SPIRV-Tools/source/opt/debug_info_manager.h

272 lines
12 KiB
C
Raw Normal View History

// Copyright (c) 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SOURCE_OPT_DEBUG_INFO_MANAGER_H_
#define SOURCE_OPT_DEBUG_INFO_MANAGER_H_
#include <unordered_map>
#include <unordered_set>
#include "source/opt/instruction.h"
#include "source/opt/module.h"
namespace spvtools {
namespace opt {
namespace analysis {
// When an instruction of a callee function is inlined to its caller function,
// we need the line and the scope information of the function call instruction
// to generate DebugInlinedAt. This class keeps the data. For multiple inlining
// of a single instruction, we have to create multiple DebugInlinedAt
// instructions as a chain. This class keeps the information of the generated
// DebugInlinedAt chains to reduce the number of chains.
class DebugInlinedAtContext {
public:
explicit DebugInlinedAtContext(Instruction* call_inst)
: call_inst_line_(call_inst->dbg_line_inst()),
call_inst_scope_(call_inst->GetDebugScope()) {}
const Instruction* GetLineOfCallInstruction() { return call_inst_line_; }
const DebugScope& GetScopeOfCallInstruction() { return call_inst_scope_; }
// Puts the DebugInlinedAt chain that is generated for the callee instruction
// whose DebugInlinedAt of DebugScope is |callee_instr_inlined_at| into
// |callee_inlined_at2chain_|.
void SetDebugInlinedAtChain(uint32_t callee_instr_inlined_at,
uint32_t chain_head_id) {
callee_inlined_at2chain_[callee_instr_inlined_at] = chain_head_id;
}
// Gets the DebugInlinedAt chain from |callee_inlined_at2chain_|.
uint32_t GetDebugInlinedAtChain(uint32_t callee_instr_inlined_at) {
auto chain_itr = callee_inlined_at2chain_.find(callee_instr_inlined_at);
if (chain_itr != callee_inlined_at2chain_.end()) return chain_itr->second;
return kNoInlinedAt;
}
private:
// The line information of the function call instruction that will be
// replaced by the callee function.
const Instruction* call_inst_line_;
// The scope information of the function call instruction that will be
// replaced by the callee function.
const DebugScope call_inst_scope_;
// Map from DebugInlinedAt ids of callee to head ids of new generated
// DebugInlinedAt chain.
std::unordered_map<uint32_t, uint32_t> callee_inlined_at2chain_;
};
// A class for analyzing, managing, and creating OpenCL.DebugInfo.100 extension
// instructions.
class DebugInfoManager {
public:
// Constructs a debug information manager from the given |context|.
DebugInfoManager(IRContext* context);
DebugInfoManager(const DebugInfoManager&) = delete;
DebugInfoManager(DebugInfoManager&&) = delete;
DebugInfoManager& operator=(const DebugInfoManager&) = delete;
DebugInfoManager& operator=(DebugInfoManager&&) = delete;
friend bool operator==(const DebugInfoManager&, const DebugInfoManager&);
friend bool operator!=(const DebugInfoManager& lhs,
const DebugInfoManager& rhs) {
return !(lhs == rhs);
}
// Analyzes OpenCL.DebugInfo.100 instruction |dbg_inst|.
void AnalyzeDebugInst(Instruction* dbg_inst);
// Creates new DebugInlinedAt and returns its id. Its line operand is the
// line number of |line| if |line| is not nullptr. Otherwise, its line operand
// is the line number of lexical scope of |scope|. Its Scope and Inlined
// operands are Scope and Inlined of |scope|.
uint32_t CreateDebugInlinedAt(const Instruction* line,
const DebugScope& scope);
// Clones DebugExpress instruction |dbg_expr| and add Deref Operation
// in the front of the Operation list of |dbg_expr|.
Instruction* DerefDebugExpression(Instruction* dbg_expr);
// Returns a DebugInfoNone instruction.
Instruction* GetDebugInfoNone();
// Returns DebugInlinedAt whose id is |dbg_inlined_at_id|. If it does not
// exist or it is not a DebugInlinedAt instruction, return nullptr.
Instruction* GetDebugInlinedAt(uint32_t dbg_inlined_at_id);
// Returns DebugFunction whose Function operand is |fn_id|. If it does not
// exist, return nullptr.
Instruction* GetDebugFunction(uint32_t fn_id) {
auto dbg_fn_it = fn_id_to_dbg_fn_.find(fn_id);
return dbg_fn_it == fn_id_to_dbg_fn_.end() ? nullptr : dbg_fn_it->second;
}
// Clones DebugInlinedAt whose id is |clone_inlined_at_id|. If
// |clone_inlined_at_id| is not an id of DebugInlinedAt, returns nullptr.
// If |insert_before| is given, inserts the new DebugInlinedAt before it.
// Otherwise, inserts the new DebugInlinedAt into the debug instruction
// section of the module.
Instruction* CloneDebugInlinedAt(uint32_t clone_inlined_at_id,
Instruction* insert_before = nullptr);
// Returns the debug scope corresponding to an inlining instruction in the
// scope |callee_instr_scope| into |inlined_at_ctx|. Generates all new
// debug instructions needed to represent the scope.
DebugScope BuildDebugScope(const DebugScope& callee_instr_scope,
DebugInlinedAtContext* inlined_at_ctx);
// Returns DebugInlinedAt corresponding to inlining an instruction, which
// was inlined at |callee_inlined_at|, into |inlined_at_ctx|. Generates all
// new debug instructions needed to represent the DebugInlinedAt.
uint32_t BuildDebugInlinedAtChain(uint32_t callee_inlined_at,
DebugInlinedAtContext* inlined_at_ctx);
// Returns true if there is a debug declaration instruction whose
// 'Local Variable' operand is |variable_id|.
bool IsVariableDebugDeclared(uint32_t variable_id);
// Kills all debug declaration instructions with Deref whose 'Local Variable'
Add DebugValue for invisible store in single_store_elim (#4002) The front-end language compiler would simply emit DebugDeclare for a variable when it is declared, which is effective through the variable's scope. Since DebugDeclare only maps an OpVariable to a local variable, the information can be removed when an optimization pass uses the loaded value of the variable. DebugValue can be used to specify the value of a variable. For each value update or phi instruction of a variable, we can add DebugValue to help debugger inspect the variable at any point of the program execution. For example, float a = 3; ... (complicated cfg) ... foo(a); // <-- variable inspection: debugger can find DebugValue of `float a` in the nearest dominant For the code with complicated CFG e.g., for-loop, if-statement, we need help of ssa-rewrite to analyze the effective value of each variable in each basic block. If the value update of the variable happens only once and it dominates all its uses, local-single-store-elim pass conducts the same value update with ssa-rewrite and we have to let it add DebugValue for the value assignment. One main issue is that we have to add DebugValue only when the value update of a variable is visible to DebugDeclare. For example, ``` { // scope1 %stack = OpVariable %ptr_int %int_3 { // scope2 DebugDeclare %foo %stack <-- local variable "foo" in high-level language source code is declared as OpVariable "%stack" // add DebugValue "foo = 3" ... Store %stack %int_7 <-- foo = 7, add DebugValue "foo = 7" ... // debugger can inspect the value of "foo" } Store %stack %int_11 <-- out of "scope2" i.e., scope of "foo". DO NOT add DebugValue "foo = 11" } ``` However, the initalization of a variable is an exception. For example, an argument passing of an inlined function must be done out of the function's scope, but we must add a DebugValue for it. ``` // in HLSL bar(float arg) { ... } ... float foo = 3; bar(foo); // in SPIR-V %arg = OpVariable OpStore %arg %foo <-- Argument passing. Out of "float arg" scope, but we must add DebugValue for "float arg" ... body of function bar(float arg) ... ``` This PR handles the except case in local-single-store-elim pass. It adds DebugValue for a store that is considered as an initialization. The same exception handling code for ssa-rewrite is done by this commit: df4198e50eaa705298167d3c0b3cb01ffd28a5ff.
2020-11-04 18:43:59 +00:00
// operand is |variable_id|. Returns whether it kills an instruction or not.
bool KillDebugDeclares(uint32_t variable_id);
// Generates a DebugValue instruction with value |value_id| for every local
// variable that is in the scope of |scope_and_line| and whose memory is
// |variable_id| and inserts it after the instruction |insert_pos|.
Add DebugValue for invisible store in single_store_elim (#4002) The front-end language compiler would simply emit DebugDeclare for a variable when it is declared, which is effective through the variable's scope. Since DebugDeclare only maps an OpVariable to a local variable, the information can be removed when an optimization pass uses the loaded value of the variable. DebugValue can be used to specify the value of a variable. For each value update or phi instruction of a variable, we can add DebugValue to help debugger inspect the variable at any point of the program execution. For example, float a = 3; ... (complicated cfg) ... foo(a); // <-- variable inspection: debugger can find DebugValue of `float a` in the nearest dominant For the code with complicated CFG e.g., for-loop, if-statement, we need help of ssa-rewrite to analyze the effective value of each variable in each basic block. If the value update of the variable happens only once and it dominates all its uses, local-single-store-elim pass conducts the same value update with ssa-rewrite and we have to let it add DebugValue for the value assignment. One main issue is that we have to add DebugValue only when the value update of a variable is visible to DebugDeclare. For example, ``` { // scope1 %stack = OpVariable %ptr_int %int_3 { // scope2 DebugDeclare %foo %stack <-- local variable "foo" in high-level language source code is declared as OpVariable "%stack" // add DebugValue "foo = 3" ... Store %stack %int_7 <-- foo = 7, add DebugValue "foo = 7" ... // debugger can inspect the value of "foo" } Store %stack %int_11 <-- out of "scope2" i.e., scope of "foo". DO NOT add DebugValue "foo = 11" } ``` However, the initalization of a variable is an exception. For example, an argument passing of an inlined function must be done out of the function's scope, but we must add a DebugValue for it. ``` // in HLSL bar(float arg) { ... } ... float foo = 3; bar(foo); // in SPIR-V %arg = OpVariable OpStore %arg %foo <-- Argument passing. Out of "float arg" scope, but we must add DebugValue for "float arg" ... body of function bar(float arg) ... ``` This PR handles the except case in local-single-store-elim pass. It adds DebugValue for a store that is considered as an initialization. The same exception handling code for ssa-rewrite is done by this commit: df4198e50eaa705298167d3c0b3cb01ffd28a5ff.
2020-11-04 18:43:59 +00:00
// Returns whether a DebugValue is added or not. |invisible_decls| returns
// DebugDeclares invisible to |scope_and_line|.
bool AddDebugValueIfVarDeclIsVisible(
Instruction* scope_and_line, uint32_t variable_id, uint32_t value_id,
Instruction* insert_pos,
std::unordered_set<Instruction*>* invisible_decls);
// Creates a DebugValue for DebugDeclare |dbg_decl| and inserts it before
// |insert_before|. The new DebugValue has the same line and scope as
// |scope_and_line|, or no scope and line information if |scope_and_line|
// is nullptr. The new DebugValue has the same operands as DebugDeclare
// but it uses |value_id| for the value. Returns the created DebugValue,
// or nullptr if fails to create one.
Instruction* AddDebugValueForDecl(Instruction* dbg_decl, uint32_t value_id,
Instruction* insert_before,
Instruction* scope_and_line);
// Erases |instr| from data structures of this class.
void ClearDebugInfo(Instruction* instr);
// Returns the id of Value operand if |inst| is DebugValue who has Deref
// operation and its Value operand is a result id of OpVariable with
// Function storage class. Otherwise, returns 0.
uint32_t GetVariableIdOfDebugValueUsedForDeclare(Instruction* inst);
// Converts DebugGlobalVariable |dbg_global_var| to a DebugLocalVariable and
// creates a DebugDeclare mapping the new DebugLocalVariable to |local_var|.
void ConvertDebugGlobalToLocalVariable(Instruction* dbg_global_var,
Instruction* local_var);
// Returns true if |instr| is a debug declaration instruction.
bool IsDebugDeclare(Instruction* instr);
// Replace all uses of |before| id that is an operand of a DebugScope with
// |after| id if those uses (instruction) return true for |predicate|.
void ReplaceAllUsesInDebugScopeWithPredicate(
uint32_t before, uint32_t after,
const std::function<bool(Instruction*)>& predicate);
// Removes uses of DebugScope |inst| from |scope_id_to_users_| or uses of
// DebugInlinedAt |inst| from |inlinedat_id_to_users_|.
void ClearDebugScopeAndInlinedAtUses(Instruction* inst);
private:
IRContext* context() { return context_; }
// Analyzes OpenCL.DebugInfo.100 instructions in the given |module| and
// populates data structures in this class.
void AnalyzeDebugInsts(Module& module);
// Returns the debug instruction whose id is |id|. Returns |nullptr| if one
// does not exists.
Instruction* GetDbgInst(uint32_t id);
// Returns a DebugOperation instruction with OpCode Deref.
Instruction* GetDebugOperationWithDeref();
// Registers the debug instruction |inst| into |id_to_dbg_inst_| using id of
// |inst| as a key.
void RegisterDbgInst(Instruction* inst);
// Register the DebugFunction instruction |inst|. The function referenced
// in |inst| must not already be registered.
void RegisterDbgFunction(Instruction* inst);
// Register the DebugDeclare or DebugValue with Deref operation
// |dbg_declare| into |var_id_to_dbg_decl_| using OpVariable id
// |var_id| as a key.
void RegisterDbgDeclare(uint32_t var_id, Instruction* dbg_declare);
// Returns a DebugExpression instruction without Operation operands.
Instruction* GetEmptyDebugExpression();
// Returns true if a scope |ancestor| is |scope| or an ancestor scope
// of |scope|.
bool IsAncestorOfScope(uint32_t scope, uint32_t ancestor);
// Returns true if the declaration of a local variable |dbg_declare|
// is visible in the scope of an instruction |instr_scope_id|.
bool IsDeclareVisibleToInstr(Instruction* dbg_declare, Instruction* scope);
// Returns the parent scope of the scope |child_scope|.
uint32_t GetParentScope(uint32_t child_scope);
IRContext* context_;
// Mapping from ids of OpenCL.DebugInfo.100 extension instructions
// to their Instruction instances.
std::unordered_map<uint32_t, Instruction*> id_to_dbg_inst_;
// Mapping from function's ids to DebugFunction instructions whose
// operand is the function.
std::unordered_map<uint32_t, Instruction*> fn_id_to_dbg_fn_;
// Mapping from variable or value ids to DebugDeclare or DebugValue
// instructions whose operand is the variable or value.
std::unordered_map<uint32_t, std::unordered_set<Instruction*>>
var_id_to_dbg_decl_;
// Mapping from DebugScope ids to users.
std::unordered_map<uint32_t, std::unordered_set<Instruction*>>
scope_id_to_users_;
// Mapping from DebugInlinedAt ids to users.
std::unordered_map<uint32_t, std::unordered_set<Instruction*>>
inlinedat_id_to_users_;
// DebugOperation whose OpCode is OpenCLDebugInfo100Deref.
Instruction* deref_operation_;
// DebugInfoNone instruction. We need only a single DebugInfoNone.
// To reuse the existing one, we keep it using this member variable.
Instruction* debug_info_none_inst_;
// DebugExpression instruction without Operation operands. We need only
// a single DebugExpression without Operation operands. To reuse the
// existing one, we keep it using this member variable.
Instruction* empty_debug_expr_inst_;
};
} // namespace analysis
} // namespace opt
} // namespace spvtools
#endif // SOURCE_OPT_DEBUG_INFO_MANAGER_H_