yet; the hook for that may not have run yet.
statement("if (", to_expression(builtin_invocation_id_id), " < ", "spvIndirectParams[0])");
statement(" ", input_wg_var_name, "[", to_expression(builtin_invocation_id_id), "] = ", ib_var_ref,
";");
statement("threadgroup_barrier(mem_flags::mem_threadgroup);");
statement("if (", to_expression(builtin_invocation_id_id), " >= ", get_entry_point().output_vertices,
")");
statement(" return;");
});
}
break;
case StorageClassOutput:
{
ib_var_ref = patch ? patch_stage_out_var_name : stage_out_var_name;
// Add the output interface struct as a local variable to the entry function.
// If the entry point should return the output struct, set the entry function
// to return the output interface struct, otherwise to return nothing.
// Indicate the output var requires early initialization.
bool ep_should_return_output = !get_is_rasterization_disabled();
uint32_t rtn_id = ep_should_return_output ? ib_var_id : 0;
if (!capture_output_to_buffer)
{
entry_func.add_local_variable(ib_var_id);
for (auto &blk_id : entry_func.blocks)
{
auto &blk = get<SPIRBlock>(blk_id);
if (blk.terminator == SPIRBlock::Return)
blk.return_value = rtn_id;
}
vars_needing_early_declaration.push_back(ib_var_id);
}
else
{
switch (get_execution_model())
{
case ExecutionModelVertex:
case ExecutionModelTessellationEvaluation:
// Instead of declaring a struct variable to hold the output and then
// copying that to the output buffer, we'll declare the output variable
// as a reference to the final output element in the buffer. Then we can
// avoid the extra copy.
entry_func.fixup_hooks_in.push_back([=]() {
if (stage_out_var_id)
{
// The first member of the indirect buffer is always the number of vertices
// to draw.
statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref, " = ",
output_buffer_var_name, "[(", to_expression(builtin_instance_idx_id), " - ",
to_expression(builtin_base_instance_id), ") * spvIndirectParams[0] + ",
to_expression(builtin_vertex_idx_id), " - ", to_expression(builtin_base_vertex_id),
"];");
}
});
break;
case ExecutionModelTessellationControl:
if (patch)
entry_func.fixup_hooks_in.push_back([=]() {
statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref, " = ",
patch_output_buffer_var_name, "[", to_expression(builtin_primitive_id_id), "];");
});
else
entry_func.fixup_hooks_in.push_back([=]() {
statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_out = &",
output_buffer_var_name, "[", to_expression(builtin_primitive_id_id), " * ",
get_entry_point().output_vertices, "];");
});
break;
default:
break;
}
}
break;
}
default:
break;
}
set_name(ib_type_id, to_name(ir.default_entry_point) + "_" + ib_var_ref);
set_name(ib_var_id, ib_var_ref);
for (auto p_var : vars)
{
bool strip_array =
(get_execution_model() == ExecutionModelTessellationControl ||
(get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput)) &&
!patch;
add_variable_to_interface_block(storage, ib_var_ref, ib_type, *p_var, strip_array);
}
// Sort the members of the structure by their locations.
MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::Location);
member_sorter.sort();
// The member indices were saved to the original variables, but after the members
// were sorted, those indices are now likely incorrect. Fix those up now.
if (!patch)
fix_up_interface_member_indices(storage, ib_type_id);
// For patch inputs, add one more member, holding the array of control point data.
if (get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput && patch &&
stage_in_var_id)
{
uint32_t pcp_type_id = ir.increase_bound_by(1);
auto &pcp_type = set<SPIRType>(pcp_type_id, ib_type);
pcp_type.basetype = SPIRType::ControlPointArray;
pcp_type.parent_type = pcp_type.type_alias = get_stage_in_struct_type().self;
pcp_type.storage = storage;
ir.meta[pcp_type_id] = ir.meta[ib_type.self];
uint32_t mbr_idx = uint32_t(ib_type.member_types.size());
ib_type.member_types.push_back(pcp_type_id);
set_member_name(ib_type.self, mbr_idx, "gl_in");
}
return ib_var_id;
}
uint32_t CompilerMSL::add_interface_block_pointer(uint32_t ib_var_id, StorageClass storage)
{
if (!ib_var_id)
return 0;
uint32_t ib_ptr_var_id;
uint32_t next_id = ir.increase_bound_by(3);
auto &ib_type = expression_type(ib_var_id);
if (get_execution_model() == ExecutionModelTessellationControl)
{
// Tessellation control per-vertex I/O is presented as an array, so we must
// do the same with our struct here.
uint32_t ib_ptr_type_id = next_id++;
auto &ib_ptr_type = set<SPIRType>(ib_ptr_type_id, ib_type);
ib_ptr_type.parent_type = ib_ptr_type.type_alias = ib_type.self;
ib_ptr_type.pointer = true;
ib_ptr_type.storage = storage == StorageClassInput ? StorageClassWorkgroup : StorageClassStorageBuffer;
ir.meta[ib_ptr_type_id] = ir.meta[ib_type.self];
// To ensure that get_variable_data_type() doesn't strip off the pointer,
// which we need, use another pointer.
uint32_t ib_ptr_ptr_type_id = next_id++;
auto &ib_ptr_ptr_type = set<SPIRType>(ib_ptr_ptr_type_id, ib_ptr_type);
ib_ptr_ptr_type.parent_type = ib_ptr_type_id;
ib_ptr_ptr_type.type_alias = ib_type.self;
ib_ptr_ptr_type.storage = StorageClassFunction;
ir.meta[ib_ptr_ptr_type_id] = ir.meta[ib_type.self];
ib_ptr_var_id = next_id;
set<SPIRVariable>(ib_ptr_var_id, ib_ptr_ptr_type_id, StorageClassFunction, 0);
set_name(ib_ptr_var_id, storage == StorageClassInput ? input_wg_var_name : "gl_out");
}
else
{
// Tessellation evaluation per-vertex inputs are also presented as arrays.
// But, in Metal, this array uses a very special type, 'patch_control_point<T>',
// which is a container that can be used to access the control point data.
// To represent this, a special 'ControlPointArray' type has been added to the
// SPIRV-Cross type system. It should only be generated by and seen in the MSL
// backend (i.e. this one).
uint32_t pcp_type_id = next_id++;
auto &pcp_type = set<SPIRType>(pcp_type_id, ib_type);
pcp_type.basetype = SPIRType::ControlPointArray;
pcp_type.parent_type = pcp_type.type_alias = ib_type.self;
pcp_type.storage = storage;
ir.meta[pcp_type_id] = ir.meta[ib_type.self];
ib_ptr_var_id = next_id;
set<SPIRVariable>(ib_ptr_var_id, pcp_type_id, storage, 0);
set_name(ib_ptr_var_id, "gl_in");
ir.meta[ib_ptr_var_id].decoration.qualified_alias = join(patch_stage_in_var_name, ".gl_in");
}
return ib_ptr_var_id;
}
// Ensure that the type is compatible with the builtin.
// If it is, simply return the given type ID.
// Otherwise, create a new type, and return it's ID.
uint32_t CompilerMSL::ensure_correct_builtin_type(uint32_t type_id, BuiltIn builtin)
{
auto &type = get<SPIRType>(type_id);
if ((builtin == BuiltInSampleMask && is_array(type)) ||
((builtin == BuiltInLayer || builtin == BuiltInViewportIndex) && type.basetype != SPIRType::UInt))
{
uint32_t next_id = ir.increase_bound_by(type.pointer ? 2 : 1);
uint32_t base_type_id = next_id++;
auto &base_type = set<SPIRType>(base_type_id);
base_type.basetype = SPIRType::UInt;
base_type.width = 32;
if (!type.pointer)
return base_type_id;
uint32_t ptr_type_id = next_id++;
auto &ptr_type = set<SPIRType>(ptr_type_id);
ptr_type = base_type;
ptr_type.pointer = true;
ptr_type.storage = type.storage;
ptr_type.parent_type = base_type_id;
return ptr_type_id;
}
return type_id;
}
// Ensure that the type is compatible with the vertex attribute.
// If it is, simply return the given type ID.
// Otherwise, create a new type, and return its ID.
uint32_t CompilerMSL::ensure_correct_attribute_type(uint32_t type_id, uint32_t location)
{
auto &type = get<SPIRType>(type_id);
auto p_va = vtx_attrs_by_location.find(location);
if (p_va == end(vtx_attrs_by_location))
return type_id;
switch (p_va->second.format)
{
case MSL_VERTEX_FORMAT_UINT8:
{
switch (type.basetype)
{
case SPIRType::UByte:
case SPIRType::UShort:
case SPIRType::UInt:
return type_id;
case SPIRType::Short:
case SPIRType::Int:
break;
default:
SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader");
}
uint32_t next_id = ir.increase_bound_by(type.pointer ? 2 : 1);
uint32_t base_type_id = next_id++;
auto &base_type = set<SPIRType>(base_type_id);
base_type = type;
base_type.basetype = type.basetype == SPIRType::Short ? SPIRType::UShort : SPIRType::UInt;
base_type.pointer = false;
if (!type.pointer)
return base_type_id;
uint32_t ptr_type_id = next_id++;
auto &ptr_type = set<SPIRType>(ptr_type_id);
ptr_type = base_type;
ptr_type.pointer = true;
ptr_type.storage = type.storage;
ptr_type.parent_type = base_type_id;
return ptr_type_id;
}
case MSL_VERTEX_FORMAT_UINT16:
{
switch (type.basetype)
{
case SPIRType::UShort:
case SPIRType::UInt:
return type_id;
case SPIRType::Int:
break;
default:
SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader");
}
uint32_t next_id = ir.increase_bound_by(type.pointer ? 2 : 1);
uint32_t base_type_id = next_id++;
auto &base_type = set<SPIRType>(base_type_id);
base_type = type;
base_type.basetype = SPIRType::UInt;
base_type.pointer = false;
if (!type.pointer)
return base_type_id;
uint32_t ptr_type_id = next_id++;
auto &ptr_type = set<SPIRType>(ptr_type_id);
ptr_type = base_type;
ptr_type.pointer = true;
ptr_type.storage = type.storage;
ptr_type.parent_type = base_type_id;
return ptr_type_id;
}
default:
case MSL_VERTEX_FORMAT_OTHER:
break;
}
return type_id;
}
// Sort the members of the struct type by offset, and pack and then pad members where needed
// to align MSL members with SPIR-V offsets. The struct members are iterated twice. Packing
// occurs first, followed by padding, because packing a member reduces both its size and its
// natural alignment, possibly requiring a padding member to be added ahead of it.
void CompilerMSL::align_struct(SPIRType &ib_type)
{
uint32_t &ib_type_id = ib_type.self;
// Sort the members of the interface structure by their offset.
// They should already be sorted per SPIR-V spec anyway.
MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::Offset);
member_sorter.sort();
uint32_t mbr_cnt = uint32_t(ib_type.member_types.size());
// Test the alignment of each member, and if a member should be closer to the previous
// member than the default spacing expects, it is likely that the previous member is in
// a packed format. If so, and the previous member is packable, pack it.
// For example...this applies to any 3-element vector that is followed by a scalar.
uint32_t curr_offset = 0;
for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
{
if (is_member_packable(ib_type, mbr_idx))
{
set_extended_member_decoration(ib_type_id, mbr_idx, SPIRVCrossDecorationPacked);
set_extended_member_decoration(ib_type_id, mbr_idx, SPIRVCrossDecorationPackedType,
ib_type.member_types[mbr_idx]);
}
// Align current offset to the current member's default alignment.
size_t align_mask = get_declared_struct_member_alignment(ib_type, mbr_idx) - 1;
uint32_t aligned_curr_offset = uint32_t((curr_offset + align_mask) & ~align_mask);
// Fetch the member offset as declared in the SPIRV.
uint32_t mbr_offset = get_member_decoration(ib_type_id, mbr_idx, DecorationOffset);
if (mbr_offset > aligned_curr_offset)
{
// Since MSL and SPIR-V have slightly different struct member alignment and
// size rules, we'll pad to standard C-packing rules. If the member is farther
// away than C-packing, expects, add an inert padding member before the the member.
MSLStructMemberKey key = get_struct_member_key(ib_type_id, mbr_idx);
struct_member_padding[key] = mbr_offset - curr_offset;
}
// Increment the current offset to be positioned immediately after the current member.
// Don't do this for the last member since it can be unsized, and it is not relevant for padding purposes here.
if (mbr_idx + 1 < mbr_cnt)
curr_offset = mbr_offset + uint32_t(get_declared_struct_member_size(ib_type, mbr_idx));
}
}
// Returns whether the specified struct member supports a packable type
// variation that is smaller than the unpacked variation of that type.
bool CompilerMSL::is_member_packable(SPIRType &ib_type, uint32_t index)
{
// We've already marked it as packable
if (has_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPacked))
return true;
auto &mbr_type = get<SPIRType>(ib_type.member_types[index]);
uint32_t component_size = mbr_type.width / 8;
uint32_t unpacked_mbr_size;
if (mbr_type.vecsize == 3)
unpacked_mbr_size = component_size * (mbr_type.vecsize + 1) * mbr_type.columns;
else
unpacked_mbr_size = component_size * mbr_type.vecsize * mbr_type.columns;
// Special case for packing. Check for float[] or vec2[] in std140 layout. Here we actually need to pad out instead,
// but we will use the same mechanism.
if (is_array(mbr_type) && (is_scalar(mbr_type) || is_vector(mbr_type)) && mbr_type.vecsize <= 2 &&
type_struct_member_array_stride(ib_type, index) == 4 * component_size)
{
return true;
}
// Check for array of struct, where the SPIR-V declares an array stride which is larger than the struct itself.
// This can happen for struct A { float a }; A a[]; in std140 layout.
// TODO: Emit a padded struct which can be used for this purpose.
if (is_array(mbr_type) && mbr_type.basetype == SPIRType::Struct)
{
size_t declared_struct_size = get_declared_struct_size(mbr_type);
size_t alignment = get_declared_struct_member_alignment(ib_type, index);
declared_struct_size = (declared_struct_size + alignment - 1) & ~(alignment - 1);
if (type_struct_member_array_stride(ib_type, index) > declared_struct_size)
return true;
}
// TODO: Another sanity check for matrices. We currently do not support std140 matrices which need to be padded out per column.
//if (is_matrix(mbr_type) && mbr_type.vecsize <= 2 && type_struct_member_matrix_stride(ib_type, index) == 16)
// SPIRV_CROSS_THROW("Currently cannot support matrices with small vector size in std140 layout.");
// Only vectors or 3-row matrices need to be packed.
if (mbr_type.vecsize == 1 || (is_matrix(mbr_type) && mbr_type.vecsize != 3))
return false;
// Only row-major matrices need to be packed.
if (is_matrix(mbr_type) && !has_member_decoration(ib_type.self, index, DecorationRowMajor))
return false;
if (is_array(mbr_type))
{
// If member is an array, and the array stride is larger than the type needs, don't pack it.
// Take into consideration multi-dimentional arrays.
uint32_t md_elem_cnt = 1;
size_t last_elem_idx = mbr_type.array.size() - 1;
for (uint32_t i = 0; i < last_elem_idx; i++)
md_elem_cnt *= max(to_array_size_literal(mbr_type, i), 1u);
uint32_t unpacked_array_stride = unpacked_mbr_size * md_elem_cnt;
uint32_t array_stride = type_struct_member_array_stride(ib_type, index);
return unpacked_array_stride > array_stride;
}
else
{
uint32_t mbr_offset_curr = get_member_decoration(ib_type.self, index, DecorationOffset);
// For vectors, pack if the member's offset doesn't conform to the
// type's usual alignment. For example, a float3 at offset 4.
if (!is_matrix(mbr_type) && (mbr_offset_curr % unpacked_mbr_size))
return true;
// Pack if there is not enough space between this member and next.
// If last member, only pack if it's a row-major matrix.
if (index < ib_type.member_types.size() - 1)
{
uint32_t mbr_offset_next = get_member_decoration(ib_type.self, index + 1, DecorationOffset);
return unpacked_mbr_size > mbr_offset_next - mbr_offset_curr;
}
else
return is_matrix(mbr_type);
}
}
// Returns a combination of type ID and member index for use as hash key
MSLStructMemberKey CompilerMSL::get_struct_member_key(uint32_t type_id, uint32_t index)
{
MSLStructMemberKey k = type_id;
k <<= 32;
k += index;
return k;
}
void CompilerMSL::emit_store_statement(uint32_t lhs_expression, uint32_t rhs_expression)
{
if (!has_extended_decoration(lhs_expression, SPIRVCrossDecorationPacked) ||
get_extended_decoration(lhs_expression, SPIRVCrossDecorationPackedType) == 0)
{
CompilerGLSL::emit_store_statement(lhs_expression, rhs_expression);
}
else
{
// Special handling when storing to a float[] or float2[] in std140 layout.
auto &type = get<SPIRType>(get_extended_decoration(lhs_expression, SPIRVCrossDecorationPackedType));
string lhs = to_dereferenced_expression(lhs_expression);
string rhs = to_pointer_expression(rhs_expression);
// Unpack the expression so we can store to it with a float or float2.
// It's still an l-value, so it's fine. Most other unpacking of expressions turn them into r-values instead.
if (is_scalar(type) && is_array(type))
lhs = enclose_expression(lhs) + ".x";
else if (is_vector(type) && type.vecsize == 2 && is_array(type))
lhs = enclose_expression(lhs) + ".xy";
if (!optimize_read_modify_write(expression_type(rhs_expression), lhs, rhs))
statement(lhs, " = ", rhs, ";");
register_write(lhs_expression);
}
}
// Converts the format of the current expression from packed to unpacked,
// by wrapping the expression in a constructor of the appropriate type.
string CompilerMSL::unpack_expression_type(string expr_str, const SPIRType &type, uint32_t packed_type_id)
{
const SPIRType *packed_type = nullptr;
if (packed_type_id)
packed_type = &get<SPIRType>(packed_type_id);
// float[] and float2[] cases are really just padding, so directly swizzle from the backing float4 instead.
if (packed_type && is_array(*packed_type) && is_scalar(*packed_type))
return enclose_expression(expr_str) + ".x";
else if (packed_type && is_array(*packed_type) && is_vector(*packed_type) && packed_type->vecsize == 2)
return enclose_expression(expr_str) + ".xy";
else
return join(type_to_glsl(type), "(", expr_str, ")");
}
// Emits the file header info
void CompilerMSL::emit_header()
{
// This particular line can be overridden during compilation, so make it a flag and not a pragma line.
if (suppress_missing_prototypes)
statement("#pragma clang diagnostic ignored \"-Wmissing-prototypes\"");
for (auto &pragma : pragma_lines)
statement(pragma);
if (!pragma_lines.empty() || suppress_missing_prototypes)
statement("");
statement("#include <metal_stdlib>");
statement("#include <simd/simd.h>");
for (auto &header : header_lines)
statement(header);
statement("");
statement("using namespace metal;");
statement("");
for (auto &td : typedef_lines)
statement(td);
if (!typedef_lines.empty())
statement("");
}
void CompilerMSL::add_pragma_line(const string &line)
{
auto rslt = pragma_lines.insert(line);
if (rslt.second)
force_recompile();
}
void CompilerMSL::add_typedef_line(const string &line)
{
auto rslt = typedef_lines.insert(line);
if (rslt.second)
force_recompile();
}
// Emits any needed custom function bodies.
void CompilerMSL::emit_custom_functions()
{
for (uint32_t i = SPVFuncImplArrayCopyMultidimMax; i >= 2; i--)
if (spv_function_implementations.count(static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + i)))
spv_function_implementations.insert(static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + i - 1));
for (auto &spv_func : spv_function_implementations)
{
switch (spv_func)
{
case SPVFuncImplMod:
statement("// Implementation of the GLSL mod() function, which is slightly different than Metal fmod()");
statement("template<typename Tx, typename Ty>");
statement("Tx mod(Tx x, Ty y)");
begin_scope();
statement("return x - y * floor(x / y);");
end_scope();
statement("");
break;
case SPVFuncImplRadians:
statement("// Implementation of the GLSL radians() function");
statement("template<typename T>");
statement("T radians(T d)");
begin_scope();
statement("return d * T(0.01745329251);");
end_scope();
statement("");
break;
case SPVFuncImplDegrees:
statement("// Implementation of the GLSL degrees() function");
statement("template<typename T>");
statement("T degrees(T r)");
begin_scope();
statement("return r * T(57.2957795131);");
end_scope();
statement("");
break;
case SPVFuncImplFindILsb:
statement("// Implementation of the GLSL findLSB() function");
statement("template<typename T>");
statement("T findLSB(T x)");
begin_scope();
statement("return select(ctz(x), T(-1), x == T(0));");
end_scope();
statement("");
break;
case SPVFuncImplFindUMsb:
statement("// Implementation of the unsigned GLSL findMSB() function");
statement("template<typename T>");
statement("T findUMSB(T x)");
begin_scope();
statement("return select(clz(T(0)) - (clz(x) + T(1)), T(-1), x == T(0));");
end_scope();
statement("");
break;
case SPVFuncImplFindSMsb:
statement("// Implementation of the signed GLSL findMSB() function");
statement("template<typename T>");
statement("T findSMSB(T x)");
begin_scope();
statement("T v = select(x, T(-1) - x, x < T(0));");
statement("return select(clz(T(0)) - (clz(v) + T(1)), T(-1), v == T(0));");
end_scope();
statement("");
break;
case SPVFuncImplSSign:
statement("// Implementation of the GLSL sign() function for integer types");
statement("template<typename T, typename E = typename enable_if<is_integral<T>::value>::type>");
statement("T sign(T x)");
begin_scope();
statement("return select(select(select(x, T(0), x == T(0)), T(1), x > T(0)), T(-1), x < T(0));");
end_scope();
statement("");
break;
case SPVFuncImplArrayCopy:
statement("// Implementation of an array copy function to cover GLSL's ability to copy an array via "
"assignment.");
statement("template<typename T, uint N>");
statement("void spvArrayCopyFromStack1(thread T (&dst)[N], thread const T (&src)[N])");
begin_scope();
statement("for (uint i = 0; i < N; dst[i] = src[i], i++);");
end_scope();
statement("");
statement("template<typename T, uint N>");
statement("void spvArrayCopyFromConstant1(thread T (&dst)[N], constant T (&src)[N])");
begin_scope();
statement("for (uint i = 0; i < N; dst[i] = src[i], i++);");
end_scope();
statement("");
break;
case SPVFuncImplArrayOfArrayCopy2Dim:
case SPVFuncImplArrayOfArrayCopy3Dim:
case SPVFuncImplArrayOfArrayCopy4Dim:
case SPVFuncImplArrayOfArrayCopy5Dim:
case SPVFuncImplArrayOfArrayCopy6Dim:
{
static const char *function_name_tags[] = {
"FromStack",
"FromConstant",
};
static const char *src_address_space[] = {
"thread const",
"constant",
};
for (uint32_t variant = 0; variant < 2; variant++)
{
uint32_t dimensions = spv_func - SPVFuncImplArrayCopyMultidimBase;
string tmp = "template<typename T";
for (uint8_t i = 0; i < dimensions; i++)
{
tmp += ", uint ";
tmp += 'A' + i;
}
tmp += ">";
statement(tmp);
string array_arg;
for (uint8_t i = 0; i < dimensions; i++)
{
array_arg += "[";
array_arg += 'A' + i;
array_arg += "]";
}
statement("void spvArrayCopy", function_name_tags[variant], dimensions, "(thread T (&dst)", array_arg,
", ", src_address_space[variant], " T (&src)", array_arg, ")");
begin_scope();
statement("for (uint i = 0; i < A; i++)");
begin_scope();
statement("spvArrayCopy", function_name_tags[variant], dimensions - 1, "(dst[i], src[i]);");
end_scope();
end_scope();
statement("");
}
break;
}
case SPVFuncImplTexelBufferCoords:
{
string tex_width_str = convert_to_string(msl_options.texel_buffer_texture_width);
statement("// Returns 2D texture coords corresponding to 1D texel buffer coords");
statement("uint2 spvTexelBufferCoord(uint tc)");
begin_scope();
statement(join("return uint2(tc % ", tex_width_str, ", tc / ", tex_width_str, ");"));
end_scope();
statement("");
break;
}
case SPVFuncImplInverse4x4:
statement("// Returns the determinant of a 2x2 matrix.");
statement("inline float spvDet2x2(float a1, float a2, float b1, float b2)");
begin_scope();
statement("return a1 * b2 - b1 * a2;");
end_scope();
statement("");
statement("// Returns the determinant of a 3x3 matrix.");
statement("inline float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, "
"float c2, float c3)");
begin_scope();
statement("return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, "
"b2, b3);");
end_scope();
statement("");
statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
statement("float4x4 spvInverse4x4(float4x4 m)");
begin_scope();
statement("float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)");
statement_no_indent("");
statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
statement("adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
"m[3][3]);");
statement("adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
"m[3][3]);");
statement("adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], "
"m[3][3]);");
statement("adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], "
"m[2][3]);");
statement_no_indent("");
statement("adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
"m[3][3]);");
statement("adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
"m[3][3]);");
statement("adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], "
"m[3][3]);");
statement("adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], "
"m[2][3]);");
statement_no_indent("");
statement("adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
"m[3][3]);");
statement("adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
"m[3][3]);");
statement("adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], "
"m[3][3]);");
statement("adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], "
"m[2][3]);");
statement_no_indent("");
statement("adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
"m[3][2]);");
statement("adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
"m[3][2]);");
statement("adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], "
"m[3][2]);");
statement("adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], "
"m[2][2]);");
statement_no_indent("");
statement("// Calculate the determinant as a combination of the cofactors of the first row.");
statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] "
"* m[3][0]);");
statement_no_indent("");
statement("// Divide the classical adjoint matrix by the determinant.");
statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
end_scope();
statement("");
break;
case SPVFuncImplInverse3x3:
if (spv_function_implementations.count(SPVFuncImplInverse4x4) == 0)
{
statement("// Returns the determinant of a 2x2 matrix.");
statement("inline float spvDet2x2(float a1, float a2, float b1, float b2)");
begin_scope();
statement("return a1 * b2 - b1 * a2;");
end_scope();
statement("");
}
statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
statement("float3x3 spvInverse3x3(float3x3 m)");
begin_scope();
statement("float3x3 adj; // The adjoint matrix (inverse after dividing by determinant)");
statement_no_indent("");
statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
statement("adj[0][0] = spvDet2x2(m[1][1], m[1][2], m[2][1], m[2][2]);");
statement("adj[0][1] = -spvDet2x2(m[0][1], m[0][2], m[2][1], m[2][2]);");
statement("adj[0][2] = spvDet2x2(m[0][1], m[0][2], m[1][1], m[1][2]);");
statement_no_indent("");
statement("adj[1][0] = -spvDet2x2(m[1][0], m[1][2], m[2][0], m[2][2]);");
statement("adj[1][1] = spvDet2x2(m[0][0], m[0][2], m[2][0], m[2][2]);");
statement("adj[1][2] = -spvDet2x2(m[0][0], m[0][2], m[1][0], m[1][2]);");
statement_no_indent("");
statement("adj[2][0] = spvDet2x2(m[1][0], m[1][1], m[2][0], m[2][1]);");
statement("adj[2][1] = -spvDet2x2(m[0][0], m[0][1], m[2][0], m[2][1]);");
statement("adj[2][2] = spvDet2x2(m[0][0], m[0][1], m[1][0], m[1][1]);");
statement_no_indent("");
statement("// Calculate the determinant as a combination of the cofactors of the first row.");
statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]);");
statement_no_indent("");
statement("// Divide the classical adjoint matrix by the determinant.");
statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
end_scope();
statement("");
break;
case SPVFuncImplInverse2x2:
statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
statement("float2x2 spvInverse2x2(float2x2 m)");
begin_scope();
statement("float2x2 adj; // The adjoint matrix (inverse after dividing by determinant)");
statement_no_indent("");
statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
statement("adj[0][0] = m[1][1];");
statement("adj[0][1] = -m[0][1];");
statement_no_indent("");
statement("adj[1][0] = -m[1][0];");
statement("adj[1][1] = m[0][0];");
statement_no_indent("");
statement("// Calculate the determinant as a combination of the cofactors of the first row.");
statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]);");
statement_no_indent("");
statement("// Divide the classical adjoint matrix by the determinant.");
statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
end_scope();
statement("");
break;
case SPVFuncImplRowMajor2x3:
statement("// Implementation of a conversion of matrix content from RowMajor to ColumnMajor organization.");
statement("float2x3 spvConvertFromRowMajor2x3(float2x3 m)");
begin_scope();
statement("return float2x3(float3(m[0][0], m[0][2], m[1][1]), float3(m[0][1], m[1][0], m[1][2]));");
end_scope();
statement("");
break;
case SPVFuncImplRowMajor2x4:
statement("// Implementation of a conversion of matrix content from RowMajor to ColumnMajor organization.");
statement("float2x4 spvConvertFromRowMajor2x4(float2x4 m)");
begin_scope();
statement("return float2x4(float4(m[0][0], m[0][2], m[1][0], m[1][2]), float4(m[0][1], m[0][3], m[1][1], "
"m[1][3]));");
end_scope();
statement("");
break;
case SPVFuncImplRowMajor3x2:
statement("// Implementation of a conversion of matrix content from RowMajor to ColumnMajor organization.");
statement("float3x2 spvConvertFromRowMajor3x2(float3x2 m)");
begin_scope();
statement("return float3x2(float2(m[0][0], m[1][1]), float2(m[0][1], m[2][0]), float2(m[1][0], m[2][1]));");
end_scope();
statement("");
break;
case SPVFuncImplRowMajor3x4:
statement("// Implementation of a conversion of matrix content from RowMajor to ColumnMajor organization.");
statement("float3x4 spvConvertFromRowMajor3x4(float3x4 m)");
begin_scope();
statement("return float3x4(float4(m[0][0], m[0][3], m[1][2], m[2][1]), float4(m[0][1], m[1][0], m[1][3], "
"m[2][2]), float4(m[0][2], m[1][1], m[2][0], m[2][3]));");
end_scope();
statement("");
break;
case SPVFuncImplRowMajor4x2:
statement("// Implementation of a conversion of matrix content from RowMajor to ColumnMajor organization.");
statement("float4x2 spvConvertFromRowMajor4x2(float4x2 m)");
begin_scope();
statement("return float4x2(float2(m[0][0], m[2][0]), float2(m[0][1], m[2][1]), float2(m[1][0], m[3][0]), "
"float2(m[1][1], m[3][1]));");
end_scope();
statement("");
break;
case SPVFuncImplRowMajor4x3:
statement("// Implementation of a conversion of matrix content from RowMajor to ColumnMajor organization.");
statement("float4x3 spvConvertFromRowMajor4x3(float4x3 m)");
begin_scope();
statement("return float4x3(float3(m[0][0], m[1][1], m[2][2]), float3(m[0][1], m[1][2], m[3][0]), "
"float3(m[0][2], m[2][0], m[3][1]), float3(m[1][0], m[2][1], m[3][2]));");
end_scope();
statement("");
break;
case SPVFuncImplTextureSwizzle:
statement("enum class spvSwizzle : uint");
begin_scope();
statement("none = 0,");
statement("zero,");
statement("one,");
statement("red,");
statement("green,");
statement("blue,");
statement("alpha");
end_scope_decl();
statement("");
statement("template<typename T> struct spvRemoveReference { typedef T type; };");
statement("template<typename T> struct spvRemoveReference<thread T&> { typedef T type; };");
statement("template<typename T> struct spvRemoveReference<thread T&&> { typedef T type; };");
statement("template<typename T> inline constexpr thread T&& spvForward(thread typename "
"spvRemoveReference<T>::type& x)");
begin_scope();
statement("return static_cast<thread T&&>(x);");
end_scope();
statement("template<typename T> inline constexpr thread T&& spvForward(thread typename "
"spvRemoveReference<T>::type&& x)");
begin_scope();
statement("return static_cast<thread T&&>(x);");
end_scope();
statement("");
statement("template<typename T>");
statement("inline T spvGetSwizzle(vec<T, 4> x, T c, spvSwizzle s)");
begin_scope();
statement("switch (s)");
begin_scope();
statement("case spvSwizzle::none:");
statement(" return c;");
statement("case spvSwizzle::zero:");
statement(" return 0;");
statement("case spvSwizzle::one:");
statement(" return 1;");
statement("case spvSwizzle::red:");
statement(" return x.r;");
statement("case spvSwizzle::green:");
statement(" return x.g;");
statement("case spvSwizzle::blue:");
statement(" return x.b;");
statement("case spvSwizzle::alpha:");
statement(" return x.a;");
end_scope();
end_scope();
statement("");
statement("// Wrapper function that swizzles texture samples and fetches.");
statement("template<typename T>");
statement("inline vec<T, 4> spvTextureSwizzle(vec<T, 4> x, uint s)");
begin_scope();
statement("if (!s)");
statement(" return x;");
statement("return vec<T, 4>(spvGetSwizzle(x, x.r, spvSwizzle((s >> 0) & 0xFF)), "
"spvGetSwizzle(x, x.g, spvSwizzle((s >> 8) & 0xFF)), spvGetSwizzle(x, x.b, spvSwizzle((s >> 16) "
"& 0xFF)), "
"spvGetSwizzle(x, x.a, spvSwizzle((s >> 24) & 0xFF)));");
end_scope();
statement("");
statement("template<typename T>");
statement("inline T spvTextureSwizzle(T x, uint s)");
begin_scope();
statement("return spvTextureSwizzle(vec<T, 4>(x, 0, 0, 1), s).x;");
end_scope();
statement("");
statement("// Wrapper function that swizzles texture gathers.");
statement("template<typename T, typename Tex, typename... Ts>");
statement(
"inline vec<T, 4> spvGatherSwizzle(sampler s, const thread Tex& t, Ts... params, component c, uint sw) "
"METAL_CONST_ARG(c)");
begin_scope();
statement("if (sw)");
begin_scope();
statement("switch (spvSwizzle((sw >> (uint(c) * 8)) & 0xFF))");
begin_scope();
statement("case spvSwizzle::none:");
statement(" break;");
statement("case spvSwizzle::zero:");
statement(" return vec<T, 4>(0, 0, 0, 0);");
statement("case spvSwizzle::one:");
statement(" return vec<T, 4>(1, 1, 1, 1);");
statement("case spvSwizzle::red:");
statement(" return t.gather(s, spvForward<Ts>(params)..., component::x);");
statement("case spvSwizzle::green:");
statement(" return t.gather(s, spvForward<Ts>(params)..., component::y);");
statement("case spvSwizzle::blue:");
statement(" return t.gather(s, spvForward<Ts>(params)..., component::z);");
statement("case spvSwizzle::alpha:");
statement(" return t.gather(s, spvForward<Ts>(params)..., component::w);");
end_scope();
end_scope();
// texture::gather insists on its component parameter being a constant
// expression, so we need this silly workaround just to compile the shader.
statement("switch (c)");
begin_scope();
statement("case component::x:");
statement(" return t.gather(s, spvForward<Ts>(params)..., component::x);");
statement("case component::y:");
statement(" return t.gather(s, spvForward<Ts>(params)..., component::y);");
statement("case component::z:");
statement(" return t.gather(s, spvForward<Ts>(params)..., component::z);");
statement("case component::w:");
statement(" return t.gather(s, spvForward<Ts>(params)..., component::w);");
end_scope();
end_scope();
statement("");
statement("// Wrapper function that swizzles depth texture gathers.");
statement("template<typename T, typename Tex, typename... Ts>");
statement(
"inline vec<T, 4> spvGatherCompareSwizzle(sampler s, const thread Tex& t, Ts... params, uint sw) ");
begin_scope();
statement("if (sw)");
begin_scope();
statement("switch (spvSwizzle(sw & 0xFF))");
begin_scope();
statement("case spvSwizzle::none:");
statement("case spvSwizzle::red:");
statement(" break;");
statement("case spvSwizzle::zero:");
statement("case spvSwizzle::green:");
statement("case spvSwizzle::blue:");
statement("case spvSwizzle::alpha:");
statement(" return vec<T, 4>(0, 0, 0, 0);");
statement("case spvSwizzle::one:");
statement(" return vec<T, 4>(1, 1, 1, 1);");
end_scope();
end_scope();
statement("return t.gather_compare(s, spvForward<Ts>(params)...);");
end_scope();
statement("");
default:
break;
}
}
}
// Undefined global memory is not allowed in MSL.
// Declare constant and init to zeros. Use {}, as global constructors can break Metal.
void CompilerMSL::declare_undefined_values()
{
bool emitted = false;
ir.for_each_typed_id<SPIRUndef>([&](uint32_t, SPIRUndef &undef) {
auto &type = this->get<SPIRType>(undef.basetype);
statement("constant ", variable_decl(type, to_name(undef.self), undef.self), " = {};");
emitted = true;
});
if (emitted)
statement("");
}
void CompilerMSL::declare_constant_arrays()
{
// MSL cannot declare arrays inline (except when declaring a variable), so we must move them out to
// global constants directly, so we are able to use constants as variable expressions.
bool emitted = false;
ir.for_each_typed_id<SPIRConstant>([&](uint32_t, SPIRConstant &c) {
if (c.specialization)
return;
auto &type = this->get<SPIRType>(c.constant_type);
if (!type.array.empty())
{
auto name = to_name(c.self);
statement("constant ", variable_decl(type, name), " = ", constant_expression(c), ";");
emitted = true;
}
});
if (emitted)
statement("");
}
void CompilerMSL::emit_resources()
{
declare_constant_arrays();
declare_undefined_values();
// Emit the special [[stage_in]] and [[stage_out]] interface blocks which we created.
emit_interface_block(stage_out_var_id);
emit_interface_block(patch_stage_out_var_id);
emit_interface_block(stage_in_var_id);
emit_interface_block(patch_stage_in_var_id);
}
// Emit declarations for the specialization Metal function constants
void CompilerMSL::emit_specialization_constants_and_structs()
{
SpecializationConstant wg_x, wg_y, wg_z;
uint32_t workgroup_size_id = get_work_group_size_specialization_constants(wg_x, wg_y, wg_z);
bool emitted = false;
unordered_set<uint32_t> declared_structs;
for (auto &id_ : ir.ids_for_constant_or_type)
{
auto &id = ir.ids[id_];
if (id.get_type() == TypeConstant)
{
auto &c = id.get<SPIRConstant>();
if (c.self == workgroup_size_id)
{
// TODO: This can be expressed as a [[threads_per_threadgroup]] input semantic, but we need to know
// the work group size at compile time in SPIR-V, and [[threads_per_threadgroup]] would need to be passed around as a global.
// The work group size may be a specialization constant.
statement("constant uint3 ", builtin_to_glsl(BuiltInWorkgroupSize, StorageClassWorkgroup),
" [[maybe_unused]] = ", constant_expression(get<SPIRConstant>(workgroup_size_id)), ";");
emitted = true;
}
else if (c.specialization)
{
auto &type = get<SPIRType>(c.constant_type);
string sc_type_name = type_to_glsl(type);
string sc_name = to_name(c.self);
string sc_tmp_name = sc_name + "_tmp";
// Function constants are only supported in MSL 1.2 and later.
// If we don't support it just declare the "default" directly.
// This "default" value can be overridden to the true specialization constant by the API user.
// Specialization constants which are used as array length expressions cannot be function constants in MSL,
// so just fall back to macros.
if (msl_options.supports_msl_version(1, 2) && has_decoration(c.self, DecorationSpecId) &&
!c.is_used_as_array_length)
{
uint32_t constant_id = get_decoration(c.self, DecorationSpecId);
// Only scalar, non-composite values can be function constants.
statement("constant ", sc_type_name, " ", sc_tmp_name, " [[function_constant(", constant_id,
")]];");
statement("constant ", sc_type_name, " ", sc_name, " = is_function_constant_defined(", sc_tmp_name,
") ? ", sc_tmp_name, " : ", constant_expression(c), ";");
}
else if (has_decoration(c.self, DecorationSpecId))
{
// Fallback to macro overrides.
c.specialization_constant_macro_name =
constant_value_macro_name(get_decoration(c.self, DecorationSpecId));
statement("#ifndef ", c.specialization_constant_macro_name);
statement("#define ", c.specialization_constant_macro_name, " ", constant_expression(c));
statement("#endif");
statement("constant ", sc_type_name, " ", sc_name, " = ", c.specialization_constant_macro_name,
";");
}
else
{
// Composite specialization constants must be built from other specialization constants.
statement("constant ", sc_type_name, " ", sc_name, " = ", constant_expression(c), ";");
}
emitted = true;
}
}
else if (id.get_type() == TypeConstantOp)
{
auto &c = id.get<SPIRConstantOp>();
auto &type = get<SPIRType>(c.basetype);
auto name = to_name(c.self);
statement("constant ", variable_decl(type, name), " = ", constant_op_expression(c), ";");
emitted = true;
}
else if (id.get_type() == TypeType)
{
// Output non-builtin interface structs. These include local function structs
// and structs nested within uniform and read-write buffers.
auto &type = id.get<SPIRType>();
uint32_t type_id = type.self;
bool is_struct = (type.basetype == SPIRType::Struct) && type.array.empty();
bool is_block =
has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock);
bool is_builtin_block = is_block && is_builtin_type(type);
bool is_declarable_struct = is_struct && !is_builtin_block;
// We'll declare this later.
if (stage_out_var_id && get_stage_out_struct_type().self == type_id)
is_declarable_struct = false;
if (patch_stage_out_var_id && get_patch_stage_out_struct_type().self == type_id)
is_declarable_struct = false;
if (stage_in_var_id && get_stage_in_struct_type().self == type_id)
is_declarable_struct = false;
if (patch_stage_in_var_id && get_patch_stage_in_struct_type().self == type_id)
is_declarable_struct = false;
// Align and emit declarable structs...but avoid declaring each more than once.
if (is_declarable_struct && declared_structs.count(type_id) == 0)
{
if (emitted)
statement("");
emitted = false;
declared_structs.insert(type_id);
if (has_extended_decoration(type_id, SPIRVCrossDecorationPacked))
align_struct(type);
// Make sure we declare the underlying struct type, and not the "decorated" type with pointers, etc.
emit_struct(get<SPIRType>(type_id));
}
}
}
if (emitted)
statement("");
}
void CompilerMSL::emit_binary_unord_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
const char *op)
{
bool forward = should_forward(op0) && should_forward(op1);
emit_op(result_type, result_id,
join("(isunordered(", to_enclosed_unpacked_expression(op0), ", ", to_enclosed_unpacked_expression(op1),
") || ", to_enclosed_unpacked_expression(op0), " ", op, " ", to_enclosed_unpacked_expression(op1),
")"),
forward);
inherit_expression_dependencies(result_id, op0);
inherit_expression_dependencies(result_id, op1);
}
bool CompilerMSL::emit_tessellation_access_chain(const uint32_t *ops, uint32_t length)
{
// If this is a per-vertex output, remap it to the I/O array buffer.
auto *var = maybe_get<SPIRVariable>(ops[2]);
BuiltIn bi_type = BuiltIn(get_decoration(ops[2], DecorationBuiltIn));
if (var &&
(var->storage == StorageClassInput ||
(get_execution_model() == ExecutionModelTessellationControl && var->storage == StorageClassOutput)) &&
!(has_decoration(ops[2], DecorationPatch) || is_patch_block(get_variable_data_type(*var))) &&
(!is_builtin_variable(*var) || bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance ||
get_variable_data_type(*var).basetype == SPIRType::Struct))
{
AccessChainMeta meta;
SmallVector<uint32_t> indices;
uint32_t next_id = ir.increase_bound_by(2);
indices.reserve(length - 3 + 1);
uint32_t type_id = next_id++;
SPIRType new_uint_type;
new_uint_type.basetype = SPIRType::UInt;
new_uint_type.width = 32;
set<SPIRType>(type_id, new_uint_type);
indices.push_back(ops[3]);
uint32_t const_mbr_id = next_id++;
uint32_t index = get_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex);
uint32_t ptr = var->storage == StorageClassInput ? stage_in_ptr_var_id : stage_out_ptr_var_id;
if (var->storage == StorageClassInput || has_decoration(get_variable_element_type(*var).self, DecorationBlock))
{
uint32_t i = 4;
auto *type = &get_variable_element_type(*var);
if (index == uint32_t(-1) && length >= 5)
{
// Maybe this is a struct type in the input class, in which case
// we put it as a decoration on the corresponding member.
index = get_extended_member_decoration(ops[2], get_constant(ops[4]).scalar(),
SPIRVCrossDecorationInterfaceMemberIndex);
assert(index != uint32_t(-1));
i++;
type = &get<SPIRType>(type->member_types[get_constant(ops[4]).scalar()]);
}
// In this case, we flattened structures and arrays, so now we have to
// combine the following indices. If we encounter a non-constant index,
// we're hosed.
for (; i < length; ++i)
{
if (!is_array(*type) && !is_matrix(*type) && type->basetype != SPIRType::Struct)
break;
auto &c = get_constant(ops[i]);
index += c.scalar();
if (type->parent_type)
type = &get<SPIRType>(type->parent_type);
else if (type->basetype == SPIRType::Struct)
type = &get<SPIRType>(type->member_types[c.scalar()]);
}
// If the access chain terminates at a composite type, the composite
// itself might be copied. In that case, we must unflatten it.
if (is_matrix(*type) || is_array(*type) || type->basetype == SPIRType::Struct)
{
std::string temp_name = join(to_name(var->self), "_", ops[1]);
statement(variable_decl(*type, temp_name, var->self), ";");
// Set up the initializer for this temporary variable.
indices.push_back(const_mbr_id);
if (type->basetype == SPIRType::Struct)
{
for (uint32_t j = 0; j < type->member_types.size(); j++)
{
index = get_extended_member_decoration(ops[2], j, SPIRVCrossDecorationInterfaceMemberIndex);
const auto &mbr_type = get<SPIRType>(type->member_types[j]);
if (is_matrix(mbr_type))
{
for (uint32_t k = 0; k < mbr_type.columns; k++, index++)
{
set<SPIRConstant>(const_mbr_id, type_id, index, false);
auto e = access_chain(ptr, indices.data(), uint32_t(indices.size()), mbr_type, nullptr,
true);
statement(temp_name, ".", to_member_name(*type, j), "[", k, "] = ", e, ";");
}
}
else if (is_array(mbr_type))
{
for (uint32_t k = 0; k < mbr_type.array[0]; k++, index++)
{
set<SPIRConstant>(const_mbr_id, type_id, index, false);
auto e = access_chain(ptr, indices.data(), uint32_t(indices.size()), mbr_type, nullptr,
true);
statement(temp_name, ".", to_member_name(*type, j), "[", k, "] = ", e, ";");
}
}
else
{
set<SPIRConstant>(const_mbr_id, type_id, index, false);
auto e =
access_chain(ptr, indices.data(), uint32_t(indices.size()), mbr_type, nullptr, true);
statement(temp_name, ".", to_member_name(*type, j), " = ", e, ";");
}
}
}
else if (is_matrix(*type))
{
for (uint32_t j = 0; j < type->columns; j++, index++)
{
set<SPIRConstant>(const_mbr_id, type_id, index, false);
auto e = access_chain(ptr, indices.data(), uint32_t(indices.size()), *type, nullptr, true);
statement(temp_name, "[", j, "] = ", e, ";");
}
}
else // Must be an array
{
assert(is_array(*type));
for (uint32_t j = 0; j < type->array[0]; j++, index++)
{
set<SPIRConstant>(const_mbr_id, type_id, index, false);
auto e = access_chain(ptr, indices.data(), uint32_t(indices.size()), *type, nullptr, true);
statement(temp_name, "[", j, "] = ", e, ";");
}
}
// This needs to be a variable instead of an expression so we don't
// try to dereference this as a variable pointer.
set<SPIRVariable>(ops[1], ops[0], var->storage);
ir.meta[ops[1]] = ir.meta[ops[2]];
set_name(ops[1], temp_name);
if (has_decoration(var->self, DecorationInvariant))
set_decoration(ops[1], DecorationInvariant);
for (uint32_t j = 2; j < length; j++)
inherit_expression_dependencies(ops[1], ops[j]);
return true;
}
else
{
set<SPIRConstant>(const_mbr_id, type_id, index, false);
indices.push_back(const_mbr_id);
if (i < length)
indices.insert(indices.end(), ops + i, ops + length);
}
}
else
{
assert(index != uint32_t(-1));
set<SPIRConstant>(const_mbr_id, type_id, index, false);
indices.push_back(const_mbr_id);
indices.insert(indices.end(), ops + 4, ops + length);
}
// We use the pointer to the base of the input/output array here,
// so this is always a pointer chain.
auto e = access_chain(ptr, indices.data(), uint32_t(indices.size()), get<SPIRType>(ops[0]), &meta, true);
auto &expr = set<SPIRExpression>(ops[1], move(e), ops[0], should_forward(ops[2]));
expr.loaded_from = var->self;
expr.need_transpose = meta.need_transpose;
expr.access_chain = true;
// Mark the result as being packed if necessary.
if (meta.storage_is_packed)
set_extended_decoration(ops[1], SPIRVCrossDecorationPacked);
if (meta.storage_packed_type != 0)
set_extended_decoration(ops[1], SPIRVCrossDecorationPackedType, meta.storage_packed_type);
if (meta.storage_is_invariant)
set_decoration(ops[1], DecorationInvariant);
for (uint32_t i = 2; i < length; i++)
{
inherit_expression_dependencies(ops[1], ops[i]);
add_implied_read_expression(expr, ops[i]);
}
return true;
}
// If this is the inner tessellation level, and we're tessellating triangles,
// drop the last index. It isn't an array in this case, so we can't have an
// array reference here. We need to make this ID a variable instead of an
// expression so we don't try to dereference it as a variable pointer.
// Don't do this if the index is a constant 1, though. We need to drop stores
// to that one.
auto *m = ir.find_meta(var ? var->self : 0);
if (get_execution_model() == ExecutionModelTessellationControl && var && m &&
m->decoration.builtin_type == BuiltInTessLevelInner && get_entry_point().flags.get(ExecutionModeTriangles))
{
auto *c = maybe_get<SPIRConstant>(ops[3]);
if (c && c->scalar() == 1)
return false;
auto &dest_var = set<SPIRVariable>(ops[1], *var);
dest_var.basetype = ops[0];
ir.meta[ops[1]] = ir.meta[ops[2]];
inherit_expression_dependencies(ops[1], ops[2]);
return true;
}
return false;
}
bool CompilerMSL::is_out_of_bounds_tessellation_level(uint32_t id_lhs)
{
if (!get_entry_point().flags.get(ExecutionModeTriangles))
return false;
// In SPIR-V, TessLevelInner always has two elements and TessLevelOuter always has
// four. This is true even if we are tessellating triangles. This allows clients
// to use a single tessellation control shader with multiple tessellation evaluation
// shaders.
// In Metal, however, only the first element of TessLevelInner and the first three
// of TessLevelOuter are accessible. This stems from how in Metal, the tessellation
// levels must be stored to a dedicated buffer in a particular format that depends
// on the patch type. Therefore, in Triangles mode, any access to the second
// inner level or the fourth outer level must be dropped.
const auto *e = maybe_get<SPIRExpression>(id_lhs);
if (!e || !e->access_chain)
return false;
BuiltIn builtin = BuiltIn(get_decoration(e->loaded_from, DecorationBuiltIn));
if (builtin != BuiltInTessLevelInner && builtin != BuiltInTessLevelOuter)
return false;
auto *c = maybe_get<SPIRConstant>(e->implied_read_expressions[1]);
if (!c)
return false;
return (builtin == BuiltInTessLevelInner && c->scalar() == 1) ||
(builtin == BuiltInTessLevelOuter && c->scalar() == 3);
}
// Override for MSL-specific syntax instructions
void CompilerMSL::emit_instruction(const Instruction &instruction)
{
#define MSL_BOP(op) emit_binary_op(ops[0], ops[1], ops[2], ops[3], #op)
#define MSL_BOP_CAST(op, type) \
emit_binary_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
#define MSL_UOP(op) emit_unary_op(ops[0], ops[1], ops[2], #op)
#define MSL_QFOP(op) emit_quaternary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], #op)
#define MSL_TFOP(op) emit_trinary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], #op)
#define MSL_BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
#define MSL_BFOP_CAST(op, type) \
emit_binary_func_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
#define MSL_UFOP(op) emit_unary_func_op(ops[0], ops[1], ops[2], #op)
#define MSL_UNORD_BOP(op) emit_binary_unord_op(ops[0], ops[1], ops[2], ops[3], #op)
auto ops = stream(instruction);
auto opcode = static_cast<Op>(instruction.op);
// If we need to do implicit bitcasts, make sure we do it with the correct type.
uint32_t integer_width = get_integer_width_for_instruction(instruction);
auto int_type = to_signed_basetype(integer_width);
auto uint_type = to_unsigned_basetype(integer_width);
switch (opcode)
{
// Comparisons
case OpIEqual:
MSL_BOP_CAST(==, int_type);
break;
case OpLogicalEqual:
case OpFOrdEqual:
MSL_BOP(==);
break;
case OpINotEqual:
MSL_BOP_CAST(!=, int_type);
break;
case OpLogicalNotEqual:
case OpFOrdNotEqual:
MSL_BOP(!=);
break;
case OpUGreaterThan:
MSL_BOP_CAST(>, uint_type);
break;
case OpSGreaterThan:
MSL_BOP_CAST(>, int_type);
break;
case OpFOrdGreaterThan:
MSL_BOP(>);
break;
case OpUGreaterThanEqual:
MSL_BOP_CAST(>=, uint_type);
break;
case OpSGreaterThanEqual:
MSL_BOP_CAST(>=, int_type);
break;
case OpFOrdGreaterThanEqual:
MSL_BOP(>=);
break;
case OpULessThan:
MSL_BOP_CAST(<, uint_type);
break;
case OpSLessThan:
MSL_BOP_CAST(<, int_type);
break;
case OpFOrdLessThan:
MSL_BOP(<);
break;
case OpULessThanEqual:
MSL_BOP_CAST(<=, uint_type);
break;
case OpSLessThanEqual:
MSL_BOP_CAST(<=, int_type);
break;
case OpFOrdLessThanEqual:
MSL_BOP(<=);
break;
case OpFUnordEqual:
MSL_UNORD_BOP(==);
break;
case OpFUnordNotEqual:
MSL_UNORD_BOP(!=);
break;
case OpFUnordGreaterThan:
MSL_UNORD_BOP(>);
break;
case OpFUnordGreaterThanEqual:
MSL_UNORD_BOP(>=);
break;
case OpFUnordLessThan:
MSL_UNORD_BOP(<);
break;
case OpFUnordLessThanEqual:
MSL_UNORD_BOP(<=);
break;
// Derivatives
case OpDPdx:
case OpDPdxFine:
case OpDPdxCoarse:
MSL_UFOP(dfdx);
register_control_dependent_expression(ops[1]);
break;
case OpDPdy:
case OpDPdyFine:
case OpDPdyCoarse:
MSL_UFOP(dfdy);
register_control_dependent_expression(ops[1]);
break;
case OpFwidth:
case OpFwidthCoarse:
case OpFwidthFine:
MSL_UFOP(fwidth);
register_control_dependent_expression(ops[1]);
break;
// Bitfield
case OpBitFieldInsert:
MSL_QFOP(insert_bits);
break;
case OpBitFieldSExtract:
case OpBitFieldUExtract:
MSL_TFOP(extract_bits);
break;
case OpBitReverse:
MSL_UFOP(reverse_bits);
break;
case OpBitCount:
MSL_UFOP(popcount);
break;
case OpFRem:
MSL_BFOP(fmod);
break;
// Atomics
case OpAtomicExchange:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
uint32_t ptr = ops[2];
uint32_t mem_sem = ops[4];
uint32_t val = ops[5];
emit_atomic_func_op(result_type, id, "atomic_exchange_explicit", mem_sem, mem_sem, false, ptr, val);
break;
}
case OpAtomicCompareExchange:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
uint32_t ptr = ops[2];
uint32_t mem_sem_pass = ops[4];
uint32_t mem_sem_fail = ops[5];
uint32_t val = ops[6];
uint32_t comp = ops[7];
emit_atomic_func_op(result_type, id, "atomic_compare_exchange_weak_explicit", mem_sem_pass, mem_sem_fail, true,
ptr, comp, true, false, val);
break;
}
case OpAtomicCompareExchangeWeak:
SPIRV_CROSS_THROW("OpAtomicCompareExchangeWeak is only supported in kernel profile.");
case OpAtomicLoad:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
uint32_t ptr = ops[2];
uint32_t mem_sem = ops[4];
emit_atomic_func_op(result_type, id, "atomic_load_explicit", mem_sem, mem_sem, false, ptr, 0);
break;
}
case OpAtomicStore:
{
uint32_t result_type = expression_type(ops[0]).self;
uint32_t id = ops[0];
uint32_t ptr = ops[0];
uint32_t mem_sem = ops[2];
uint32_t val = ops[3];
emit_atomic_func_op(result_type, id, "atomic_store_explicit", mem_sem, mem_sem, false, ptr, val);
break;
}
#define MSL_AFMO_IMPL(op, valsrc, valconst) \
do \
{ \
uint32_t result_type = ops[0]; \
uint32_t id = ops[1]; \
uint32_t ptr = ops[2]; \
uint32_t mem_sem = ops[4]; \
uint32_t val = valsrc; \
emit_atomic_func_op(result_type, id, "atomic_fetch_" #op "_explicit", mem_sem, mem_sem, false, ptr, val, \
false, valconst); \
} while (false)
#define MSL_AFMO(op) MSL_AFMO_IMPL(op, ops[5], false)
#define MSL_AFMIO(op) MSL_AFMO_IMPL(op, 1, true)
case OpAtomicIIncrement:
MSL_AFMIO(add);
break;
case OpAtomicIDecrement:
MSL_AFMIO(sub);
break;
case OpAtomicIAdd:
MSL_AFMO(add);
break;
case OpAtomicISub:
MSL_AFMO(sub);
break;
case OpAtomicSMin:
case OpAtomicUMin:
MSL_AFMO(min);
break;
case OpAtomicSMax:
case OpAtomicUMax:
MSL_AFMO(max);
break;
case OpAtomicAnd:
MSL_AFMO(and);
break;
case OpAtomicOr:
MSL_AFMO(or);
break;
case OpAtomicXor:
MSL_AFMO(xor);
break;
// Images
// Reads == Fetches in Metal
case OpImageRead:
{
// Mark that this shader reads from this image
uint32_t img_id = ops[2];
auto &type = expression_type(img_id);
if (type.image.dim != DimSubpassData)
{
auto *p_var = maybe_get_backing_variable(img_id);
if (p_var && has_decoration(p_var->self, DecorationNonReadable))
{
unset_decoration(p_var->self, DecorationNonReadable);
force_recompile();
}
}
emit_texture_op(instruction);
break;
}
case OpImageWrite:
{
uint32_t img_id = ops[0];
uint32_t coord_id = ops[1];
uint32_t texel_id = ops[2];
const uint32_t *opt = &ops[3];
uint32_t length = instruction.length - 3;
// Bypass pointers because we need the real image struct
auto &type = expression_type(img_id);
auto &img_type = get<SPIRType>(type.self);
// Ensure this image has been marked as being written to and force a
// recommpile so that the image type output will include write access
auto *p_var = maybe_get_backing_variable(img_id);
if (p_var && has_decoration(p_var->self, DecorationNonWritable))
{
unset_decoration(p_var->self, DecorationNonWritable);
force_recompile();
}
bool forward = false;
uint32_t bias = 0;
uint32_t lod = 0;
uint32_t flags = 0;
if (length)
{
flags = *opt++;
length--;
}
auto test = [&](uint32_t &v, uint32_t flag) {
if (length && (flags & flag))
{
v = *opt++;
length--;
}
};
test(bias, ImageOperandsBiasMask);
test(lod, ImageOperandsLodMask);
auto &texel_type = expression_type(texel_id);
auto store_type = texel_type;
store_type.vecsize = 4;
statement(join(
to_expression(img_id), ".write(", remap_swizzle(store_type, texel_type.vecsize, to_expression(texel_id)),
", ",
to_function_args(img_id, img_type, true, false, false, coord_id, 0, 0, 0, 0, lod, 0, 0, 0, 0, 0, &forward),
");"));
if (p_var && variable_storage_is_aliased(*p_var))
flush_all_aliased_variables();
break;
}
case OpImageQuerySize:
case OpImageQuerySizeLod:
{
uint32_t rslt_type_id = ops[0];
auto &rslt_type = get<SPIRType>(rslt_type_id);
uint32_t id = ops[1];
uint32_t img_id = ops[2];
string img_exp = to_expression(img_id);
auto &img_type = expression_type(img_id);
Dim img_dim = img_type.image.dim;
bool img_is_array = img_type.image.arrayed;
if (img_type.basetype != SPIRType::Image)
SPIRV_CROSS_THROW("Invalid type for OpImageQuerySize.");
string lod;
if (opcode == OpImageQuerySizeLod)
{
// LOD index defaults to zero, so don't bother outputing level zero index
string decl_lod = to_expression(ops[3]);
if (decl_lod != "0")
lod = decl_lod;
}
string expr = type_to_glsl(rslt_type) + "(";
expr += img_exp + ".get_width(" + lod + ")";
if (img_dim == Dim2D || img_dim == DimCube || img_dim == Dim3D)
expr += ", " + img_exp + ".get_height(" + lod + ")";
if (img_dim == Dim3D)
expr += ", " + img_exp + ".get_depth(" + lod + ")";
if (img_is_array)
expr += ", " + img_exp + ".get_array_size()";
expr += ")";
emit_op(rslt_type_id, id, expr, should_forward(img_id));
break;
}
case OpImageQueryLod:
SPIRV_CROSS_THROW("MSL does not support textureQueryLod().");
#define MSL_ImgQry(qrytype) \
do \
{ \
uint32_t rslt_type_id = ops[0]; \
auto &rslt_type = get<SPIRType>(rslt_type_id); \
uint32_t id = ops[1]; \
uint32_t img_id = ops[2]; \
string img_exp = to_expression(img_id); \
string expr = type_to_glsl(rslt_type) + "(" + img_exp + ".get_num_" #qrytype "())"; \
emit_op(rslt_type_id, id, expr, should_forward(img_id)); \
} while (false)
case OpImageQueryLevels:
MSL_ImgQry(mip_levels);
break;
case OpImageQuerySamples:
MSL_ImgQry(samples);
break;
case OpImage:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
auto *combined = maybe_get<SPIRCombinedImageSampler>(ops[2]);
if (combined)
{
auto &e = emit_op(result_type, id, to_expression(combined->image), true, true);
auto *var = maybe_get_backing_variable(combined->image);
if (var)
e.loaded_from = var->self;
}
else
{
auto &e = emit_op(result_type, id, to_expression(ops[2]), true, true);
auto *var = maybe_get_backing_variable(ops[2]);
if (var)
e.loaded_from = var->self;
}
break;
}
case OpImageTexelPointer:
SPIRV_CROSS_THROW("MSL does not support atomic operations on images or texel buffers.");
// Casting
case OpQuantizeToF16:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
uint32_t arg = ops[2];
string exp;
auto &type = get<SPIRType>(result_type);
switch (type.vecsize)
{
case 1:
exp = join("float(half(", to_expression(arg), "))");
break;
case 2:
exp = join("float2(half2(", to_expression(arg), "))");
break;
case 3:
exp = join("float3(half3(", to_expression(arg), "))");
break;
case 4:
exp = join("float4(half4(", to_expression(arg), "))");
break;
default:
SPIRV_CROSS_THROW("Illegal argument to OpQuantizeToF16.");
}
emit_op(result_type, id, exp, should_forward(arg));
break;
}
case OpInBoundsAccessChain:
case OpAccessChain:
case OpPtrAccessChain:
if (is_tessellation_shader())
{
if (!emit_tessellation_access_chain(ops, instruction.length))
CompilerGLSL::emit_instruction(instruction);
}
else
CompilerGLSL::emit_instruction(instruction);
break;
case OpStore:
if (is_out_of_bounds_tessellation_level(ops[0]))
break;
if (maybe_emit_array_assignment(ops[0], ops[1]))
break;
CompilerGLSL::emit_instruction(instruction);
break;
// Compute barriers
case OpMemoryBarrier:
emit_barrier(0, ops[0], ops[1]);
break;
case OpControlBarrier:
// In GLSL a memory barrier is often followed by a control barrier.
// But in MSL, memory barriers are also control barriers, so don't
// emit a simple control barrier if a memory barrier has just been emitted.
if (previous_instruction_opcode != OpMemoryBarrier)
emit_barrier(ops[0], ops[1], ops[2]);
break;
case OpVectorTimesMatrix:
case OpMatrixTimesVector:
{
// If the matrix needs transpose and it is square or packed, just flip the multiply order.
uint32_t mtx_id = ops[opcode == OpMatrixTimesVector ? 2 : 3];
auto *e = maybe_get<SPIRExpression>(mtx_id);
auto &t = expression_type(mtx_id);
bool is_packed = has_extended_decoration(mtx_id, SPIRVCrossDecorationPacked);
if (e && e->need_transpose && (t.columns == t.vecsize || is_packed))
{
e->need_transpose = false;
// This is important for matrices. Packed matrices
// are generally transposed, so unpacking using a constructor argument
// will result in an error.
// The simplest solution for now is to just avoid unpacking the matrix in this operation.
unset_extended_decoration(mtx_id, SPIRVCrossDecorationPacked);
emit_binary_op(ops[0], ops[1], ops[3], ops[2], "*");
if (is_packed)
set_extended_decoration(mtx_id, SPIRVCrossDecorationPacked);
e->need_transpose = true;
}
else
MSL_BOP(*);
break;
}
// OpOuterProduct
case OpIAddCarry:
case OpISubBorrow:
{
uint32_t result_type = ops[0];
uint32_t result_id = ops[1];
uint32_t op0 = ops[2];
uint32_t op1 = ops[3];
forced_temporaries.insert(result_id);
auto &type = get<SPIRType>(result_type);
statement(variable_decl(type, to_name(result_id)), ";");
set<SPIRExpression>(result_id, to_name(result_id), result_type, true);
auto &res_type = get<SPIRType>(type.member_types[1]);
if (opcode == OpIAddCarry)
{
statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", to_enclosed_expression(op0), " + ",
to_enclosed_expression(op1), ";");
statement(to_expression(result_id), ".", to_member_name(type, 1), " = select(", type_to_glsl(res_type),
"(1), ", type_to_glsl(res_type), "(0), ", to_expression(result_id), ".", to_member_name(type, 0),
" >= max(", to_expression(op0), ", ", to_expression(op1), "));");
}
else
{
statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", to_enclosed_expression(op0), " - ",
to_enclosed_expression(op1), ";");
statement(to_expression(result_id), ".", to_member_name(type, 1), " = select(", type_to_glsl(res_type),
"(1), ", type_to_glsl(res_type), "(0), ", to_enclosed_expression(op0),
" >= ", to_enclosed_expression(op1), ");");
}
break;
}
case OpUMulExtended:
case OpSMulExtended:
{
uint32_t result_type = ops[0];
uint32_t result_id = ops[1];
uint32_t op0 = ops[2];
uint32_t op1 = ops[3];
forced_temporaries.insert(result_id);
auto &type = get<SPIRType>(result_type);
statement(variable_decl(type, to_name(result_id)), ";");
set<SPIRExpression>(result_id, to_name(result_id), result_type, true);
statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", to_enclosed_expression(op0), " * ",
to_enclosed_expression(op1), ";");
statement(to_expression(result_id), ".", to_member_name(type, 1), " = mulhi(", to_expression(op0), ", ",
to_expression(op1), ");");
break;
}
default:
CompilerGLSL::emit_instruction(instruction);
break;
}
previous_instruction_opcode = opcode;
}
void CompilerMSL::emit_barrier(uint32_t id_exe_scope, uint32_t id_mem_scope, uint32_t id_mem_sem)
{
if (get_execution_model() != ExecutionModelGLCompute && get_execution_model() != ExecutionModelTessellationControl)
return;
string bar_stmt = "threadgroup_barrier(mem_flags::";
uint32_t mem_sem = id_mem_sem ? get<SPIRConstant>(id_mem_sem).scalar() : uint32_t(MemorySemanticsMaskNone);
if (get_execution_model() == ExecutionModelTessellationControl)
// For tesc shaders, this also affects objects in the Output storage class.
// Since in Metal, these are placed in a device buffer, we have to sync device memory here.
bar_stmt += "mem_device";
else if (mem_sem & MemorySemanticsCrossWorkgroupMemoryMask)
bar_stmt += "mem_device";
else if (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask |
MemorySemanticsAtomicCounterMemoryMask))
bar_stmt += "mem_threadgroup";
else if (mem_sem & MemorySemanticsImageMemoryMask)
bar_stmt += "mem_texture";
else
bar_stmt += "mem_none";
if (msl_options.is_ios() && (msl_options.supports_msl_version(2) && !msl_options.supports_msl_version(2, 1)))
{
bar_stmt += ", ";
// Use the wider of the two scopes (smaller value)
uint32_t exe_scope = id_exe_scope ? get<SPIRConstant>(id_exe_scope).scalar() : uint32_t(ScopeInvocation);
uint32_t mem_scope = id_mem_scope ? get<SPIRConstant>(id_mem_scope).scalar() : uint32_t(ScopeInvocation);
uint32_t scope = min(exe_scope, mem_scope);
switch (scope)
{
case ScopeCrossDevice:
case ScopeDevice:
bar_stmt += "memory_scope_device";
break;
case ScopeSubgroup:
case ScopeInvocation:
bar_stmt += "memory_scope_simdgroup";
break;
case ScopeWorkgroup:
default:
bar_stmt += "memory_scope_threadgroup";
break;
}
}
bar_stmt += ");";
statement(bar_stmt);
assert(current_emitting_block);
flush_control_dependent_expressions(current_emitting_block->self);
flush_all_active_variables();
}
void CompilerMSL::emit_array_copy(const string &lhs, uint32_t rhs_id)
{
// Assignment from an array initializer is fine.
auto &type = expression_type(rhs_id);
auto *var = maybe_get_backing_variable(rhs_id);
// Unfortunately, we cannot template on address space in MSL,
// so explicit address space redirection it is ...
bool is_constant = false;
if (ir.ids[rhs_id].get_type() == TypeConstant)
{
is_constant = true;
}
else if (var && var->remapped_variable && var->statically_assigned &&
ir.ids[var->static_expression].get_type() == TypeConstant)
{
is_constant = true;
}
// For the case where we have OpLoad triggering an array copy,
// we cannot easily detect this case ahead of time since it's
// context dependent. We might have to force a recompile here
// if this is the only use of array copies in our shader.
if (type.array.size() > 1)
{
if (type.array.size() > SPVFuncImplArrayCopyMultidimMax)
SPIRV_CROSS_THROW("Cannot support this many dimensions for arrays of arrays.");
auto func = static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + type.array.size());
if (spv_function_implementations.count(func) == 0)
{
spv_function_implementations.insert(func);
suppress_missing_prototypes = true;
force_recompile();
}
}
else if (spv_function_implementations.count(SPVFuncImplArrayCopy) == 0)
{
spv_function_implementations.insert(SPVFuncImplArrayCopy);
suppress_missing_prototypes = true;
force_recompile();
}
const char *tag = is_constant ? "FromConstant" : "FromStack";
statement("spvArrayCopy", tag, type.array.size(), "(", lhs, ", ", to_expression(rhs_id), ");");
}
// Since MSL does not allow arrays to be copied via simple variable assignment,
// if the LHS and RHS represent an assignment of an entire array, it must be
// implemented by calling an array copy function.
// Returns whether the struct assignment was emitted.
bool CompilerMSL::maybe_emit_array_assignment(uint32_t id_lhs, uint32_t id_rhs)
{
// We only care about assignments of an entire array
auto &type = expression_type(id_rhs);
if (type.array.size() == 0)
return false;
auto *var = maybe_get<SPIRVariable>(id_lhs);
// Is this a remapped, static constant? Don't do anything.
if (var && var->remapped_variable && var->statically_assigned)
return true;
if (ir.ids[id_rhs].get_type() == TypeConstant && var && var->deferred_declaration)
{
// Special case, if we end up declaring a variable when assigning the constant array,
// we can avoid the copy by directly assigning the constant expression.
// This is likely necessary to be able to use a variable as a true look-up table, as it is unlikely
// the compiler will be able to optimize the spvArrayCopy() into a constant LUT.
// After a variable has been declared, we can no longer assign constant arrays in MSL unfortunately.
statement(to_expression(id_lhs), " = ", constant_expression(get<SPIRConstant>(id_rhs)), ";");
return true;
}
// Ensure the LHS variable has been declared
auto *p_v_lhs = maybe_get_backing_variable(id_lhs);
if (p_v_lhs)
flush_variable_declaration(p_v_lhs->self);
emit_array_copy(to_expression(id_lhs), id_rhs);
register_write(id_lhs);
return true;
}
// Emits one of the atomic functions. In MSL, the atomic functions operate on pointers
void CompilerMSL::emit_atomic_func_op(uint32_t result_type, uint32_t result_id, const char *op, uint32_t mem_order_1,
uint32_t mem_order_2, bool has_mem_order_2, uint32_t obj, uint32_t op1,
bool op1_is_pointer, bool op1_is_literal, uint32_t op2)
{
forced_temporaries.insert(result_id);
string exp = string(op) + "(";
auto &type = get_pointee_type(expression_type(obj));
exp += "(volatile ";
auto *var = maybe_get_backing_variable(obj);
if (!var)
SPIRV_CROSS_THROW("No backing variable for atomic operation.");
exp += get_argument_address_space(*var);
exp += " atomic_";
exp += type_to_glsl(type);
exp += "*)";
exp += "&";
exp += to_enclosed_expression(obj);
bool is_atomic_compare_exchange_strong = op1_is_pointer && op1;
if (is_atomic_compare_exchange_strong)
{
assert(strcmp(op, "atomic_compare_exchange_weak_explicit") == 0);
assert(op2);
assert(has_mem_order_2);
exp += ", &";
exp += to_name(result_id);
exp += ", ";
exp += to_expression(op2);
exp += ", ";
exp += get_memory_order(mem_order_1);
exp += ", ";
exp += get_memory_order(mem_order_2);
exp += ")";
// MSL only supports the weak atomic compare exchange, so emit a CAS loop here.
// The MSL function returns false if the atomic write fails OR the comparison test fails,
// so we must validate that it wasn't the comparison test that failed before continuing
// the CAS loop, otherwise it will loop infinitely, with the comparison test always failing.
// The function updates the comparitor value from the memory value, so the additional
// comparison test evaluates the memory value against the expected value.
statement(variable_decl(type, to_name(result_id)), ";");
statement("do");
begin_scope();
statement(to_name(result_id), " = ", to_expression(op1), ";");
end_scope_decl(join("while (!", exp, " && ", to_name(result_id), " == ", to_enclosed_expression(op1), ")"));
set<SPIRExpression>(result_id, to_name(result_id), result_type, true);
}
else
{
assert(strcmp(op, "atomic_compare_exchange_weak_explicit") != 0);
if (op1)
{
if (op1_is_literal)
exp += join(", ", op1);
else
exp += ", " + to_expression(op1);
}
if (op2)
exp += ", " + to_expression(op2);
exp += string(", ") + get_memory_order(mem_order_1);
if (has_mem_order_2)
exp += string(", ") + get_memory_order(mem_order_2);
exp += ")";
emit_op(result_type, result_id, exp, false);
}
flush_all_atomic_capable_variables();
}
// Metal only supports relaxed memory order for now
const char *CompilerMSL::get_memory_order(uint32_t)
{
return "memory_order_relaxed";
}
// Override for MSL-specific extension syntax instructions
void CompilerMSL::emit_glsl_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args, uint32_t count)
{
auto op = static_cast<GLSLstd450>(eop);
// If we need to do implicit bitcasts, make sure we do it with the correct type.
uint32_t integer_width = get_integer_width_for_glsl_instruction(op, args, count);
auto int_type = to_signed_basetype(integer_width);
auto uint_type = to_unsigned_basetype(integer_width);
switch (op)
{
case GLSLstd450Atan2:
emit_binary_func_op(result_type, id, args[0], args[1], "atan2");
break;
case GLSLstd450InverseSqrt:
emit_unary_func_op(result_type, id, args[0], "rsqrt");
break;
case GLSLstd450RoundEven:
emit_unary_func_op(result_type, id, args[0], "rint");
break;
case GLSLstd450FindSMsb:
emit_unary_func_op_cast(result_type, id, args[0], "findSMSB", int_type, int_type);
break;
case GLSLstd450FindUMsb:
emit_unary_func_op_cast(result_type, id, args[0], "findUMSB", uint_type, uint_type);
break;
case GLSLstd450PackSnorm4x8:
emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm4x8");
break;
case GLSLstd450PackUnorm4x8:
emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm4x8");
break;
case GLSLstd450PackSnorm2x16:
emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm2x16");
break;
case GLSLstd450PackUnorm2x16:
emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm2x16");
break;
case GLSLstd450PackHalf2x16:
{
auto expr = join("as_type<uint>(half2(", to_expression(args[0]), "))");
emit_op(result_type, id, expr, should_forward(args[0]));
inherit_expression_dependencies(id, args[0]);
break;
}
case GLSLstd450UnpackSnorm4x8:
emit_unary_func_op(result_type, id, args[0], "unpack_snorm4x8_to_float");
break;
case GLSLstd450UnpackUnorm4x8:
emit_unary_func_op(result_type, id, args[0], "unpack_unorm4x8_to_float");
break;
case GLSLstd450UnpackSnorm2x16:
emit_unary_func_op(result_type, id, args[0], "unpack_snorm2x16_to_float");
break;
case GLSLstd450UnpackUnorm2x16:
emit_unary_func_op(result_type, id, args[0], "unpack_unorm2x16_to_float");
break;
case GLSLstd450UnpackHalf2x16:
{
auto expr = join("float2(as_type<half2>(", to_expression(args[0]), "))");
emit_op(result_type, id, expr, should_forward(args[0]));
inherit_expression_dependencies(id, args[0]);
break;
}
case GLSLstd450PackDouble2x32:
emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450PackDouble2x32"); // Currently unsupported
break;
case GLSLstd450UnpackDouble2x32:
emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450UnpackDouble2x32"); // Currently unsupported
break;
case GLSLstd450MatrixInverse:
{
auto &mat_type = get<SPIRType>(result_type);
switch (mat_type.columns)
{
case 2:
emit_unary_func_op(result_type, id, args[0], "spvInverse2x2");
break;
case 3:
emit_unary_func_op(result_type, id, args[0], "spvInverse3x3");
break;
case 4:
emit_unary_func_op(result_type, id, args[0], "spvInverse4x4");
break;
default:
break;
}
break;
}
case GLSLstd450FMin:
// If the result type isn't float, don't bother calling the specific
// precise::/fast:: version. Metal doesn't have those for half and
// double types.
if (get<SPIRType>(result_type).basetype != SPIRType::Float)
emit_binary_func_op(result_type, id, args[0], args[1], "min");
else
emit_binary_func_op(result_type, id, args[0], args[1], "fast::min");
break;
case GLSLstd450FMax:
if (get<SPIRType>(result_type).basetype != SPIRType::Float)
emit_binary_func_op(result_type, id, args[0], args[1], "max");
else
emit_binary_func_op(result_type, id, args[0], args[1], "fast::max");
break;
case GLSLstd450FClamp:
// TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call.
if (get<SPIRType>(result_type).basetype != SPIRType::Float)
emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp");
else
emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "fast::clamp");
break;
case GLSLstd450NMin:
if (get<SPIRType>(result_type).basetype != SPIRType::Float)
emit_binary_func_op(result_type, id, args[0], args[1], "min");
else
emit_binary_func_op(result_type, id, args[0], args[1], "precise::min");
break;
case GLSLstd450NMax:
if (get<SPIRType>(result_type).basetype != SPIRType::Float)
emit_binary_func_op(result_type, id, args[0], args[1], "max");
else
emit_binary_func_op(result_type, id, args[0], args[1], "precise::max");
break;
case GLSLstd450NClamp:
// TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call.
if (get<SPIRType>(result_type).basetype != SPIRType::Float)
emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp");
else
emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "precise::clamp");
break;
// TODO:
// GLSLstd450InterpolateAtCentroid (centroid_no_perspective qualifier)
// GLSLstd450InterpolateAtSample (sample_no_perspective qualifier)
// GLSLstd450InterpolateAtOffset
default:
CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
break;
}
}
// Emit a structure declaration for the specified interface variable.
void CompilerMSL::emit_interface_block(uint32_t ib_var_id)
{
if (ib_var_id)
{
auto &ib_var = get<SPIRVariable>(ib_var_id);
auto &ib_type = get_variable_data_type(ib_var);
assert(ib_type.basetype == SPIRType::Struct && !ib_type.member_types.empty());
emit_struct(ib_type);
}
}
// Emits the declaration signature of the specified function.
// If this is the entry point function, Metal-specific return value and function arguments are added.
void CompilerMSL::emit_function_prototype(SPIRFunction &func, const Bitset &)
{
if (func.self != ir.default_entry_point)
add_function_overload(func);
local_variable_names = resource_names;
string decl;
processing_entry_point = (func.self == ir.default_entry_point);
auto &type = get<SPIRType>(func.return_type);
if (type.array.empty())
{
decl += func_type_decl(type);
}
else
{
// We cannot return arrays in MSL, so "return" through an out variable.
decl = "void";
}
decl += " ";
decl += to_name(func.self);
decl += "(";
if (!type.array.empty())
{
// Fake arrays returns by writing to an out array instead.
decl += "thread ";
decl += type_to_glsl(type);
decl += " (&SPIRV_Cross_return_value)";
decl += type_to_array_glsl(type);
if (!func.arguments.empty())
decl += ", ";
}
if (processing_entry_point)
{
if (msl_options.argument_buffers)
decl += entry_point_args_argument_buffer(!func.arguments.empty());
else
decl += entry_point_args_classic(!func.arguments.empty());
// If entry point function has variables that require early declaration,
// ensure they each have an empty initializer, creating one if needed.
// This is done at this late stage because the initialization expression
// is cleared after each compilation pass.
for (auto var_id : vars_needing_early_declaration)
{
auto &ed_var = get<SPIRVariable>(var_id);
uint32_t &initializer = ed_var.initializer;
if (!initializer)
initializer = ir.increase_bound_by(1);
// Do not override proper initializers.
if (ir.ids[initializer].get_type() == TypeNone || ir.ids[initializer].get_type() == TypeExpression)
set<SPIRExpression>(ed_var.initializer, "{}", ed_var.basetype, true);
}
}
for (auto &arg : func.arguments)
{
uint32_t name_id = arg.id;
auto *var = maybe_get<SPIRVariable>(arg.id);
if (var)
{
// If we need to modify the name of the variable, make sure we modify the original variable.
// Our alias is just a shadow variable.
if (arg.alias_global_variable && var->basevariable)
name_id = var->basevariable;
var->parameter = &arg; // Hold a pointer to the parameter so we can invalidate the readonly field if needed.
}
add_local_variable_name(name_id);
decl += argument_decl(arg);
// Manufacture automatic sampler arg for SampledImage texture
auto &arg_type = get<SPIRType>(arg.type);
if (arg_type.basetype == SPIRType::SampledImage && arg_type.image.dim != DimBuffer)
decl += join(", thread const ", sampler_type(arg_type), " ", to_sampler_expression(arg.id));
// Manufacture automatic swizzle arg.
if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(arg_type))
decl += join(", constant uint32_t& ", to_swizzle_expression(arg.id));
if (&arg != &func.arguments.back())
decl += ", ";
}
decl += ")";
statement(decl);
}
// Returns the texture sampling function string for the specified image and sampling characteristics.
string CompilerMSL::to_function_name(uint32_t img, const SPIRType &imgtype, bool is_fetch, bool is_gather, bool, bool,
bool has_offset, bool, bool has_dref, uint32_t)
{
// Special-case gather. We have to alter the component being looked up
// in the swizzle case.
if (msl_options.swizzle_texture_samples && is_gather)
{
string fname = imgtype.image.depth ? "spvGatherCompareSwizzle" : "spvGatherSwizzle";
fname += "<" + type_to_glsl(get<SPIRType>(imgtype.image.type)) + ", metal::" + type_to_glsl(imgtype);
// Add the arg types ourselves. Yes, this sucks, but Clang can't
// deduce template pack parameters in the middle of an argument list.
switch (imgtype.image.dim)
{
case Dim2D:
fname += ", float2";
if (imgtype.image.arrayed)
fname += ", uint";
if (imgtype.image.depth)
fname += ", float";
if (!imgtype.image.depth || has_offset)
fname += ", int2";
break;
case DimCube:
fname += ", float3";
if (imgtype.image.arrayed)
fname += ", uint";
if (imgtype.image.depth)
fname += ", float";
break;
default:
SPIRV_CROSS_THROW("Invalid texture dimension for gather op.");
}
fname += ">";
return fname;
}
auto *combined = maybe_get<SPIRCombinedImageSampler>(img);
// Texture reference
string fname = to_expression(combined ? combined->image : img) + ".";
if (msl_options.swizzle_texture_samples && !is_gather && is_sampled_image_type(imgtype))
fname = "spvTextureSwizzle(" + fname;
// Texture function and sampler
if (is_fetch)
fname += "read";
else if (is_gather)
fname += "gather";
else
fname += "sample";
if (has_dref)
fname += "_compare";
return fname;
}
// Returns the function args for a texture sampling function for the specified image and sampling characteristics.
string CompilerMSL::to_function_args(uint32_t img, const SPIRType &imgtype, bool is_fetch, bool is_gather, bool is_proj,
uint32_t coord, uint32_t, uint32_t dref, uint32_t grad_x, uint32_t grad_y,
uint32_t lod, uint32_t coffset, uint32_t offset, uint32_t bias, uint32_t comp,
uint32_t sample, bool *p_forward)
{
string farg_str;
if (!is_fetch)
farg_str += to_sampler_expression(img);
if (msl_options.swizzle_texture_samples && is_gather)
{
if (!farg_str.empty())
farg_str += ", ";
auto *combined = maybe_get<SPIRCombinedImageSampler>(img);
farg_str += to_expression(combined ? combined->image : img);
}
// Texture coordinates
bool forward = should_forward(coord);
auto coord_expr = to_enclosed_expression(coord);
auto &coord_type = expression_type(coord);
bool coord_is_fp = type_is_floating_point(coord_type);
bool is_cube_fetch = false;
string tex_coords = coord_expr;
uint32_t alt_coord_component = 0;
switch (imgtype.image.dim)
{
case Dim1D:
if (coord_type.vecsize > 1)
tex_coords = enclose_expression(tex_coords) + ".x";
if (is_fetch)
tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
alt_coord_component = 1;
break;
case DimBuffer:
if (coord_type.vecsize > 1)
tex_coords = enclose_expression(tex_coords) + ".x";
if (msl_options.texture_buffer_native)
{
tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
}
else
{
// Metal texel buffer textures are 2D, so convert 1D coord to 2D.
if (is_fetch)
tex_coords = "spvTexelBufferCoord(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
}
alt_coord_component = 1;
break;
case DimSubpassData:
if (imgtype.image.ms)
tex_coords = "uint2(gl_FragCoord.xy)";
else
tex_coords = join("uint2(gl_FragCoord.xy), 0");
break;
case Dim2D:
if (coord_type.vecsize > 2)
tex_coords = enclose_expression(tex_coords) + ".xy";
if (is_fetch)
tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
alt_coord_component = 2;
break;
case Dim3D:
if (coord_type.vecsize > 3)
tex_coords = enclose_expression(tex_coords) + ".xyz";
if (is_fetch)
tex_coords = "uint3(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
alt_coord_component = 3;
break;
case DimCube:
if (is_fetch)
{
is_cube_fetch = true;
tex_coords += ".xy";
tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
}
else
{
if (coord_type.vecsize > 3)
tex_coords = enclose_expression(tex_coords) + ".xyz";
}
alt_coord_component = 3;
break;
default:
break;
}
if (is_fetch && offset)
{
// Fetch offsets must be applied directly to the coordinate.
forward = forward && should_forward(offset);
auto &type = expression_type(offset);
if (type.basetype != SPIRType::UInt)
tex_coords += " + " + bitcast_expression(SPIRType::UInt, offset);
else
tex_coords += " + " + to_enclosed_expression(offset);
}
else if (is_fetch && coffset)
{
// Fetch offsets must be applied directly to the coordinate.
forward = forward && should_forward(coffset);
auto &type = expression_type(coffset);
if (type.basetype != SPIRType::UInt)
tex_coords += " + " + bitcast_expression(SPIRType::UInt, coffset);
else
tex_coords += " + " + to_enclosed_expression(coffset);
}
// If projection, use alt coord as divisor
if (is_proj)
tex_coords += " / " + to_extract_component_expression(coord, alt_coord_component);
if (!farg_str.empty())
farg_str += ", ";
farg_str += tex_coords;
// If fetch from cube, add face explicitly
if (is_cube_fetch)
{
// Special case for cube arrays, face and layer are packed in one dimension.
if (imgtype.image.arrayed)
farg_str += ", uint(" + to_extract_component_expression(coord, 2) + ") % 6u";
else
farg_str += ", uint(" + round_fp_tex_coords(to_extract_component_expression(coord, 2), coord_is_fp) + ")";
}
// If array, use alt coord
if (imgtype.image.arrayed)
{
// Special case for cube arrays, face and layer are packed in one dimension.
if (imgtype.image.dim == DimCube && is_fetch)
farg_str += ", uint(" + to_extract_component_expression(coord, 2) + ") / 6u";
else
farg_str += ", uint(" +
round_fp_tex_coords(to_extract_component_expression(coord, alt_coord_component), coord_is_fp) +
")";
}
// Depth compare reference value
if (dref)
{
forward = forward && should_forward(dref);
farg_str += ", ";
if (is_proj)
farg_str +=
to_enclosed_expression(dref) + " / " + to_extract_component_expression(coord, alt_coord_component);
else
farg_str += to_expression(dref);
if (msl_options.is_macos() && (grad_x || grad_y))
{
// For sample compare, MSL does not support gradient2d for all targets (only iOS apparently according to docs).
// However, the most common case here is to have a constant gradient of 0, as that is the only way to express
// LOD == 0 in GLSL with sampler2DArrayShadow (cascaded shadow mapping).
// We will detect a compile-time constant 0 value for gradient and promote that to level(0) on MSL.
bool constant_zero_x = !grad_x || expression_is_constant_null(grad_x);
bool constant_zero_y = !grad_y || expression_is_constant_null(grad_y);
if (constant_zero_x && constant_zero_y)
{
lod = 0;
grad_x = 0;
grad_y = 0;
farg_str += ", level(0)";
}
else
{
SPIRV_CROSS_THROW("Using non-constant 0.0 gradient() qualifier for sample_compare. This is not "
"supported in MSL macOS.");
}
}
if (msl_options.is_macos() && bias)
{
// Bias is not supported either on macOS with sample_compare.
// Verify it is compile-time zero, and drop the argument.
if (expression_is_constant_null(bias))
{
bias = 0;
}
else
{
SPIRV_CROSS_THROW(
"Using non-constant 0.0 bias() qualifier for sample_compare. This is not supported in MSL macOS.");
}
}
}
// LOD Options
// Metal does not support LOD for 1D textures.
if (bias && imgtype.image.dim != Dim1D)
{
forward = forward && should_forward(bias);
farg_str += ", bias(" + to_expression(bias) + ")";
}
// Metal does not support LOD for 1D textures.
if (lod && imgtype.image.dim != Dim1D)
{
forward = forward && should_forward(lod);
if (is_fetch)
{
farg_str += ", " + to_expression(lod);
}
else
{
farg_str += ", level(" + to_expression(lod) + ")";
}
}
else if (is_fetch && !lod && imgtype.image.dim != Dim1D && imgtype.image.dim != DimBuffer && !imgtype.image.ms &&
imgtype.image.sampled != 2)
{
// Lod argument is optional in OpImageFetch, but we require a LOD value, pick 0 as the default.
// Check for sampled type as well, because is_fetch is also used for OpImageRead in MSL.
farg_str += ", 0";
}
// Metal does not support LOD for 1D textures.
if ((grad_x || grad_y) && imgtype.image.dim != Dim1D)
{
forward = forward && should_forward(grad_x);
forward = forward && should_forward(grad_y);
string grad_opt;
switch (imgtype.image.dim)
{
case Dim2D:
grad_opt = "2d";
break;
case Dim3D:
grad_opt = "3d";
break;
case DimCube:
grad_opt = "cube";
break;
default:
grad_opt = "unsupported_gradient_dimension";
break;
}
farg_str += ", gradient" + grad_opt + "(" + to_expression(grad_x) + ", " + to_expression(grad_y) + ")";
}
// Add offsets
string offset_expr;
if (coffset && !is_fetch)
{
forward = forward && should_forward(coffset);
offset_expr = to_expression(coffset);
}
else if (offset && !is_fetch)
{
forward = forward && should_forward(offset);
offset_expr = to_expression(offset);
}
if (!offset_expr.empty())
{
switch (imgtype.image.dim)
{
case Dim2D:
if (coord_type.vecsize > 2)
offset_expr = enclose_expression(offset_expr) + ".xy";
farg_str += ", " + offset_expr;
break;
case Dim3D:
if (coord_type.vecsize > 3)
offset_expr = enclose_expression(offset_expr) + ".xyz";
farg_str += ", " + offset_expr;
break;
default:
break;
}
}
if (comp)
{
// If 2D has gather component, ensure it also has an offset arg
if (imgtype.image.dim == Dim2D && offset_expr.empty())
farg_str += ", int2(0)";
forward = forward && should_forward(comp);
farg_str += ", " + to_component_argument(comp);
}
if (sample)
{
farg_str += ", ";
farg_str += to_expression(sample);
}
if (msl_options.swizzle_texture_samples && is_sampled_image_type(imgtype))
{
// Add the swizzle constant from the swizzle buffer.
if (!is_gather)
farg_str += ")";
farg_str += ", " + to_swizzle_expression(img);
used_aux_buffer = true;
}
*p_forward = forward;
return farg_str;
}
// If the texture coordinates are floating point, invokes MSL round() function to round them.
string CompilerMSL::round_fp_tex_coords(string tex_coords, bool coord_is_fp)
{
return coord_is_fp ? ("round(" + tex_coords + ")") : tex_coords;
}
// Returns a string to use in an image sampling function argument.
// The ID must be a scalar constant.
string CompilerMSL::to_component_argument(uint32_t id)
{
if (ir.ids[id].get_type() != TypeConstant)
{
SPIRV_CROSS_THROW("ID " + to_string(id) + " is not an OpConstant.");
return "component::x";
}
uint32_t component_index = get<SPIRConstant>(id).scalar();
switch (component_index)
{
case 0:
return "component::x";
case 1:
return "component::y";
case 2:
return "component::z";
case 3:
return "component::w";
default:
SPIRV_CROSS_THROW("The value (" + to_string(component_index) + ") of OpConstant ID " + to_string(id) +
" is not a valid Component index, which must be one of 0, 1, 2, or 3.");
return "component::x";
}
}
// Establish sampled image as expression object and assign the sampler to it.
void CompilerMSL::emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id)
{
set<SPIRCombinedImageSampler>(result_id, result_type, image_id, samp_id);
}
// Returns a string representation of the ID, usable as a function arg.
// Manufacture automatic sampler arg for SampledImage texture.
string CompilerMSL::to_func_call_arg(uint32_t id)
{
string arg_str;
auto *c = maybe_get<SPIRConstant>(id);
if (c && !get<SPIRType>(c->constant_type).array.empty())
{
// If we are passing a constant array directly to a function for some reason,
// the callee will expect an argument in thread const address space
// (since we can only bind to arrays with references in MSL).
// To resolve this, we must emit a copy in this address space.
// This kind of code gen should be rare enough that performance is not a real concern.
// Inline the SPIR-V to avoid this kind of suboptimal codegen.
//
// We risk calling this inside a continue block (invalid code),
// so just create a thread local copy in the current function.
arg_str = join("_", id, "_array_copy");
auto &constants = current_function->constant_arrays_needed_on_stack;
auto itr = find(begin(constants), end(constants), id);
if (itr == end(constants))
{
force_recompile();
constants.push_back(id);
}
}
else
arg_str = CompilerGLSL::to_func_call_arg(id);
// Manufacture automatic sampler arg if the arg is a SampledImage texture.
auto &type = expression_type(id);
if (type.basetype == SPIRType::SampledImage && type.image.dim != DimBuffer)
{
// Need to check the base variable in case we need to apply a qualified alias.
uint32_t var_id = 0;
auto *sampler_var = maybe_get<SPIRVariable>(id);
if (sampler_var)
var_id = sampler_var->basevariable;
arg_str += ", " + to_sampler_expression(var_id ? var_id : id);
}
if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type))
arg_str += ", " + to_swizzle_expression(id);
return arg_str;
}
// If the ID represents a sampled image that has been assigned a sampler already,
// generate an expression for the sampler, otherwise generate a fake sampler name
// by appending a suffix to the expression constructed from the ID.
string CompilerMSL::to_sampler_expression(uint32_t id)
{
auto *combined = maybe_get<SPIRCombinedImageSampler>(id);
auto expr = to_expression(combined ? combined->image : id);
auto index = expr.find_first_of('[');
uint32_t samp_id = 0;
if (combined)
samp_id = combined->sampler;
if (index == string::npos)
return samp_id ? to_expression(samp_id) : expr + sampler_name_suffix;
else
{
auto image_expr = expr.substr(0, index);
auto array_expr = expr.substr(index);
return samp_id ? to_expression(samp_id) : (image_expr + sampler_name_suffix + array_expr);
}
}
string CompilerMSL::to_swizzle_expression(uint32_t id)
{
auto *combined = maybe_get<SPIRCombinedImageSampler>(id);
auto expr = to_expression(combined ? combined->image : id);
auto index = expr.find_first_of('[');
if (index == string::npos)
return expr + swizzle_name_suffix;
else
{
auto image_expr = expr.substr(0, index);
auto array_expr = expr.substr(index);
return image_expr + swizzle_name_suffix + array_expr;
}
}
// Checks whether the type is a Block all of whose members have DecorationPatch.
bool CompilerMSL::is_patch_block(const SPIRType &type)
{
if (!has_decoration(type.self, DecorationBlock))
return false;
for (uint32_t i = 0; i < type.member_types.size(); i++)
{
if (!has_member_decoration(type.self, i, DecorationPatch))
return false;
}
return true;
}
// Checks whether the ID is a row_major matrix that requires conversion before use
bool CompilerMSL::is_non_native_row_major_matrix(uint32_t id)
{
// Natively supported row-major matrices do not need to be converted.
if (backend.native_row_major_matrix)
return false;
// Non-matrix or column-major matrix types do not need to be converted.
if (!has_decoration(id, DecorationRowMajor))
return false;
// Generate a function that will swap matrix elements from row-major to column-major.
// Packed row-matrix should just use transpose() function.
if (!has_extended_decoration(id, SPIRVCrossDecorationPacked))
{
const auto type = expression_type(id);
add_convert_row_major_matrix_function(type.columns, type.vecsize);
}
return true;
}
// Checks whether the member is a row_major matrix that requires conversion before use
bool CompilerMSL::member_is_non_native_row_major_matrix(const SPIRType &type, uint32_t index)
{
// Natively supported row-major matrices do not need to be converted.
if (backend.native_row_major_matrix)
return false;
// Non-matrix or column-major matrix types do not need to be converted.
if (!has_member_decoration(type.self, index, DecorationRowMajor))
return false;
// Generate a function that will swap matrix elements from row-major to column-major.
// Packed row-matrix should just use transpose() function.
if (!has_extended_member_decoration(type.self, index, SPIRVCrossDecorationPacked))
{
const auto mbr_type = get<SPIRType>(type.member_types[index]);
add_convert_row_major_matrix_function(mbr_type.columns, mbr_type.vecsize);
}
return true;
}
// Adds a function suitable for converting a non-square row-major matrix to a column-major matrix.
void CompilerMSL::add_convert_row_major_matrix_function(uint32_t cols, uint32_t rows)
{
SPVFuncImpl spv_func;
if (cols == rows) // Square matrix...just use transpose() function
return;
else if (cols == 2 && rows == 3)
spv_func = SPVFuncImplRowMajor2x3;
else if (cols == 2 && rows == 4)
spv_func = SPVFuncImplRowMajor2x4;
else if (cols == 3 && rows == 2)
spv_func = SPVFuncImplRowMajor3x2;
else if (cols == 3 && rows == 4)
spv_func = SPVFuncImplRowMajor3x4;
else if (cols == 4 && rows == 2)
spv_func = SPVFuncImplRowMajor4x2;
else if (cols == 4 && rows == 3)
spv_func = SPVFuncImplRowMajor4x3;
else
SPIRV_CROSS_THROW("Could not convert row-major matrix.");
auto rslt = spv_function_implementations.insert(spv_func);
if (rslt.second)
{
suppress_missing_prototypes = true;
force_recompile();
}
}
// Wraps the expression string in a function call that converts the
// row_major matrix result of the expression to a column_major matrix.
string CompilerMSL::convert_row_major_matrix(string exp_str, const SPIRType &exp_type, bool is_packed)
{
strip_enclosed_expression(exp_str);
string func_name;
// Square and packed matrices can just use transpose
if (exp_type.columns == exp_type.vecsize || is_packed)
func_name = "transpose";
else
func_name = string("spvConvertFromRowMajor") + to_string(exp_type.columns) + "x" + to_string(exp_type.vecsize);
return join(func_name, "(", exp_str, ")");
}
// Called automatically at the end of the entry point function
void CompilerMSL::emit_fixup()
{
if ((get_execution_model() == ExecutionModelVertex ||
get_execution_model() == ExecutionModelTessellationEvaluation) &&
stage_out_var_id && !qual_pos_var_name.empty() && !capture_output_to_buffer)
{
if (options.vertex.fixup_clipspace)
statement(qual_pos_var_name, ".z = (", qual_pos_var_name, ".z + ", qual_pos_var_name,
".w) * 0.5; // Adjust clip-space for Metal");
if (options.vertex.flip_vert_y)
statement(qual_pos_var_name, ".y = -(", qual_pos_var_name, ".y);", " // Invert Y-axis for Metal");
}
}
// Return a string defining a structure member, with padding and packing.
string CompilerMSL::to_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
const string &qualifier)
{
auto &membertype = get<SPIRType>(member_type_id);
// If this member requires padding to maintain alignment, emit a dummy padding member.
MSLStructMemberKey key = get_struct_member_key(type.self, index);
uint32_t pad_len = struct_member_padding[key];
if (pad_len > 0)
statement("char _m", index, "_pad", "[", to_string(pad_len), "];");
// If this member is packed, mark it as so.
string pack_pfx = "";
const SPIRType *effective_membertype = &membertype;
SPIRType override_type;
uint32_t orig_id = 0;
if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID))
orig_id = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID);
if (member_is_packed_type(type, index))
{
// If we're packing a matrix, output an appropriate typedef
if (membertype.basetype == SPIRType::Struct)
{
pack_pfx = "/* FIXME: A padded struct is needed here. If you see this message, file a bug! */ ";
}
else if (membertype.vecsize > 1 && membertype.columns > 1)
{
pack_pfx = "packed_";
string base_type = membertype.width == 16 ? "half" : "float";
string td_line = "typedef ";
td_line += base_type + to_string(membertype.vecsize) + "x" + to_string(membertype.columns);
td_line += " " + pack_pfx;
td_line += base_type + to_string(membertype.columns) + "x" + to_string(membertype.vecsize);
td_line += ";";
add_typedef_line(td_line);
}
else if (is_array(membertype) && membertype.vecsize <= 2 && membertype.basetype != SPIRType::Struct)
{
// A "packed" float array, but we pad here instead to 4-vector.
override_type = membertype;
override_type.vecsize = 4;
effective_membertype = &override_type;
}
else
pack_pfx = "packed_";
}
// Very specifically, image load-store in argument buffers are disallowed on MSL on iOS.
if (msl_options.is_ios() && membertype.basetype == SPIRType::Image && membertype.image.sampled == 2)
{
if (!has_decoration(orig_id, DecorationNonWritable))
SPIRV_CROSS_THROW("Writable images are not allowed in argument buffers on iOS.");
}
// Array information is baked into these types.
string array_type;
if (membertype.basetype != SPIRType::Image && membertype.basetype != SPIRType::Sampler &&
membertype.basetype != SPIRType::SampledImage)
{
array_type = type_to_array_glsl(membertype);
}
return join(pack_pfx, type_to_glsl(*effective_membertype, orig_id), " ", qualifier, to_member_name(type, index),
member_attribute_qualifier(type, index), array_type, ";");
}
// Emit a structure member, padding and packing to maintain the correct memeber alignments.
void CompilerMSL::emit_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
const string &qualifier, uint32_t)
{
statement(to_struct_member(type, member_type_id, index, qualifier));
}
// Return a MSL qualifier for the specified function attribute member
string CompilerMSL::member_attribute_qualifier(const SPIRType &type, uint32_t index)
{
auto &execution = get_entry_point();
uint32_t mbr_type_id = type.member_types[index];
auto &mbr_type = get<SPIRType>(mbr_type_id);
BuiltIn builtin = BuiltInMax;
bool is_builtin = is_member_builtin(type, index, &builtin);
if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationArgumentBufferID))
return join(" [[id(", get_extended_member_decoration(type.self, index, SPIRVCrossDecorationArgumentBufferID),
")]]");
// Vertex function inputs
if (execution.model == ExecutionModelVertex && type.storage == StorageClassInput)
{
if (is_builtin)
{
switch (builtin)
{
case BuiltInVertexId:
case BuiltInVertexIndex:
case BuiltInBaseVertex:
case BuiltInInstanceId:
case BuiltInInstanceIndex:
case BuiltInBaseInstance:
return string(" [[") + builtin_qualifier(builtin) + "]]";
case BuiltInDrawIndex:
SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
default:
return "";
}
}
uint32_t locn = get_ordered_member_location(type.self, index);
if (locn != k_unknown_location)
return string(" [[attribute(") + convert_to_string(locn) + ")]]";
}
// Vertex and tessellation evaluation function outputs
if ((execution.model == ExecutionModelVertex || execution.model == ExecutionModelTessellationEvaluation) &&
type.storage == StorageClassOutput)
{
if (is_builtin)
{
switch (builtin)
{
case BuiltInPointSize:
// Only mark the PointSize builtin if really rendering points.
// Some shaders may include a PointSize builtin even when used to render
// non-point topologies, and Metal will reject this builtin when compiling
// the shader into a render pipeline that uses a non-point topology.
return msl_options.enable_point_size_builtin ? (string(" [[") + builtin_qualifier(builtin) + "]]") : "";
case BuiltInViewportIndex:
if (!msl_options.supports_msl_version(2, 0))
SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
/* fallthrough */
case BuiltInPosition:
case BuiltInLayer:
case BuiltInClipDistance:
return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
default:
return "";
}
}
uint32_t comp;
uint32_t locn = get_ordered_member_location(type.self, index, &comp);
if (locn != k_unknown_location)
{
if (comp != k_unknown_component)
return string(" [[user(locn") + convert_to_string(locn) + "_" + convert_to_string(comp) + ")]]";
else
return string(" [[user(locn") + convert_to_string(locn) + ")]]";
}
}
// Tessellation control function inputs
if (execution.model == ExecutionModelTessellationControl && type.storage == StorageClassInput)
{
if (is_builtin)
{
switch (builtin)
{
case BuiltInInvocationId:
case BuiltInPrimitiveId:
return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
case BuiltInPatchVertices:
return "";
// Others come from stage input.
default:
break;
}
}
uint32_t locn = get_ordered_member_location(type.self, index);
if (locn != k_unknown_location)
return string(" [[attribute(") + convert_to_string(locn) + ")]]";
}
// Tessellation control function outputs
if (execution.model == ExecutionModelTessellationControl && type.storage == StorageClassOutput)
{
// For this type of shader, we always arrange for it to capture its
// output to a buffer. For this reason, qualifiers are irrelevant here.
return "";
}
// Tessellation evaluation function inputs
if (execution.model == ExecutionModelTessellationEvaluation && type.storage == StorageClassInput)
{
if (is_builtin)
{
switch (builtin)
{
case BuiltInPrimitiveId:
case BuiltInTessCoord:
return string(" [[") + builtin_qualifier(builtin) + "]]";
case BuiltInPatchVertices:
return "";
// Others come from stage input.
default:
break;
}
}
// The special control point array must not be marked with an attribute.
if (get_type(type.member_types[index]).basetype == SPIRType::ControlPointArray)
return "";
uint32_t locn = get_ordered_member_location(type.self, index);
if (locn != k_unknown_location)
return string(" [[attribute(") + convert_to_string(locn) + ")]]";
}
// Tessellation evaluation function outputs were handled above.
// Fragment function inputs
if (execution.model == ExecutionModelFragment && type.storage == StorageClassInput)
{
string quals = "";
if (is_builtin)
{
switch (builtin)
{
case BuiltInFrontFacing:
case BuiltInPointCoord:
case BuiltInFragCoord:
case BuiltInSampleId:
case BuiltInSampleMask:
case BuiltInLayer:
quals = builtin_qualifier(builtin);
default:
break;
}
}
else
{
uint32_t comp;
uint32_t locn = get_ordered_member_location(type.self, index, &comp);
if (locn != k_unknown_location)
{
if (comp != k_unknown_component)
quals = string("user(locn") + convert_to_string(locn) + "_" + convert_to_string(comp) + ")";
else
quals = string("user(locn") + convert_to_string(locn) + ")";
}
}
// Don't bother decorating integers with the 'flat' attribute; it's
// the default (in fact, the only option). Also don't bother with the
// FragCoord builtin; it's always noperspective on Metal.
if (!type_is_integral(mbr_type) && (!is_builtin || builtin != BuiltInFragCoord))
{
if (has_member_decoration(type.self, index, DecorationFlat))
{
if (!quals.empty())
quals += ", ";
quals += "flat";
}
else if (has_member_decoration(type.self, index, DecorationCentroid))
{
if (!quals.empty())
quals += ", ";
if (has_member_decoration(type.self, index, DecorationNoPerspective))
quals += "centroid_no_perspective";
else
quals += "centroid_perspective";
}
else if (has_member_decoration(type.self, index, DecorationSample))
{
if (!quals.empty())
quals += ", ";
if (has_member_decoration(type.self, index, DecorationNoPerspective))
quals += "sample_no_perspective";
else
quals += "sample_perspective";
}
else if (has_member_decoration(type.self, index, DecorationNoPerspective))
{
if (!quals.empty())
quals += ", ";
quals += "center_no_perspective";
}
}
if (!quals.empty())
return " [[" + quals + "]]";
}
// Fragment function outputs
if (execution.model == ExecutionModelFragment && type.storage == StorageClassOutput)
{
if (is_builtin)
{
switch (builtin)
{
case BuiltInSampleMask:
case BuiltInFragDepth:
return string(" [[") + builtin_qualifier(builtin) + "]]";
default:
return "";
}
}
uint32_t locn = get_ordered_member_location(type.self, index);
if (locn != k_unknown_location && has_member_decoration(type.self, index, DecorationIndex))
return join(" [[color(", locn, "), index(", get_member_decoration(type.self, index, DecorationIndex),
")]]");
else if (locn != k_unknown_location)
return join(" [[color(", locn, ")]]");
else if (has_member_decoration(type.self, index, DecorationIndex))
return join(" [[index(", get_member_decoration(type.self, index, DecorationIndex), ")]]");
else
return "";
}
// Compute function inputs
if (execution.model == ExecutionModelGLCompute && type.storage == StorageClassInput)
{
if (is_builtin)
{
switch (builtin)
{
case BuiltInGlobalInvocationId:
case BuiltInWorkgroupId:
case BuiltInNumWorkgroups:
case BuiltInLocalInvocationId:
case BuiltInLocalInvocationIndex:
return string(" [[") + builtin_qualifier(builtin) + "]]";
default:
return "";
}
}
}
return "";
}
// Returns the location decoration of the member with the specified index in the specified type.
// If the location of the member has been explicitly set, that location is used. If not, this
// function assumes the members are ordered in their location order, and simply returns the
// index as the location.
uint32_t CompilerMSL::get_ordered_member_location(uint32_t type_id, uint32_t index, uint32_t *comp)
{
auto &m = ir.meta[type_id];
if (index < m.members.size())
{
auto &dec = m.members[index];
if (comp)
{
if (dec.decoration_flags.get(DecorationComponent))
*comp = dec.component;
else
*comp = k_unknown_component;
}
if (dec.decoration_flags.get(DecorationLocation))
return dec.location;
}
return index;
}
// Returns the type declaration for a function, including the
// entry type if the current function is the entry point function
string CompilerMSL::func_type_decl(SPIRType &type)
{
// The regular function return type. If not processing the entry point function, that's all we need
string return_type = type_to_glsl(type) + type_to_array_glsl(type);
if (!processing_entry_point)
return return_type;
// If an outgoing interface block has been defined, and it should be returned, override the entry point return type
bool ep_should_return_output = !get_is_rasterization_disabled();
if (stage_out_var_id && ep_should_return_output)
return_type = type_to_glsl(get_stage_out_struct_type()) + type_to_array_glsl(type);
// Prepend a entry type, based on the execution model
string entry_type;
auto &execution = get_entry_point();
switch (execution.model)
{
case ExecutionModelVertex:
entry_type = "vertex";
break;
case ExecutionModelTessellationEvaluation:
if (!msl_options.supports_msl_version(1, 2))
SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
if (execution.flags.get(ExecutionModeIsolines))
SPIRV_CROSS_THROW("Metal does not support isoline tessellation.");
if (msl_options.is_ios())
entry_type =
join("[[ patch(", execution.flags.get(ExecutionModeTriangles) ? "triangle" : "quad", ") ]] vertex");
else
entry_type = join("[[ patch(", execution.flags.get(ExecutionModeTriangles) ? "triangle" : "quad", ", ",
execution.output_vertices, ") ]] vertex");
break;
case ExecutionModelFragment:
entry_type =
execution.flags.get(ExecutionModeEarlyFragmentTests) ? "[[ early_fragment_tests ]] fragment" : "fragment";
break;
case ExecutionModelTessellationControl:
if (!msl_options.supports_msl_version(1, 2))
SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
if (execution.flags.get(ExecutionModeIsolines))
SPIRV_CROSS_THROW("Metal does not support isoline tessellation.");
/* fallthrough */
case ExecutionModelGLCompute:
case ExecutionModelKernel:
entry_type = "kernel";
break;
default:
entry_type = "unknown";
break;
}
return entry_type + " " + return_type;
}
// In MSL, address space qualifiers are required for all pointer or reference variables
string CompilerMSL::get_argument_address_space(const SPIRVariable &argument)
{
const auto &type = get<SPIRType>(argument.basetype);
switch (type.storage)
{
case StorageClassWorkgroup:
return "threadgroup";
case StorageClassStorageBuffer:
{
// For arguments from variable pointers, we use the write count deduction, so
// we should not assume any constness here. Only for global SSBOs.
bool readonly = false;
if (has_decoration(type.self, DecorationBlock))
readonly = ir.get_buffer_block_flags(argument).get(DecorationNonWritable);
return readonly ? "const device" : "device";
}
case StorageClassUniform:
case StorageClassUniformConstant:
case StorageClassPushConstant:
if (type.basetype == SPIRType::Struct)
{
bool ssbo = has_decoration(type.self, DecorationBufferBlock);
if (ssbo)
{
bool readonly = ir.get_buffer_block_flags(argument).get(DecorationNonWritable);
return readonly ? "const device" : "device";
}
else
return "constant";
}
break;
case StorageClassFunction:
case StorageClassGeneric:
// No address space for plain values.
return type.pointer ? "thread" : "";
case StorageClassInput:
if (get_execution_model() == ExecutionModelTessellationControl && argument.basevariable == stage_in_ptr_var_id)
return "threadgroup";
break;
case StorageClassOutput:
if (capture_output_to_buffer)
return "device";
break;
default:
break;
}
return "thread";
}
string CompilerMSL::get_type_address_space(const SPIRType &type, uint32_t id)
{
switch (type.storage)
{
case StorageClassWorkgroup:
return "threadgroup";
case StorageClassStorageBuffer:
{
// This can be called for variable pointer contexts as well, so be very careful about which method we choose.
Bitset flags;
if (ir.ids[id].get_type() == TypeVariable && has_decoration(type.self, DecorationBlock))
flags = get_buffer_block_flags(id);
else
flags = get_decoration_bitset(id);
return flags.get(DecorationNonWritable) ? "const device" : "device";
}
case StorageClassUniform:
case StorageClassUniformConstant:
case StorageClassPushConstant:
if (type.basetype == SPIRType::Struct)
{
bool ssbo = has_decoration(type.self, DecorationBufferBlock);
if (ssbo)
{
// This can be called for variable pointer contexts as well, so be very careful about which method we choose.
Bitset flags;
if (ir.ids[id].get_type() == TypeVariable && has_decoration(type.self, DecorationBlock))
flags = get_buffer_block_flags(id);
else
flags = get_decoration_bitset(id);
return flags.get(DecorationNonWritable) ? "const device" : "device";
}
else
return "constant";
}
break;
case StorageClassFunction:
case StorageClassGeneric:
// No address space for plain values.
return type.pointer ? "thread" : "";
case StorageClassOutput:
if (capture_output_to_buffer)
return "device";
break;
default:
break;
}
return "thread";
}
string CompilerMSL::entry_point_arg_stage_in()
{
string decl;
// Stage-in structure
uint32_t stage_in_id;
if (get_execution_model() == ExecutionModelTessellationEvaluation)
stage_in_id = patch_stage_in_var_id;
else
stage_in_id = stage_in_var_id;
if (stage_in_id)
{
auto &var = get<SPIRVariable>(stage_in_id);
auto &type = get_variable_data_type(var);
add_resource_name(var.self);
decl = join(type_to_glsl(type), " ", to_name(var.self), " [[stage_in]]");
}
return decl;
}
void CompilerMSL::entry_point_args_builtin(string &ep_args)
{
// Builtin variables
ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) {
BuiltIn bi_type = ir.meta[var_id].decoration.builtin_type;
// Don't emit SamplePosition as a separate parameter. In the entry
// point, we get that by calling get_sample_position() on the sample ID.
if (var.storage == StorageClassInput && is_builtin_variable(var) &&
get_variable_data_type(var).basetype != SPIRType::Struct &&
get_variable_data_type(var).basetype != SPIRType::ControlPointArray)
{
if (bi_type != BuiltInSamplePosition && bi_type != BuiltInHelperInvocation &&
bi_type != BuiltInPatchVertices && bi_type != BuiltInTessLevelInner &&
bi_type != BuiltInTessLevelOuter && bi_type != BuiltInPosition && bi_type != BuiltInPointSize &&
bi_type != BuiltInClipDistance && bi_type != BuiltInCullDistance)
{
if (!ep_args.empty())
ep_args += ", ";
ep_args += builtin_type_decl(bi_type) + " " + to_expression(var_id);
ep_args += " [[" + builtin_qualifier(bi_type) + "]]";
}
}
});
// Vertex and instance index built-ins
if (needs_vertex_idx_arg)
ep_args += built_in_func_arg(BuiltInVertexIndex, !ep_args.empty());
if (needs_instance_idx_arg)
ep_args += built_in_func_arg(BuiltInInstanceIndex, !ep_args.empty());
if (capture_output_to_buffer)
{
// Add parameters to hold the indirect draw parameters and the shader output. This has to be handled
// specially because it needs to be a pointer, not a reference.
if (stage_out_var_id)
{
if (!ep_args.empty())
ep_args += ", ";
ep_args += join("device ", type_to_glsl(get_stage_out_struct_type()), "* ", output_buffer_var_name,
" [[buffer(", msl_options.shader_output_buffer_index, ")]]");
}
if (get_execution_model() == ExecutionModelTessellationControl)
{
if (!ep_args.empty())
ep_args += ", ";
ep_args +=
join("constant uint* spvIndirectParams [[buffer(", msl_options.indirect_params_buffer_index, ")]]");
}
else if (stage_out_var_id)
{
if (!ep_args.empty())
ep_args += ", ";
ep_args +=
join("device uint* spvIndirectParams [[buffer(", msl_options.indirect_params_buffer_index, ")]]");
}
// Tessellation control shaders get three additional parameters:
// a buffer to hold the per-patch data, a buffer to hold the per-patch
// tessellation levels, and a block of workgroup memory to hold the
// input control point data.
if (get_execution_model() == ExecutionModelTessellationControl)
{
if (patch_stage_out_var_id)
{
if (!ep_args.empty())
ep_args += ", ";
ep_args +=
join("device ", type_to_glsl(get_patch_stage_out_struct_type()), "* ", patch_output_buffer_var_name,
" [[buffer(", convert_to_string(msl_options.shader_patch_output_buffer_index), ")]]");
}
if (!ep_args.empty())
ep_args += ", ";
ep_args += join("device ", get_tess_factor_struct_name(), "* ", tess_factor_buffer_var_name, " [[buffer(",
convert_to_string(msl_options.shader_tess_factor_buffer_index), ")]]");
if (stage_in_var_id)
{
if (!ep_args.empty())
ep_args += ", ";
ep_args += join("threadgroup ", type_to_glsl(get_stage_in_struct_type()), "* ", input_wg_var_name,
" [[threadgroup(", convert_to_string(msl_options.shader_input_wg_index), ")]]");
}
}
}
}
string CompilerMSL::entry_point_args_argument_buffer(bool append_comma)
{
string ep_args = entry_point_arg_stage_in();
for (uint32_t i = 0; i < kMaxArgumentBuffers; i++)
{
uint32_t id = argument_buffer_ids[i];
if (id == 0)
continue;
add_resource_name(id);
auto &var = get<SPIRVariable>(id);
auto &type = get_variable_data_type(var);
if (!ep_args.empty())
ep_args += ", ";
ep_args += get_argument_address_space(var) + " " + type_to_glsl(type) + "& " + to_name(id);
ep_args += " [[buffer(" + convert_to_string(i) + ")]]";
// Makes it more practical for testing, since the push constant block can occupy the first available
// buffer slot if it's not bound explicitly.
next_metal_resource_index_buffer = i + 1;
}
entry_point_args_discrete_descriptors(ep_args);
entry_point_args_builtin(ep_args);
if (!ep_args.empty() && append_comma)
ep_args += ", ";
return ep_args;
}
void CompilerMSL::entry_point_args_discrete_descriptors(string &ep_args)
{
// Output resources, sorted by resource index & type
// We need to sort to work around a bug on macOS 10.13 with NVidia drivers where switching between shaders
// with different order of buffers can result in issues with buffer assignments inside the driver.
struct Resource
{
SPIRVariable *var;
string name;
SPIRType::BaseType basetype;
uint32_t index;
};
SmallVector<Resource> resources;
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer) &&
!is_hidden_variable(var))
{
auto &type = get_variable_data_type(var);
uint32_t var_id = var.self;
if (var.storage != StorageClassPushConstant)
{
uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
if (descriptor_set_is_argument_buffer(desc_set))
return;
}
if (type.basetype == SPIRType::SampledImage)
{
add_resource_name(var_id);
resources.push_back(
{ &var, to_name(var_id), SPIRType::Image, get_metal_resource_index(var, SPIRType::Image) });
if (type.image.dim != DimBuffer && constexpr_samplers.count(var_id) == 0)
{
resources.push_back({ &var, to_sampler_expression(var_id), SPIRType::Sampler,
get_metal_resource_index(var, SPIRType::Sampler) });
}
}
else if (constexpr_samplers.count(var_id) == 0)
{
// constexpr samplers are not declared as resources.
add_resource_name(var_id);
resources.push_back(
{ &var, to_name(var_id), type.basetype, get_metal_resource_index(var, type.basetype) });
}
}
});
sort(resources.begin(), resources.end(), [](const Resource &lhs, const Resource &rhs) {
return tie(lhs.basetype, lhs.index) < tie(rhs.basetype, rhs.index);
});
for (auto &r : resources)
{
auto &var = *r.var;
auto &type = get_variable_data_type(var);
uint32_t var_id = var.self;
switch (r.basetype)
{
case SPIRType::Struct:
{
auto &m = ir.meta[type.self];
if (m.members.size() == 0)
break;
if (!type.array.empty())
{
if (type.array.size() > 1)
SPIRV_CROSS_THROW("Arrays of arrays of buffers are not supported.");
// Metal doesn't directly support this, so we must expand the
// array. We'll declare a local array to hold these elements
// later.
uint32_t array_size = to_array_size_literal(type);
if (array_size == 0)
SPIRV_CROSS_THROW("Unsized arrays of buffers are not supported in MSL.");
buffer_arrays.push_back(var_id);
for (uint32_t i = 0; i < array_size; ++i)
{
if (!ep_args.empty())
ep_args += ", ";
ep_args += get_argument_address_space(var) + " " + type_to_glsl(type) + "* " + r.name + "_" +
convert_to_string(i);
ep_args += " [[buffer(" + convert_to_string(r.index + i) + ")]]";
}
}
else
{
if (!ep_args.empty())
ep_args += ", ";
ep_args += get_argument_address_space(var) + " " + type_to_glsl(type) + "& " + r.name;
ep_args += " [[buffer(" + convert_to_string(r.index) + ")]]";
}
break;
}
case SPIRType::Sampler:
if (!ep_args.empty())
ep_args += ", ";
ep_args += sampler_type(type) + " " + r.name;
ep_args += " [[sampler(" + convert_to_string(r.index) + ")]]";
break;
case SPIRType::Image:
if (!ep_args.empty())
ep_args += ", ";
ep_args += image_type_glsl(type, var_id) + " " + r.name;
ep_args += " [[texture(" + convert_to_string(r.index) + ")]]";
break;
default:
SPIRV_CROSS_THROW("Unexpected resource type");
break;
}
}
}
// Returns a string containing a comma-delimited list of args for the entry point function
// This is the "classic" method of MSL 1 when we don't have argument buffer support.
string CompilerMSL::entry_point_args_classic(bool append_comma)
{
string ep_args = entry_point_arg_stage_in();
entry_point_args_discrete_descriptors(ep_args);
entry_point_args_builtin(ep_args);
if (!ep_args.empty() && append_comma)
ep_args += ", ";
return ep_args;
}
void CompilerMSL::fix_up_shader_inputs_outputs()
{
// Look for sampled images. Add hooks to set up the swizzle constants.
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
auto &type = get_variable_data_type(var);
uint32_t var_id = var.self;
if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer) &&
!is_hidden_variable(var))
{
if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type))
{
auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point);
entry_func.fixup_hooks_in.push_back([this, &var, var_id]() {
auto &aux_type = expression_type(aux_buffer_id);
statement("constant uint32_t& ", to_swizzle_expression(var_id), " = ", to_name(aux_buffer_id), ".",
to_member_name(aux_type, k_aux_mbr_idx_swizzle_const), "[",
convert_to_string(get_metal_resource_index(var, SPIRType::Image)), "];");
});
}
}
});
// Builtin variables
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
uint32_t var_id = var.self;
BuiltIn bi_type = ir.meta[var_id].decoration.builtin_type;
if (var.storage == StorageClassInput && is_builtin_variable(var))
{
auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point);
switch (bi_type)
{
case BuiltInSamplePosition:
entry_func.fixup_hooks_in.push_back([=]() {
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = get_sample_position(",
to_expression(builtin_sample_id_id), ");");
});
break;
case BuiltInHelperInvocation:
if (msl_options.is_ios())
SPIRV_CROSS_THROW("simd_is_helper_thread() is only supported on macOS.");
else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1))
SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.1 on macOS.");
entry_func.fixup_hooks_in.push_back([=]() {
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = simd_is_helper_thread();");
});
break;
case BuiltInPatchVertices:
if (get_execution_model() == ExecutionModelTessellationEvaluation)
entry_func.fixup_hooks_in.push_back([=]() {
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
to_expression(patch_stage_in_var_id), ".gl_in.size();");
});
else
entry_func.fixup_hooks_in.push_back([=]() {
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = spvIndirectParams[0];");
});
break;
case BuiltInTessCoord:
// Emit a fixup to account for the shifted domain. Don't do this for triangles;
// MoltenVK will just reverse the winding order instead.
if (msl_options.tess_domain_origin_lower_left && !get_entry_point().flags.get(ExecutionModeTriangles))
{
string tc = to_expression(var_id);
entry_func.fixup_hooks_in.push_back([=]() { statement(tc, ".y = 1.0 - ", tc, ".y;"); });
}
break;
default:
break;
}
}
});
}
// Returns the Metal index of the resource of the specified type as used by the specified variable.
uint32_t CompilerMSL::get_metal_resource_index(SPIRVariable &var, SPIRType::BaseType basetype)
{
auto &execution = get_entry_point();
auto &var_dec = ir.meta[var.self].decoration;
uint32_t var_desc_set = (var.storage == StorageClassPushConstant) ? kPushConstDescSet : var_dec.set;
uint32_t var_binding = (var.storage == StorageClassPushConstant) ? kPushConstBinding : var_dec.binding;
// If a matching binding has been specified, find and use it
auto itr = find_if(begin(resource_bindings), end(resource_bindings),
[&](const pair<MSLResourceBinding, bool> &resource) -> bool {
return var_desc_set == resource.first.desc_set && var_binding == resource.first.binding &&
execution.model == resource.first.stage;
});
if (itr != end(resource_bindings))
{
itr->second = true;
switch (basetype)
{
case SPIRType::Struct:
return itr->first.msl_buffer;
case SPIRType::Image:
return itr->first.msl_texture;
case SPIRType::Sampler:
return itr->first.msl_sampler;
default:
return 0;
}
}
// If there is no explicit mapping of bindings to MSL, use the declared binding.
if (has_decoration(var.self, DecorationBinding))
return get_decoration(var.self, DecorationBinding);
uint32_t binding_stride = 1;
auto &type = get<SPIRType>(var.basetype);
for (uint32_t i = 0; i < uint32_t(type.array.size()); i++)
binding_stride *= type.array_size_literal[i] ? type.array[i] : get<SPIRConstant>(type.array[i]).scalar();
// If a binding has not been specified, revert to incrementing resource indices
uint32_t resource_index;
switch (basetype)
{
case SPIRType::Struct:
resource_index = next_metal_resource_index_buffer;
next_metal_resource_index_buffer += binding_stride;
break;
case SPIRType::Image:
resource_index = next_metal_resource_index_texture;
next_metal_resource_index_texture += binding_stride;
break;
case SPIRType::Sampler:
resource_index = next_metal_resource_index_sampler;
next_metal_resource_index_sampler += binding_stride;
break;
default:
resource_index = 0;
break;
}
return resource_index;
}
string CompilerMSL::argument_decl(const SPIRFunction::Parameter &arg)
{
auto &var = get<SPIRVariable>(arg.id);
auto &type = get_variable_data_type(var);
auto &var_type = get<SPIRType>(arg.type);
StorageClass storage = var_type.storage;
bool is_pointer = var_type.pointer;
// If we need to modify the name of the variable, make sure we use the original variable.
// Our alias is just a shadow variable.
uint32_t name_id = var.self;
if (arg.alias_global_variable && var.basevariable)
name_id = var.basevariable;
bool constref = !arg.alias_global_variable && is_pointer && arg.write_count == 0;
bool type_is_image = type.basetype == SPIRType::Image || type.basetype == SPIRType::SampledImage ||
type.basetype == SPIRType::Sampler;
// Arrays of images/samplers in MSL are always const.
if (!type.array.empty() && type_is_image)
constref = true;
string decl;
if (constref)
decl += "const ";
bool builtin = is_builtin_variable(var);
if (var.basevariable == stage_in_ptr_var_id || var.basevariable == stage_out_ptr_var_id)
decl += type_to_glsl(type, arg.id);
else if (builtin)
decl += builtin_type_decl(static_cast<BuiltIn>(get_decoration(arg.id, DecorationBuiltIn)));
else if ((storage == StorageClassUniform || storage == StorageClassStorageBuffer) && is_array(type))
decl += join(type_to_glsl(type, arg.id), "*");
else
decl += type_to_glsl(type, arg.id);
bool opaque_handle = storage == StorageClassUniformConstant;
string address_space = get_argument_address_space(var);
if (!builtin && !opaque_handle && !is_pointer &&
(storage == StorageClassFunction || storage == StorageClassGeneric))
{
// If the argument is a pure value and not an opaque type, we will pass by value.
if (is_array(type))
{
// We are receiving an array by value. This is problematic.
// We cannot be sure of the target address space since we are supposed to receive a copy,
// but this is not possible with MSL without some extra work.
// We will have to assume we're getting a reference in thread address space.
// If we happen to get a reference in constant address space, the caller must emit a copy and pass that.
// Thread const therefore becomes the only logical choice, since we cannot "create" a constant array from
// non-constant arrays, but we can create thread const from constant.
decl = string("thread const ") + decl;
decl += " (&";
decl += to_expression(name_id);
decl += ")";
decl += type_to_array_glsl(type);
}
else
{
if (!address_space.empty())
decl = join(address_space, " ", decl);
decl += " ";
decl += to_expression(name_id);
}
}
else if (is_array(type) && !type_is_image)
{
// Arrays of images and samplers are special cased.
if (!address_space.empty())
decl = join(address_space, " ", decl);
if (msl_options.argument_buffers)
{
// An awkward case where we need to emit *more* address space declarations (yay!).
// An example is where we pass down an array of buffer pointers to leaf functions.
// It's a constant array containing pointers to constants.
// The pointer array is always constant however. E.g.
// device SSBO * constant (&array)[N].
// const device SSBO * constant (&array)[N].
// constant SSBO * constant (&array)[N].
// However, this only matters for argument buffers, since for MSL 1.0 style codegen,
// we emit the buffer array on stack instead, and that seems to work just fine apparently.
if (storage == StorageClassUniform || storage == StorageClassStorageBuffer)
decl += " constant";
}
decl += " (&";
decl += to_expression(name_id);
decl += ")";
decl += type_to_array_glsl(type);
}
else if (!opaque_handle)
{
// If this is going to be a reference to a variable pointer, the address space
// for the reference has to go before the '&', but after the '*'.
if (!address_space.empty())
{
if (decl.back() == '*')
decl += join(" ", address_space, " ");
else
decl = join(address_space, " ", decl);
}
decl += "&";
decl += " ";
decl += to_expression(name_id);
}
else
{
if (!address_space.empty())
decl = join(address_space, " ", decl);
decl += " ";
decl += to_expression(name_id);
}
return decl;
}
// If we're currently in the entry point function, and the object
// has a qualified name, use it, otherwise use the standard name.
string CompilerMSL::to_name(uint32_t id, bool allow_alias) const
{
if (current_function && (current_function->self == ir.default_entry_point))
{
auto *m = ir.find_meta(id);
if (m && !m->decoration.qualified_alias.empty())
return m->decoration.qualified_alias;
}
return Compiler::to_name(id, allow_alias);
}
// Returns a name that combines the name of the struct with the name of the member, except for Builtins
string CompilerMSL::to_qualified_member_name(const SPIRType &type, uint32_t index)
{
// Don't qualify Builtin names because they are unique and are treated as such when building expressions
BuiltIn builtin = BuiltInMax;
if (is_member_builtin(type, index, &builtin))
return builtin_to_glsl(builtin, type.storage);
// Strip any underscore prefix from member name
string mbr_name = to_member_name(type, index);
size_t startPos = mbr_name.find_first_not_of("_");
mbr_name = (startPos != string::npos) ? mbr_name.substr(startPos) : "";
return join(to_name(type.self), "_", mbr_name);
}
// Ensures that the specified name is permanently usable by prepending a prefix
// if the first chars are _ and a digit, which indicate a transient name.
string CompilerMSL::ensure_valid_name(string name, string pfx)
{
return (name.size() >= 2 && name[0] == '_' && isdigit(name[1])) ? (pfx + name) : name;
}
// Replace all names that match MSL keywords or Metal Standard Library functions.
void CompilerMSL::replace_illegal_names()
{
// FIXME: MSL and GLSL are doing two different things here.
// Agree on convention and remove this override.
static const unordered_set<string> keywords = {
"kernel",
"vertex",
"fragment",
"compute",
"bias",
"assert",
"VARIABLE_TRACEPOINT",
"STATIC_DATA_TRACEPOINT",
"STATIC_DATA_TRACEPOINT_V",
"METAL_ALIGN",
"METAL_ASM",
"METAL_CONST",
"METAL_DEPRECATED",
"METAL_ENABLE_IF",
"METAL_FUNC",
"METAL_INTERNAL",
"METAL_NON_NULL_RETURN",
"METAL_NORETURN",
"METAL_NOTHROW",
"METAL_PURE",
"METAL_UNAVAILABLE",
"METAL_IMPLICIT",
"METAL_EXPLICIT",
"METAL_CONST_ARG",
"METAL_ARG_UNIFORM",
"METAL_ZERO_ARG",
"METAL_VALID_LOD_ARG",
"METAL_VALID_LEVEL_ARG",
"METAL_VALID_STORE_ORDER",
"METAL_VALID_LOAD_ORDER",
"METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER",
"METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS",
"METAL_VALID_RENDER_TARGET",
"is_function_constant_defined",
"CHAR_BIT",
"SCHAR_MAX",
"SCHAR_MIN",
"UCHAR_MAX",
"CHAR_MAX",
"CHAR_MIN",
"USHRT_MAX",
"SHRT_MAX",
"SHRT_MIN",
"UINT_MAX",
"INT_MAX",
"INT_MIN",
"FLT_DIG",
"FLT_MANT_DIG",
"FLT_MAX_10_EXP",
"FLT_MAX_EXP",
"FLT_MIN_10_EXP",
"FLT_MIN_EXP",
"FLT_RADIX",
"FLT_MAX",
"FLT_MIN",
"FLT_EPSILON",
"FP_ILOGB0",
"FP_ILOGBNAN",
"MAXFLOAT",
"HUGE_VALF",
"INFINITY",
"NAN",
"M_E_F",
"M_LOG2E_F",
"M_LOG10E_F",
"M_LN2_F",
"M_LN10_F",
"M_PI_F",
"M_PI_2_F",
"M_PI_4_F",
"M_1_PI_F",
"M_2_PI_F",
"M_2_SQRTPI_F",
"M_SQRT2_F",
"M_SQRT1_2_F",
"HALF_DIG",
"HALF_MANT_DIG",
"HALF_MAX_10_EXP",
"HALF_MAX_EXP",
"HALF_MIN_10_EXP",
"HALF_MIN_EXP",
"HALF_RADIX",
"HALF_MAX",
"HALF_MIN",
"HALF_EPSILON",
"MAXHALF",
"HUGE_VALH",
"M_E_H",
"M_LOG2E_H",
"M_LOG10E_H",
"M_LN2_H",
"M_LN10_H",
"M_PI_H",
"M_PI_2_H",
"M_PI_4_H",
"M_1_PI_H",
"M_2_PI_H",
"M_2_SQRTPI_H",
"M_SQRT2_H",
"M_SQRT1_2_H",
"DBL_DIG",
"DBL_MANT_DIG",
"DBL_MAX_10_EXP",
"DBL_MAX_EXP",
"DBL_MIN_10_EXP",
"DBL_MIN_EXP",
"DBL_RADIX",
"DBL_MAX",
"DBL_MIN",
"DBL_EPSILON",
"HUGE_VAL",
"M_E",
"M_LOG2E",
"M_LOG10E",
"M_LN2",
"M_LN10",
"M_PI",
"M_PI_2",
"M_PI_4",
"M_1_PI",
"M_2_PI",
"M_2_SQRTPI",
"M_SQRT2",
"M_SQRT1_2",
};
static const unordered_set<string> illegal_func_names = {
"main",
"saturate",
"assert",
"VARIABLE_TRACEPOINT",
"STATIC_DATA_TRACEPOINT",
"STATIC_DATA_TRACEPOINT_V",
"METAL_ALIGN",
"METAL_ASM",
"METAL_CONST",
"METAL_DEPRECATED",
"METAL_ENABLE_IF",
"METAL_FUNC",
"METAL_INTERNAL",
"METAL_NON_NULL_RETURN",
"METAL_NORETURN",
"METAL_NOTHROW",
"METAL_PURE",
"METAL_UNAVAILABLE",
"METAL_IMPLICIT",
"METAL_EXPLICIT",
"METAL_CONST_ARG",
"METAL_ARG_UNIFORM",
"METAL_ZERO_ARG",
"METAL_VALID_LOD_ARG",
"METAL_VALID_LEVEL_ARG",
"METAL_VALID_STORE_ORDER",
"METAL_VALID_LOAD_ORDER",
"METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER",
"METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS",
"METAL_VALID_RENDER_TARGET",
"is_function_constant_defined",
"CHAR_BIT",
"SCHAR_MAX",
"SCHAR_MIN",
"UCHAR_MAX",
"CHAR_MAX",
"CHAR_MIN",
"USHRT_MAX",
"SHRT_MAX",
"SHRT_MIN",
"UINT_MAX",
"INT_MAX",
"INT_MIN",
"FLT_DIG",
"FLT_MANT_DIG",
"FLT_MAX_10_EXP",
"FLT_MAX_EXP",
"FLT_MIN_10_EXP",
"FLT_MIN_EXP",
"FLT_RADIX",
"FLT_MAX",
"FLT_MIN",
"FLT_EPSILON",
"FP_ILOGB0",
"FP_ILOGBNAN",
"MAXFLOAT",
"HUGE_VALF",
"INFINITY",
"NAN",
"M_E_F",
"M_LOG2E_F",
"M_LOG10E_F",
"M_LN2_F",
"M_LN10_F",
"M_PI_F",
"M_PI_2_F",
"M_PI_4_F",
"M_1_PI_F",
"M_2_PI_F",
"M_2_SQRTPI_F",
"M_SQRT2_F",
"M_SQRT1_2_F",
"HALF_DIG",
"HALF_MANT_DIG",
"HALF_MAX_10_EXP",
"HALF_MAX_EXP",
"HALF_MIN_10_EXP",
"HALF_MIN_EXP",
"HALF_RADIX",
"HALF_MAX",
"HALF_MIN",
"HALF_EPSILON",
"MAXHALF",
"HUGE_VALH",
"M_E_H",
"M_LOG2E_H",
"M_LOG10E_H",
"M_LN2_H",
"M_LN10_H",
"M_PI_H",
"M_PI_2_H",
"M_PI_4_H",
"M_1_PI_H",
"M_2_PI_H",
"M_2_SQRTPI_H",
"M_SQRT2_H",
"M_SQRT1_2_H",
"DBL_DIG",
"DBL_MANT_DIG",
"DBL_MAX_10_EXP",
"DBL_MAX_EXP",
"DBL_MIN_10_EXP",
"DBL_MIN_EXP",
"DBL_RADIX",
"DBL_MAX",
"DBL_MIN",
"DBL_EPSILON",
"HUGE_VAL",
"M_E",
"M_LOG2E",
"M_LOG10E",
"M_LN2",
"M_LN10",
"M_PI",
"M_PI_2",
"M_PI_4",
"M_1_PI",
"M_2_PI",
"M_2_SQRTPI",
"M_SQRT2",
"M_SQRT1_2",
};
ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, SPIRVariable &) {
auto &dec = ir.meta[self].decoration;
if (keywords.find(dec.alias) != end(keywords))
dec.alias += "0";
});
ir.for_each_typed_id<SPIRFunction>([&](uint32_t self, SPIRFunction &) {
auto &dec = ir.meta[self].decoration;
if (illegal_func_names.find(dec.alias) != end(illegal_func_names))
dec.alias += "0";
});
ir.for_each_typed_id<SPIRType>([&](uint32_t self, SPIRType &) {
for (auto &mbr_dec : ir.meta[self].members)
if (keywords.find(mbr_dec.alias) != end(keywords))
mbr_dec.alias += "0";
});
for (auto &entry : ir.entry_points)
{
// Change both the entry point name and the alias, to keep them synced.
string &ep_name = entry.second.name;
if (illegal_func_names.find(ep_name) != end(illegal_func_names))
ep_name += "0";
// Always write this because entry point might have been renamed earlier.
ir.meta[entry.first].decoration.alias = ep_name;
}
CompilerGLSL::replace_illegal_names();
}
string CompilerMSL::to_member_reference(uint32_t base, const SPIRType &type, uint32_t index, bool ptr_chain)
{
auto *var = maybe_get<SPIRVariable>(base);
// If this is a buffer array, we have to dereference the buffer pointers.
// Otherwise, if this is a pointer expression, dereference it.
bool declared_as_pointer = false;
if (var)
{
bool is_buffer_variable = var->storage == StorageClassUniform || var->storage == StorageClassStorageBuffer;
declared_as_pointer = is_buffer_variable && is_array(get<SPIRType>(var->basetype));
}
if (declared_as_pointer || (!ptr_chain && should_dereference(base)))
return join("->", to_member_name(type, index));
else
return join(".", to_member_name(type, index));
}
string CompilerMSL::to_qualifiers_glsl(uint32_t id)
{
string quals;
auto &type = expression_type(id);
if (type.storage == StorageClassWorkgroup)
quals += "threadgroup ";
return quals;
}
// The optional id parameter indicates the object whose type we are trying
// to find the description for. It is optional. Most type descriptions do not
// depend on a specific object's use of that type.
string CompilerMSL::type_to_glsl(const SPIRType &type, uint32_t id)
{
string type_name;
// Pointer?
if (type.pointer)
{
type_name = join(get_type_address_space(type, id), " ", type_to_glsl(get<SPIRType>(type.parent_type), id));
switch (type.basetype)
{
case SPIRType::Image:
case SPIRType::SampledImage:
case SPIRType::Sampler:
// These are handles.
break;
default:
// Anything else can be a raw pointer.
type_name += "*";
break;
}
return type_name;
}
switch (type.basetype)
{
case SPIRType::Struct:
// Need OpName lookup here to get a "sensible" name for a struct.
return to_name(type.self);
case SPIRType::Image:
case SPIRType::SampledImage:
return image_type_glsl(type, id);
case SPIRType::Sampler:
return sampler_type(type);
case SPIRType::Void:
return "void";
case SPIRType::AtomicCounter:
return "atomic_uint";
case SPIRType::ControlPointArray:
return join("patch_control_point<", type_to_glsl(get<SPIRType>(type.parent_type), id), ">");
// Scalars
case SPIRType::Boolean:
type_name = "bool";
break;
case SPIRType::Char:
case SPIRType::SByte:
type_name = "char";
break;
case SPIRType::UByte:
type_name = "uchar";
break;
case SPIRType::Short:
type_name = "short";
break;
case SPIRType::UShort:
type_name = "ushort";
break;
case SPIRType::Int:
type_name = "int";
break;
case SPIRType::UInt:
type_name = "uint";
break;
case SPIRType::Int64:
type_name = "long"; // Currently unsupported
break;
case SPIRType::UInt64:
type_name = "size_t";
break;
case SPIRType::Half:
type_name = "half";
break;
case SPIRType::Float:
type_name = "float";
break;
case SPIRType::Double:
type_name = "double"; // Currently unsupported
break;
default:
return "unknown_type";
}
// Matrix?
if (type.columns > 1)
type_name += to_string(type.columns) + "x";
// Vector or Matrix?
if (type.vecsize > 1)
type_name += to_string(type.vecsize);
return type_name;
}
std::string CompilerMSL::sampler_type(const SPIRType &type)
{
if (!type.array.empty())
{
if (!msl_options.supports_msl_version(2))
SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of samplers.");
if (type.array.size() > 1)
SPIRV_CROSS_THROW("Arrays of arrays of samplers are not supported in MSL.");
// Arrays of samplers in MSL must be declared with a special array<T, N> syntax ala C++11 std::array.
uint32_t array_size = to_array_size_literal(type);
if (array_size == 0)
SPIRV_CROSS_THROW("Unsized array of samplers is not supported in MSL.");
auto &parent = get<SPIRType>(get_pointee_type(type).parent_type);
return join("array<", sampler_type(parent), ", ", array_size, ">");
}
else
return "sampler";
}
// Returns an MSL string describing the SPIR-V image type
string CompilerMSL::image_type_glsl(const SPIRType &type, uint32_t id)
{
auto *var = maybe_get<SPIRVariable>(id);
if (var && var->basevariable)
{
// For comparison images, check against the base variable,
// and not the fake ID which might have been generated for this variable.
id = var->basevariable;
}
if (!type.array.empty())
{
uint32_t major = 2, minor = 0;
if (msl_options.is_ios())
{
major = 1;
minor = 2;
}
if (!msl_options.supports_msl_version(major, minor))
{
if (msl_options.is_ios())
SPIRV_CROSS_THROW("MSL 1.2 or greater is required for arrays of textures.");
else
SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of textures.");
}
if (type.array.size() > 1)
SPIRV_CROSS_THROW("Arrays of arrays of textures are not supported in MSL.");
// Arrays of images in MSL must be declared with a special array<T, N> syntax ala C++11 std::array.
uint32_t array_size = to_array_size_literal(type);
if (array_size == 0)
SPIRV_CROSS_THROW("Unsized array of images is not supported in MSL.");
auto &parent = get<SPIRType>(get_pointee_type(type).parent_type);
return join("array<", image_type_glsl(parent, id), ", ", array_size, ">");
}
string img_type_name;
// Bypass pointers because we need the real image struct
auto &img_type = get<SPIRType>(type.self).image;
if (image_is_comparison(type, id))
{
switch (img_type.dim)
{
case Dim1D:
img_type_name += "depth1d_unsupported_by_metal";
break;
case Dim2D:
if (img_type.ms && img_type.arrayed)
{
if (!msl_options.supports_msl_version(2, 1))
SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1.");
img_type_name += "depth2d_ms_array";
}
else if (img_type.ms)
img_type_name += "depth2d_ms";
else if (img_type.arrayed)
img_type_name += "depth2d_array";
else
img_type_name += "depth2d";
break;
case Dim3D:
img_type_name += "depth3d_unsupported_by_metal";
break;
case DimCube:
img_type_name += (img_type.arrayed ? "depthcube_array" : "depthcube");
break;
default:
img_type_name += "unknown_depth_texture_type";
break;
}
}
else
{
switch (img_type.dim)
{
case Dim1D:
img_type_name += (img_type.arrayed ? "texture1d_array" : "texture1d");
break;
case DimBuffer:
if (img_type.ms || img_type.arrayed)
SPIRV_CROSS_THROW("Cannot use texel buffers with multisampling or array layers.");
if (msl_options.texture_buffer_native)
{
if (!msl_options.supports_msl_version(2, 1))
SPIRV_CROSS_THROW("Native texture_buffer type is only supported in MSL 2.1.");
img_type_name = "texture_buffer";
}
else
img_type_name += "texture2d";
break;
case Dim2D:
case DimSubpassData:
if (img_type.ms && img_type.arrayed)
{
if (!msl_options.supports_msl_version(2, 1))
SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1.");
img_type_name += "texture2d_ms_array";
}
else if (img_type.ms)
img_type_name += "texture2d_ms";
else if (img_type.arrayed)
img_type_name += "texture2d_array";
else
img_type_name += "texture2d";
break;
case Dim3D:
img_type_name += "texture3d";
break;
case DimCube:
img_type_name += (img_type.arrayed ? "texturecube_array" : "texturecube");
break;
default:
img_type_name += "unknown_texture_type";
break;
}
}
// Append the pixel type
img_type_name += "<";
img_type_name += type_to_glsl(get<SPIRType>(img_type.type));
// For unsampled images, append the sample/read/write access qualifier.
// For kernel images, the access qualifier my be supplied directly by SPIR-V.
// Otherwise it may be set based on whether the image is read from or written to within the shader.
if (type.basetype == SPIRType::Image && type.image.sampled == 2 && type.image.dim != DimSubpassData)
{
switch (img_type.access)
{
case AccessQualifierReadOnly:
img_type_name += ", access::read";
break;
case AccessQualifierWriteOnly:
img_type_name += ", access::write";
break;
case AccessQualifierReadWrite:
img_type_name += ", access::read_write";
break;
default:
{
auto *p_var = maybe_get_backing_variable(id);
if (p_var && p_var->basevariable)
p_var = maybe_get<SPIRVariable>(p_var->basevariable);
if (p_var && !has_decoration(p_var->self, DecorationNonWritable))
{
img_type_name += ", access::";
if (!has_decoration(p_var->self, DecorationNonReadable))
img_type_name += "read_";
img_type_name += "write";
}
break;
}
}
}
img_type_name += ">";
return img_type_name;
}
string CompilerMSL::bitcast_glsl_op(const SPIRType &out_type, const SPIRType &in_type)
{
if (out_type.basetype == in_type.basetype)
return "";
assert(out_type.basetype != SPIRType::Boolean);
assert(in_type.basetype != SPIRType::Boolean);
bool integral_cast = type_is_integral(out_type) && type_is_integral(in_type);
bool same_size_cast = out_type.width == in_type.width;
if (integral_cast && same_size_cast)
{
// Trivial bitcast case, casts between integers.
return type_to_glsl(out_type);
}
else
{
// Fall back to the catch-all bitcast in MSL.
return "as_type<" + type_to_glsl(out_type) + ">";
}
}
// Returns an MSL string identifying the name of a SPIR-V builtin.
// Output builtins are qualified with the name of the stage out structure.
string CompilerMSL::builtin_to_glsl(BuiltIn builtin, StorageClass storage)
{
switch (builtin)
{
// Override GLSL compiler strictness
case BuiltInVertexId:
return "gl_VertexID";
case BuiltInInstanceId:
return "gl_InstanceID";
case BuiltInVertexIndex:
return "gl_VertexIndex";
case BuiltInInstanceIndex:
return "gl_InstanceIndex";
case BuiltInBaseVertex:
return "gl_BaseVertex";
case BuiltInBaseInstance:
return "gl_BaseInstance";
case BuiltInDrawIndex:
SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
// When used in the entry function, output builtins are qualified with output struct name.
// Test storage class as NOT Input, as output builtins might be part of generic type.
// Also don't do this for tessellation control shaders.
case BuiltInViewportIndex:
if (!msl_options.supports_msl_version(2, 0))
SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
/* fallthrough */
case BuiltInPosition:
case BuiltInPointSize:
case BuiltInClipDistance:
case BuiltInCullDistance:
case BuiltInLayer:
case BuiltInFragDepth:
case BuiltInSampleMask:
if (get_execution_model() == ExecutionModelTessellationControl)
break;
if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point))
return stage_out_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage);
break;
case BuiltInTessLevelOuter:
if (get_execution_model() == ExecutionModelTessellationEvaluation)
{
if (storage != StorageClassOutput && !get_entry_point().flags.get(ExecutionModeTriangles) &&
current_function && (current_function->self == ir.default_entry_point))
return join(patch_stage_in_var_name, ".", CompilerGLSL::builtin_to_glsl(builtin, storage));
else
break;
}
if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point))
return join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
"].edgeTessellationFactor");
break;
case BuiltInTessLevelInner:
if (get_execution_model() == ExecutionModelTessellationEvaluation)
{
if (storage != StorageClassOutput && !get_entry_point().flags.get(ExecutionModeTriangles) &&
current_function && (current_function->self == ir.default_entry_point))
return join(patch_stage_in_var_name, ".", CompilerGLSL::builtin_to_glsl(builtin, storage));
else
break;
}
if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point))
return join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
"].insideTessellationFactor");
break;
default:
break;
}
return CompilerGLSL::builtin_to_glsl(builtin, storage);
}
// Returns an MSL string attribute qualifer for a SPIR-V builtin
string CompilerMSL::builtin_qualifier(BuiltIn builtin)
{
auto &execution = get_entry_point();
switch (builtin)
{
// Vertex function in
case BuiltInVertexId:
return "vertex_id";
case BuiltInVertexIndex:
return "vertex_id";
case BuiltInBaseVertex:
return "base_vertex";
case BuiltInInstanceId:
return "instance_id";
case BuiltInInstanceIndex:
return "instance_id";
case BuiltInBaseInstance:
return "base_instance";
case BuiltInDrawIndex:
SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
// Vertex function out
case BuiltInClipDistance:
return "clip_distance";
case BuiltInPointSize:
return "point_size";
case BuiltInPosition:
return "position";
case BuiltInLayer:
return "render_target_array_index";
case BuiltInViewportIndex:
if (!msl_options.supports_msl_version(2, 0))
SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
return "viewport_array_index";
// Tess. control function in
case BuiltInInvocationId:
return "thread_index_in_threadgroup";
case BuiltInPatchVertices:
// Shouldn't be reached.
SPIRV_CROSS_THROW("PatchVertices is derived from the auxiliary buffer in MSL.");
case BuiltInPrimitiveId:
switch (execution.model)
{
case ExecutionModelTessellationControl:
return "threadgroup_position_in_grid";
case ExecutionModelTessellationEvaluation:
return "patch_id";
default:
SPIRV_CROSS_THROW("PrimitiveId is not supported in this execution model.");
}
// Tess. control function out
case BuiltInTessLevelOuter:
case BuiltInTessLevelInner:
// Shouldn't be reached.
SPIRV_CROSS_THROW("Tessellation levels are handled specially in MSL.");
// Tess. evaluation function in
case BuiltInTessCoord:
return "position_in_patch";
// Fragment function in
case BuiltInFrontFacing:
return "front_facing";
case BuiltInPointCoord:
return "point_coord";
case BuiltInFragCoord:
return "position";
case BuiltInSampleId:
return "sample_id";
case BuiltInSampleMask:
return "sample_mask";
case BuiltInSamplePosition:
// Shouldn't be reached.
SPIRV_CROSS_THROW("Sample position is retrieved by a function in MSL.");
// Fragment function out
case BuiltInFragDepth:
if (execution.flags.get(ExecutionModeDepthGreater))
return "depth(greater)";
else if (execution.flags.get(ExecutionModeDepthLess))
return "depth(less)";
else
return "depth(any)";
// Compute function in
case BuiltInGlobalInvocationId:
return "thread_position_in_grid";
case BuiltInWorkgroupId:
return "threadgroup_position_in_grid";
case BuiltInNumWorkgroups:
return "threadgroups_per_grid";
case BuiltInLocalInvocationId:
return "thread_position_in_threadgroup";
case BuiltInLocalInvocationIndex:
return "thread_index_in_threadgroup";
default:
return "unsupported-built-in";
}
}
// Returns an MSL string type declaration for a SPIR-V builtin
string CompilerMSL::builtin_type_decl(BuiltIn builtin)
{
const SPIREntryPoint &execution = get_entry_point();
switch (builtin)
{
// Vertex function in
case BuiltInVertexId:
return "uint";
case BuiltInVertexIndex:
return "uint";
case BuiltInBaseVertex:
return "uint";
case BuiltInInstanceId:
return "uint";
case BuiltInInstanceIndex:
return "uint";
case BuiltInBaseInstance:
return "uint";
case BuiltInDrawIndex:
SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
// Vertex function out
case BuiltInClipDistance:
return "float";
case BuiltInPointSize:
return "float";
case BuiltInPosition:
return "float4";
case BuiltInLayer:
return "uint";
case BuiltInViewportIndex:
if (!msl_options.supports_msl_version(2, 0))
SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
return "uint";
// Tess. control function in
case BuiltInInvocationId:
return "uint";
case BuiltInPatchVertices:
return "uint";
case BuiltInPrimitiveId:
return "uint";
// Tess. control function out
case BuiltInTessLevelInner:
if (execution.model == ExecutionModelTessellationEvaluation)
return !execution.flags.get(ExecutionModeTriangles) ? "float2" : "float";
return "half";
case BuiltInTessLevelOuter:
if (execution.model == ExecutionModelTessellationEvaluation)
return !execution.flags.get(ExecutionModeTriangles) ? "float4" : "float";
return "half";
// Tess. evaluation function in
case BuiltInTessCoord:
return execution.flags.get(ExecutionModeTriangles) ? "float3" : "float2";
// Fragment function in
case BuiltInFrontFacing:
return "bool";
case BuiltInPointCoord:
return "float2";
case BuiltInFragCoord:
return "float4";
case BuiltInSampleId:
return "uint";
case BuiltInSampleMask:
return "uint";
case BuiltInSamplePosition:
return "float2";
// Fragment function out
case BuiltInFragDepth:
return "float";
// Compute function in
case BuiltInGlobalInvocationId:
case BuiltInLocalInvocationId:
case BuiltInNumWorkgroups:
case BuiltInWorkgroupId:
return "uint3";
case BuiltInLocalInvocationIndex:
return "uint";
case BuiltInHelperInvocation:
return "bool";
default:
return "unsupported-built-in-type";
}
}
// Returns the declaration of a built-in argument to a function
string CompilerMSL::built_in_func_arg(BuiltIn builtin, bool prefix_comma)
{
string bi_arg;
if (prefix_comma)
bi_arg += ", ";
bi_arg += builtin_type_decl(builtin);
bi_arg += " " + builtin_to_glsl(builtin, StorageClassInput);
bi_arg += " [[" + builtin_qualifier(builtin) + "]]";
return bi_arg;
}
// Returns the byte size of a struct member.
size_t CompilerMSL::get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const
{
auto &type = get<SPIRType>(struct_type.member_types[index]);
switch (type.basetype)
{
case SPIRType::Unknown:
case SPIRType::Void:
case SPIRType::AtomicCounter:
case SPIRType::Image:
case SPIRType::SampledImage:
case SPIRType::Sampler:
SPIRV_CROSS_THROW("Querying size of opaque object.");
default:
{
// For arrays, we can use ArrayStride to get an easy check.
// Runtime arrays will have zero size so force to min of one.
if (!type.array.empty())
{
uint32_t array_size = to_array_size_literal(type);
return type_struct_member_array_stride(struct_type, index) * max(array_size, 1u);
}
if (type.basetype == SPIRType::Struct)
{
// The size of a struct in Metal is aligned up to its natural alignment.
auto size = get_declared_struct_size(type);
auto alignment = get_declared_struct_member_alignment(struct_type, index);
return (size + alignment - 1) & ~(alignment - 1);
}
uint32_t component_size = type.width / 8;
uint32_t vecsize = type.vecsize;
uint32_t columns = type.columns;
// An unpacked 3-element vector or matrix column is the same memory size as a 4-element.
if (vecsize == 3 && !has_extended_member_decoration(struct_type.self, index, SPIRVCrossDecorationPacked))
vecsize = 4;
return component_size * vecsize * columns;
}
}
}
// Returns the byte alignment of a struct member.
size_t CompilerMSL::get_declared_struct_member_alignment(const SPIRType &struct_type, uint32_t index) const
{
auto &type = get<SPIRType>(struct_type.member_types[index]);
switch (type.basetype)
{
case SPIRType::Unknown:
case SPIRType::Void:
case SPIRType::AtomicCounter:
case SPIRType::Image:
case SPIRType::SampledImage:
case SPIRType::Sampler:
SPIRV_CROSS_THROW("Querying alignment of opaque object.");
case SPIRType::Struct:
{
// In MSL, a struct's alignment is equal to the maximum alignment of any of its members.
uint32_t alignment = 1;
for (uint32_t i = 0; i < type.member_types.size(); i++)
alignment = max(alignment, uint32_t(get_declared_struct_member_alignment(type, i)));
return alignment;
}
default:
{
// Alignment of packed type is the same as the underlying component or column size.
// Alignment of unpacked type is the same as the vector size.
// Alignment of 3-elements vector is the same as 4-elements (including packed using column).
if (member_is_packed_type(struct_type, index))
{
// This is getting pretty complicated.
// The special case of array of float/float2 needs to be handled here.
uint32_t packed_type_id =
get_extended_member_decoration(struct_type.self, index, SPIRVCrossDecorationPackedType);
const SPIRType *packed_type = packed_type_id != 0 ? &get<SPIRType>(packed_type_id) : nullptr;
if (packed_type && is_array(*packed_type) && !is_matrix(*packed_type) &&
packed_type->basetype != SPIRType::Struct)
return (packed_type->width / 8) * 4;
else
return (type.width / 8) * (type.columns == 3 ? 4 : type.columns);
}
else
return (type.width / 8) * (type.vecsize == 3 ? 4 : type.vecsize);
}
}
}
bool CompilerMSL::skip_argument(uint32_t) const
{
return false;
}
void CompilerMSL::analyze_sampled_image_usage()
{
if (msl_options.swizzle_texture_samples)
{
SampledImageScanner scanner(*this);
traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), scanner);
}
}
bool CompilerMSL::SampledImageScanner::handle(spv::Op opcode, const uint32_t *args, uint32_t length)
{
switch (opcode)
{
case OpLoad:
case OpImage:
case OpSampledImage:
{
if (length < 3)
return false;
uint32_t result_type = args[0];
auto &type = compiler.get<SPIRType>(result_type);
if ((type.basetype != SPIRType::Image && type.basetype != SPIRType::SampledImage) || type.image.sampled != 1)
return true;
uint32_t id = args[1];
compiler.set<SPIRExpression>(id, "", result_type, true);
break;
}
case OpImageSampleExplicitLod:
case OpImageSampleProjExplicitLod:
case OpImageSampleDrefExplicitLod:
case OpImageSampleProjDrefExplicitLod:
case OpImageSampleImplicitLod:
case OpImageSampleProjImplicitLod:
case OpImageSampleDrefImplicitLod:
case OpImageSampleProjDrefImplicitLod:
case OpImageFetch:
case OpImageGather:
case OpImageDrefGather:
compiler.has_sampled_images =
compiler.has_sampled_images || compiler.is_sampled_image_type(compiler.expression_type(args[2]));
compiler.needs_aux_buffer_def = compiler.needs_aux_buffer_def || compiler.has_sampled_images;
break;
default:
break;
}
return true;
}
bool CompilerMSL::OpCodePreprocessor::handle(Op opcode, const uint32_t *args, uint32_t length)
{
// Since MSL exists in a single execution scope, function prototype declarations are not
// needed, and clutter the output. If secondary functions are output (either as a SPIR-V
// function implementation or as indicated by the presence of OpFunctionCall), then set
// suppress_missing_prototypes to suppress compiler warnings of missing function prototypes.
// Mark if the input requires the implementation of an SPIR-V function that does not exist in Metal.
SPVFuncImpl spv_func = get_spv_func_impl(opcode, args);
if (spv_func != SPVFuncImplNone)
{
compiler.spv_function_implementations.insert(spv_func);
suppress_missing_prototypes = true;
}
switch (opcode)
{
case OpFunctionCall:
suppress_missing_prototypes = true;
break;
case OpImageWrite:
uses_resource_write = true;
break;
case OpStore:
check_resource_write(args[0]);
break;
case OpAtomicExchange:
case OpAtomicCompareExchange:
case OpAtomicCompareExchangeWeak:
case OpAtomicIIncrement:
case OpAtomicIDecrement:
case OpAtomicIAdd:
case OpAtomicISub:
case OpAtomicSMin:
case OpAtomicUMin:
case OpAtomicSMax:
case OpAtomicUMax:
case OpAtomicAnd:
case OpAtomicOr:
case OpAtomicXor:
uses_atomics = true;
check_resource_write(args[2]);
break;
case OpAtomicLoad:
uses_atomics = true;
break;
default:
break;
}
// If it has one, keep track of the instruction's result type, mapped by ID
uint32_t result_type, result_id;
if (compiler.instruction_to_result_type(result_type, result_id, opcode, args, length))
result_types[result_id] = result_type;
return true;
}
// If the variable is a Uniform or StorageBuffer, mark that a resource has been written to.
void CompilerMSL::OpCodePreprocessor::check_resource_write(uint32_t var_id)
{
auto *p_var = compiler.maybe_get_backing_variable(var_id);
StorageClass sc = p_var ? p_var->storage : StorageClassMax;
if (sc == StorageClassUniform || sc == StorageClassStorageBuffer)
uses_resource_write = true;
}
// Returns an enumeration of a SPIR-V function that needs to be output for certain Op codes.
CompilerMSL::SPVFuncImpl CompilerMSL::OpCodePreprocessor::get_spv_func_impl(Op opcode, const uint32_t *args)
{
switch (opcode)
{
case OpFMod:
return SPVFuncImplMod;
case OpFunctionCall:
{
auto &return_type = compiler.get<SPIRType>(args[0]);
if (return_type.array.size() > 1)
{
if (return_type.array.size() > SPVFuncImplArrayCopyMultidimMax)
SPIRV_CROSS_THROW("Cannot support this many dimensions for arrays of arrays.");
return static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + return_type.array.size());
}
else if (return_type.array.size() > 0)
return SPVFuncImplArrayCopy;
break;
}
case OpStore:
{
// Get the result type of the RHS. Since this is run as a pre-processing stage,
// we must extract the result type directly from the Instruction, rather than the ID.
uint32_t id_lhs = args[0];
uint32_t id_rhs = args[1];
const SPIRType *type = nullptr;
if (compiler.ir.ids[id_rhs].get_type() != TypeNone)
{
// Could be a constant, or similar.
type = &compiler.expression_type(id_rhs);
}
else
{
// Or ... an expression.
uint32_t tid = result_types[id_rhs];
if (tid)
type = &compiler.get<SPIRType>(tid);
}
auto *var = compiler.maybe_get<SPIRVariable>(id_lhs);
// Are we simply assigning to a statically assigned variable which takes a constant?
// Don't bother emitting this function.
bool static_expression_lhs =
var && var->storage == StorageClassFunction && var->statically_assigned && var->remapped_variable;
if (type && compiler.is_array(*type) && !static_expression_lhs)
{
if (type->array.size() > 1)
{
if (type->array.size() > SPVFuncImplArrayCopyMultidimMax)
SPIRV_CROSS_THROW("Cannot support this many dimensions for arrays of arrays.");
return static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + type->array.size());
}
else
return SPVFuncImplArrayCopy;
}
break;
}
case OpImageFetch:
case OpImageRead:
case OpImageWrite:
{
// Retrieve the image type, and if it's a Buffer, emit a texel coordinate function
uint32_t tid = result_types[args[opcode == OpImageWrite ? 0 : 2]];
if (tid && compiler.get<SPIRType>(tid).image.dim == DimBuffer && !compiler.msl_options.texture_buffer_native)
return SPVFuncImplTexelBufferCoords;
if (opcode == OpImageFetch && compiler.msl_options.swizzle_texture_samples)
return SPVFuncImplTextureSwizzle;
break;
}
case OpImageSampleExplicitLod:
case OpImageSampleProjExplicitLod:
case OpImageSampleDrefExplicitLod:
case OpImageSampleProjDrefExplicitLod:
case OpImageSampleImplicitLod:
case OpImageSampleProjImplicitLod:
case OpImageSampleDrefImplicitLod:
case OpImageSampleProjDrefImplicitLod:
case OpImageGather:
case OpImageDrefGather:
if (compiler.msl_options.swizzle_texture_samples)
return SPVFuncImplTextureSwizzle;
break;
case OpCompositeConstruct:
{
auto &type = compiler.get<SPIRType>(args[0]);
if (type.array.size() > 1) // We need to use copies to build the composite.
return static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + type.array.size() - 1);
break;
}
case OpExtInst:
{
uint32_t extension_set = args[2];
if (compiler.get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
{
GLSLstd450 op_450 = static_cast<GLSLstd450>(args[3]);
switch (op_450)
{
case GLSLstd450Radians:
return SPVFuncImplRadians;
case GLSLstd450Degrees:
return SPVFuncImplDegrees;
case GLSLstd450FindILsb:
return SPVFuncImplFindILsb;
case GLSLstd450FindSMsb:
return SPVFuncImplFindSMsb;
case GLSLstd450FindUMsb:
return SPVFuncImplFindUMsb;
case GLSLstd450SSign:
return SPVFuncImplSSign;
case GLSLstd450MatrixInverse:
{
auto &mat_type = compiler.get<SPIRType>(args[0]);
switch (mat_type.columns)
{
case 2:
return SPVFuncImplInverse2x2;
case 3:
return SPVFuncImplInverse3x3;
case 4:
return SPVFuncImplInverse4x4;
default:
break;
}
break;
}
default:
break;
}
}
break;
}
default:
break;
}
return SPVFuncImplNone;
}
// Sort both type and meta member content based on builtin status (put builtins at end),
// then by the required sorting aspect.
void CompilerMSL::MemberSorter::sort()
{
// Create a temporary array of consecutive member indices and sort it based on how
// the members should be reordered, based on builtin and sorting aspect meta info.
size_t mbr_cnt = type.member_types.size();
SmallVector<uint32_t> mbr_idxs(mbr_cnt);
iota(mbr_idxs.begin(), mbr_idxs.end(), 0); // Fill with consecutive indices
std::sort(mbr_idxs.begin(), mbr_idxs.end(), *this); // Sort member indices based on sorting aspect
// Move type and meta member info to the order defined by the sorted member indices.
// This is done by creating temporary copies of both member types and meta, and then
// copying back to the original content at the sorted indices.
auto mbr_types_cpy = type.member_types;
auto mbr_meta_cpy = meta.members;
for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
{
type.member_types[mbr_idx] = mbr_types_cpy[mbr_idxs[mbr_idx]];
meta.members[mbr_idx] = mbr_meta_cpy[mbr_idxs[mbr_idx]];
}
}
// Sort first by builtin status (put builtins at end), then by the sorting aspect.
bool CompilerMSL::MemberSorter::operator()(uint32_t mbr_idx1, uint32_t mbr_idx2)
{
auto &mbr_meta1 = meta.members[mbr_idx1];
auto &mbr_meta2 = meta.members[mbr_idx2];
if (mbr_meta1.builtin != mbr_meta2.builtin)
return mbr_meta2.builtin;
else
switch (sort_aspect)
{
case Location:
return mbr_meta1.location < mbr_meta2.location;
case LocationReverse:
return mbr_meta1.location > mbr_meta2.location;
case Offset:
return mbr_meta1.offset < mbr_meta2.offset;
case OffsetThenLocationReverse:
return (mbr_meta1.offset < mbr_meta2.offset) ||
((mbr_meta1.offset == mbr_meta2.offset) && (mbr_meta1.location > mbr_meta2.location));
case Alphabetical:
return mbr_meta1.alias < mbr_meta2.alias;
default:
return false;
}
}
CompilerMSL::MemberSorter::MemberSorter(SPIRType &t, Meta &m, SortAspect sa)
: type(t)
, meta(m)
, sort_aspect(sa)
{
// Ensure enough meta info is available
meta.members.resize(max(type.member_types.size(), meta.members.size()));
}
void CompilerMSL::remap_constexpr_sampler(uint32_t id, const MSLConstexprSampler &sampler)
{
auto &type = get<SPIRType>(get<SPIRVariable>(id).basetype);
if (type.basetype != SPIRType::SampledImage && type.basetype != SPIRType::Sampler)
SPIRV_CROSS_THROW("Can only remap SampledImage and Sampler type.");
if (!type.array.empty())
SPIRV_CROSS_THROW("Can not remap array of samplers.");
constexpr_samplers[id] = sampler;
}
void CompilerMSL::bitcast_from_builtin_load(uint32_t source_id, std::string &expr, const SPIRType &expr_type)
{
auto *var = maybe_get_backing_variable(source_id);
if (var)
source_id = var->self;
// Only interested in standalone builtin variables.
if (!has_decoration(source_id, DecorationBuiltIn))
return;
auto builtin = static_cast<BuiltIn>(get_decoration(source_id, DecorationBuiltIn));
auto expected_type = expr_type.basetype;
switch (builtin)
{
case BuiltInGlobalInvocationId:
case BuiltInLocalInvocationId:
case BuiltInWorkgroupId:
case BuiltInLocalInvocationIndex:
case BuiltInWorkgroupSize:
case BuiltInNumWorkgroups:
case BuiltInLayer:
case BuiltInViewportIndex:
expected_type = SPIRType::UInt;
break;
case BuiltInTessLevelInner:
case BuiltInTessLevelOuter:
if (get_execution_model() == ExecutionModelTessellationControl)
expected_type = SPIRType::Half;
break;
default:
break;
}
if (expected_type != expr_type.basetype)
expr = bitcast_expression(expr_type, expected_type, expr);
if (builtin == BuiltInTessCoord && get_entry_point().flags.get(ExecutionModeQuads) && expr_type.vecsize == 3)
{
// In SPIR-V, this is always a vec3, even for quads. In Metal, though, it's a float2 for quads.
// The code is expecting a float3, so we need to widen this.
expr = join("float3(", expr, ", 0)");
}
}
void CompilerMSL::bitcast_to_builtin_store(uint32_t target_id, std::string &expr, const SPIRType &expr_type)
{
auto *var = maybe_get_backing_variable(target_id);
if (var)
target_id = var->self;
// Only interested in standalone builtin variables.
if (!has_decoration(target_id, DecorationBuiltIn))
return;
auto builtin = static_cast<BuiltIn>(get_decoration(target_id, DecorationBuiltIn));
auto expected_type = expr_type.basetype;
switch (builtin)
{
case BuiltInLayer:
case BuiltInViewportIndex:
expected_type = SPIRType::UInt;
break;
case BuiltInTessLevelInner:
case BuiltInTessLevelOuter:
expected_type = SPIRType::Half;
break;
default:
break;
}
if (expected_type != expr_type.basetype)
{
if (expected_type == SPIRType::Half && expr_type.basetype == SPIRType::Float)
{
// These are of different widths, so we cannot do a straight bitcast.
expr = join("half(", expr, ")");
}
else
{
auto type = expr_type;
type.basetype = expected_type;
expr = bitcast_expression(type, expr_type.basetype, expr);
}
}
}
std::string CompilerMSL::to_initializer_expression(const SPIRVariable &var)
{
// We risk getting an array initializer here with MSL. If we have an array.
// FIXME: We cannot handle non-constant arrays being initialized.
// We will need to inject spvArrayCopy here somehow ...
auto &type = get<SPIRType>(var.basetype);
if (ir.ids[var.initializer].get_type() == TypeConstant &&
(!type.array.empty() || type.basetype == SPIRType::Struct))
return constant_expression(get<SPIRConstant>(var.initializer));
else
return CompilerGLSL::to_initializer_expression(var);
}
bool CompilerMSL::descriptor_set_is_argument_buffer(uint32_t desc_set) const
{
if (!msl_options.argument_buffers)
return false;
if (desc_set >= kMaxArgumentBuffers)
return false;
return (argument_buffer_discrete_mask & (1u << desc_set)) == 0;
}
void CompilerMSL::analyze_argument_buffers()
{
// Gather all used resources and sort them out into argument buffers.
// Each argument buffer corresponds to a descriptor set in SPIR-V.
// The [[id(N)]] values used correspond to the resource mapping we have for MSL.
// Otherwise, the binding number is used, but this is generally not safe some types like
// combined image samplers and arrays of resources. Metal needs different indices here,
// while SPIR-V can have one descriptor set binding. To use argument buffers in practice,
// you will need to use the remapping from the API.
for (auto &id : argument_buffer_ids)
id = 0;
// Output resources, sorted by resource index & type.
struct Resource
{
SPIRVariable *var;
string name;
SPIRType::BaseType basetype;
uint32_t index;
};
SmallVector<Resource> resources_in_set[kMaxArgumentBuffers];
ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, SPIRVariable &var) {
if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
var.storage == StorageClassStorageBuffer) &&
!is_hidden_variable(var))
{
uint32_t desc_set = get_decoration(self, DecorationDescriptorSet);
// Ignore if it's part of a push descriptor set.
if (!descriptor_set_is_argument_buffer(desc_set))
return;
uint32_t var_id = var.self;
auto &type = get_variable_data_type(var);
if (desc_set >= kMaxArgumentBuffers)
SPIRV_CROSS_THROW("Descriptor set index is out of range.");
if (type.basetype == SPIRType::SampledImage)
{
add_resource_name(var_id);
uint32_t image_resource_index = get_metal_resource_index(var, SPIRType::Image);
uint32_t sampler_resource_index = get_metal_resource_index(var, SPIRType::Sampler);
// Avoid trivial conflicts where we didn't remap.
// This will let us at least compile test cases without having to instrument remaps.
if (sampler_resource_index == image_resource_index)
sampler_resource_index += type.array.empty() ? 1 : to_array_size_literal(type);
resources_in_set[desc_set].push_back({ &var, to_name(var_id), SPIRType::Image, image_resource_index });
if (type.image.dim != DimBuffer && constexpr_samplers.count(var_id) == 0)
{
resources_in_set[desc_set].push_back(
{ &var, to_sampler_expression(var_id), SPIRType::Sampler, sampler_resource_index });
}
}
else if (constexpr_samplers.count(var_id) == 0)
{
// constexpr samplers are not declared as resources.
add_resource_name(var_id);
resources_in_set[desc_set].push_back(
{ &var, to_name(var_id), type.basetype, get_metal_resource_index(var, type.basetype) });
}
}
});
for (uint32_t desc_set = 0; desc_set < kMaxArgumentBuffers; desc_set++)
{
auto &resources = resources_in_set[desc_set];
if (resources.empty())
continue;
assert(descriptor_set_is_argument_buffer(desc_set));
uint32_t next_id = ir.increase_bound_by(3);
uint32_t type_id = next_id + 1;
uint32_t ptr_type_id = next_id + 2;
argument_buffer_ids[desc_set] = next_id;
auto &buffer_type = set<SPIRType>(type_id);
buffer_type.storage = StorageClassUniform;
buffer_type.basetype = SPIRType::Struct;
set_name(type_id, join("spvDescriptorSetBuffer", desc_set));
auto &ptr_type = set<SPIRType>(ptr_type_id);
ptr_type = buffer_type;
ptr_type.pointer = true;
ptr_type.pointer_depth = 1;
ptr_type.parent_type = type_id;
uint32_t buffer_variable_id = next_id;
set<SPIRVariable>(buffer_variable_id, ptr_type_id, StorageClassUniform);
set_name(buffer_variable_id, join("spvDescriptorSet", desc_set));
// Ids must be emitted in ID order.
sort(begin(resources), end(resources), [&](const Resource &lhs, const Resource &rhs) -> bool {
return tie(lhs.index, lhs.basetype) < tie(rhs.index, rhs.basetype);
});
uint32_t member_index = 0;
for (auto &resource : resources)
{
auto &var = *resource.var;
auto &type = get_variable_data_type(var);
string mbr_name = ensure_valid_name(resource.name, "m");
set_member_name(buffer_type.self, member_index, mbr_name);
if (resource.basetype == SPIRType::Sampler && type.basetype != SPIRType::Sampler)
{
// Have to synthesize a sampler type here.
bool type_is_array = !type.array.empty();
uint32_t sampler_type_id = ir.increase_bound_by(type_is_array ? 2 : 1);
auto &new_sampler_type = set<SPIRType>(sampler_type_id);
new_sampler_type.basetype = SPIRType::Sampler;
new_sampler_type.storage = StorageClassUniformConstant;
if (type_is_array)
{
uint32_t sampler_type_array_id = sampler_type_id + 1;
auto &sampler_type_array = set<SPIRType>(sampler_type_array_id);
sampler_type_array = new_sampler_type;
sampler_type_array.array = type.array;
sampler_type_array.array_size_literal = type.array_size_literal;
sampler_type_array.parent_type = sampler_type_id;
buffer_type.member_types.push_back(sampler_type_array_id);
}
else
buffer_type.member_types.push_back(sampler_type_id);
}
else
{
if (resource.basetype == SPIRType::Image || resource.basetype == SPIRType::Sampler ||
resource.basetype == SPIRType::SampledImage)
{
// Drop pointer information when we emit the resources into a struct.
buffer_type.member_types.push_back(get_variable_data_type_id(var));
set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name));
}
else
{
// Resources will be declared as pointers not references, so automatically dereference as appropriate.
buffer_type.member_types.push_back(var.basetype);
if (type.array.empty())
set_qualified_name(var.self, join("(*", to_name(buffer_variable_id), ".", mbr_name, ")"));
else
set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name));
}
}
set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationArgumentBufferID,
resource.index);
set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationInterfaceOrigID,
var.self);
member_index++;
}
}
}