SPIRV-Tools/source/spirv_stats.cpp

263 lines
9.0 KiB
C++
Raw Normal View History

// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "spirv_stats.h"
#include <cassert>
#include <algorithm>
#include <memory>
#include <string>
#include "diagnostic.h"
#include "enum_string_mapping.h"
#include "extensions.h"
#include "id_descriptor.h"
#include "instruction.h"
#include "opcode.h"
#include "operand.h"
#include "spirv-tools/libspirv.h"
#include "val/instruction.h"
#include "val/validate.h"
#include "val/validation_state.h"
namespace spvtools {
namespace {
// Helper class for stats aggregation. Receives as in/out parameter.
// Constructs ValidationState and updates it by running validator for each
// instruction.
class StatsAggregator {
public:
StatsAggregator(SpirvStats* in_out_stats, const val::ValidationState_t* state)
: stats_(in_out_stats), vstate_(state) {}
// Processes the instructions to collect stats.
void aggregate() {
const auto& instructions = vstate_->ordered_instructions();
++stats_->version_hist[vstate_->version()];
++stats_->generator_hist[vstate_->generator()];
for (size_t i = 0; i < instructions.size(); ++i) {
const auto& inst = instructions[i];
ProcessOpcode(&inst, i);
ProcessCapability(&inst);
ProcessExtension(&inst);
ProcessConstant(&inst);
ProcessEnums(&inst);
ProcessLiteralStrings(&inst);
ProcessNonIdWords(&inst);
ProcessIdDescriptors(&inst);
}
}
// Collects statistics of descriptors generated by IdDescriptorCollection.
void ProcessIdDescriptors(const val::Instruction* inst) {
const uint32_t new_descriptor =
id_descriptors_.ProcessInstruction(inst->c_inst());
if (new_descriptor) {
std::stringstream ss;
ss << spvOpcodeString(inst->opcode());
for (size_t i = 1; i < inst->words().size(); ++i) {
ss << " " << inst->word(i);
}
stats_->id_descriptor_labels.emplace(new_descriptor, ss.str());
}
uint32_t index = 0;
for (const auto& operand : inst->operands()) {
if (spvIsIdType(operand.type)) {
const uint32_t descriptor =
id_descriptors_.GetDescriptor(inst->word(operand.offset));
if (descriptor) {
++stats_->id_descriptor_hist[descriptor];
++stats_
->operand_slot_id_descriptor_hist[std::pair<uint32_t, uint32_t>(
inst->opcode(), index)][descriptor];
}
}
++index;
}
}
// Collects statistics of enum words for operands of specific types.
void ProcessEnums(const val::Instruction* inst) {
for (const auto& operand : inst->operands()) {
switch (operand.type) {
case SPV_OPERAND_TYPE_SOURCE_LANGUAGE:
case SPV_OPERAND_TYPE_EXECUTION_MODEL:
case SPV_OPERAND_TYPE_ADDRESSING_MODEL:
case SPV_OPERAND_TYPE_MEMORY_MODEL:
case SPV_OPERAND_TYPE_EXECUTION_MODE:
case SPV_OPERAND_TYPE_STORAGE_CLASS:
case SPV_OPERAND_TYPE_DIMENSIONALITY:
case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE:
case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE:
case SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT:
case SPV_OPERAND_TYPE_IMAGE_CHANNEL_ORDER:
case SPV_OPERAND_TYPE_IMAGE_CHANNEL_DATA_TYPE:
case SPV_OPERAND_TYPE_FP_ROUNDING_MODE:
case SPV_OPERAND_TYPE_LINKAGE_TYPE:
case SPV_OPERAND_TYPE_ACCESS_QUALIFIER:
case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE:
case SPV_OPERAND_TYPE_DECORATION:
case SPV_OPERAND_TYPE_BUILT_IN:
case SPV_OPERAND_TYPE_GROUP_OPERATION:
case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS:
case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO:
case SPV_OPERAND_TYPE_CAPABILITY: {
++stats_->enum_hist[operand.type][inst->word(operand.offset)];
break;
}
default:
break;
}
}
}
// Collects statistics of literal strings used by opcodes.
void ProcessLiteralStrings(const val::Instruction* inst) {
for (const auto& operand : inst->operands()) {
if (operand.type == SPV_OPERAND_TYPE_LITERAL_STRING) {
const std::string str =
reinterpret_cast<const char*>(&inst->words()[operand.offset]);
++stats_->literal_strings_hist[inst->opcode()][str];
}
}
}
// Collects statistics of all single word non-id operand slots.
void ProcessNonIdWords(const val::Instruction* inst) {
uint32_t index = 0;
for (const auto& operand : inst->operands()) {
if (operand.num_words == 1 && !spvIsIdType(operand.type)) {
++stats_->operand_slot_non_id_words_hist[std::pair<uint32_t, uint32_t>(
inst->opcode(), index)][inst->word(operand.offset)];
}
++index;
}
}
// Collects OpCapability statistics.
void ProcessCapability(const val::Instruction* inst) {
if (inst->opcode() != SpvOpCapability) return;
const uint32_t capability = inst->word(inst->operands()[0].offset);
++stats_->capability_hist[capability];
}
// Collects OpExtension statistics.
void ProcessExtension(const val::Instruction* inst) {
if (inst->opcode() != SpvOpExtension) return;
const std::string extension = GetExtensionString(&inst->c_inst());
++stats_->extension_hist[extension];
}
// Collects OpCode statistics.
void ProcessOpcode(const val::Instruction* inst, size_t idx) {
const SpvOp opcode = inst->opcode();
++stats_->opcode_hist[opcode];
const uint32_t opcode_and_num_operands =
(uint32_t(inst->operands().size()) << 16) | uint32_t(opcode);
++stats_->opcode_and_num_operands_hist[opcode_and_num_operands];
if (idx == 0) return;
--idx;
const auto& instructions = vstate_->ordered_instructions();
const SpvOp prev_opcode = instructions[idx].opcode();
++stats_->opcode_and_num_operands_markov_hist[prev_opcode]
[opcode_and_num_operands];
auto step_it = stats_->opcode_markov_hist.begin();
for (; step_it != stats_->opcode_markov_hist.end(); --idx, ++step_it) {
auto& hist = (*step_it)[instructions[idx].opcode()];
++hist[opcode];
if (idx == 0) break;
}
}
// Collects OpConstant statistics.
void ProcessConstant(const val::Instruction* inst) {
if (inst->opcode() != SpvOpConstant) return;
const uint32_t type_id = inst->GetOperandAs<uint32_t>(0);
const auto type_decl_it = vstate_->all_definitions().find(type_id);
assert(type_decl_it != vstate_->all_definitions().end());
const val::Instruction& type_decl_inst = *type_decl_it->second;
const SpvOp type_op = type_decl_inst.opcode();
if (type_op == SpvOpTypeInt) {
const uint32_t bit_width = type_decl_inst.GetOperandAs<uint32_t>(1);
const uint32_t is_signed = type_decl_inst.GetOperandAs<uint32_t>(2);
assert(is_signed == 0 || is_signed == 1);
if (bit_width == 16) {
if (is_signed)
++stats_->s16_constant_hist[inst->GetOperandAs<int16_t>(2)];
else
++stats_->u16_constant_hist[inst->GetOperandAs<uint16_t>(2)];
} else if (bit_width == 32) {
if (is_signed)
++stats_->s32_constant_hist[inst->GetOperandAs<int32_t>(2)];
else
++stats_->u32_constant_hist[inst->GetOperandAs<uint32_t>(2)];
} else if (bit_width == 64) {
if (is_signed)
++stats_->s64_constant_hist[inst->GetOperandAs<int64_t>(2)];
else
++stats_->u64_constant_hist[inst->GetOperandAs<uint64_t>(2)];
} else {
assert(false && "TypeInt bit width is not 16, 32 or 64");
}
} else if (type_op == SpvOpTypeFloat) {
const uint32_t bit_width = type_decl_inst.GetOperandAs<uint32_t>(1);
if (bit_width == 32) {
++stats_->f32_constant_hist[inst->GetOperandAs<float>(2)];
} else if (bit_width == 64) {
++stats_->f64_constant_hist[inst->GetOperandAs<double>(2)];
} else {
assert(bit_width == 16);
}
}
}
private:
SpirvStats* stats_;
const val::ValidationState_t* vstate_;
IdDescriptorCollection id_descriptors_;
};
} // namespace
spv_result_t AggregateStats(const spv_context_t& context, const uint32_t* words,
const size_t num_words, spv_diagnostic* pDiagnostic,
SpirvStats* stats) {
std::unique_ptr<val::ValidationState_t> vstate;
spv_validator_options_t options;
spv_result_t result = ValidateBinaryAndKeepValidationState(
&context, &options, words, num_words, pDiagnostic, &vstate);
if (result != SPV_SUCCESS) return result;
StatsAggregator stats_aggregator(stats, vstate.get());
stats_aggregator.aggregate();
return SPV_SUCCESS;
}
} // namespace spvtools