SPIRV-Tools/test/opt/pass_fixture.h

296 lines
12 KiB
C
Raw Normal View History

// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef TEST_OPT_PASS_FIXTURE_H_
#define TEST_OPT_PASS_FIXTURE_H_
#include <iostream>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include "effcee/effcee.h"
#include "gtest/gtest.h"
#include "source/opt/build_module.h"
#include "source/opt/pass_manager.h"
#include "source/opt/passes.h"
#include "source/spirv_optimizer_options.h"
#include "source/spirv_validator_options.h"
#include "source/util/make_unique.h"
#include "spirv-tools/libspirv.hpp"
namespace spvtools {
namespace opt {
// Template class for testing passes. It contains some handy utility methods for
// running passes and checking results.
//
// To write value-Parameterized tests:
// using ValueParamTest = PassTest<::testing::TestWithParam<std::string>>;
// To use as normal fixture:
// using FixtureTest = PassTest<::testing::Test>;
template <typename TestT>
class PassTest : public TestT {
public:
PassTest()
: consumer_(
[](spv_message_level_t, const char*, const spv_position_t&,
const char* message) { std::cerr << message << std::endl; }),
Adding an unique id to Instruction generated by IRContext Each instruction is given an unique id that can be used for ordering purposes. The ids are generated via the IRContext. Major changes: * Instructions now contain a uint32_t for unique id and a cached context pointer * Most constructors have been modified to take a context as input * unfortunately I cannot remove the default and copy constructors, but developers should avoid these * Added accessors to parents of basic block and function * Removed the copy constructors for BasicBlock and Function and replaced them with Clone functions * Reworked BuildModule to return an IRContext owning the built module * Since all instructions require a context, the context now becomes the basic unit for IR * Added a constructor to context to create an owned module internally * Replaced uses of Instruction's copy constructor with Clone whereever I found them * Reworked the linker functionality to perform clones into a different context instead of moves * Updated many tests to be consistent with the above changes * Still need to add new tests to cover added functionality * Added comparison operators to Instruction * Added an internal option to LinkerOptions to verify merged ids are unique * Added a test for the linker to verify merged ids are unique * Updated MergeReturnPass to supply a context * Updated DecorationManager to supply a context for cloned decorations * Reworked several portions of the def use tests in anticipation of next set of changes
2017-11-14 19:11:50 +00:00
context_(nullptr),
manager_(new PassManager()),
assemble_options_(SpirvTools::kDefaultAssembleOption),
disassemble_options_(SpirvTools::kDefaultDisassembleOption),
env_(SPV_ENV_UNIVERSAL_1_3) {}
// Runs the given |pass| on the binary assembled from the |original|.
Adding an unique id to Instruction generated by IRContext Each instruction is given an unique id that can be used for ordering purposes. The ids are generated via the IRContext. Major changes: * Instructions now contain a uint32_t for unique id and a cached context pointer * Most constructors have been modified to take a context as input * unfortunately I cannot remove the default and copy constructors, but developers should avoid these * Added accessors to parents of basic block and function * Removed the copy constructors for BasicBlock and Function and replaced them with Clone functions * Reworked BuildModule to return an IRContext owning the built module * Since all instructions require a context, the context now becomes the basic unit for IR * Added a constructor to context to create an owned module internally * Replaced uses of Instruction's copy constructor with Clone whereever I found them * Reworked the linker functionality to perform clones into a different context instead of moves * Updated many tests to be consistent with the above changes * Still need to add new tests to cover added functionality * Added comparison operators to Instruction * Added an internal option to LinkerOptions to verify merged ids are unique * Added a test for the linker to verify merged ids are unique * Updated MergeReturnPass to supply a context * Updated DecorationManager to supply a context for cloned decorations * Reworked several portions of the def use tests in anticipation of next set of changes
2017-11-14 19:11:50 +00:00
// Returns a tuple of the optimized binary and the boolean value returned
// from pass Process() function.
std::tuple<std::vector<uint32_t>, Pass::Status> OptimizeToBinary(
Pass* pass, const std::string& original, bool skip_nop) {
context_ =
std::move(BuildModule(env_, consumer_, original, assemble_options_));
Adding an unique id to Instruction generated by IRContext Each instruction is given an unique id that can be used for ordering purposes. The ids are generated via the IRContext. Major changes: * Instructions now contain a uint32_t for unique id and a cached context pointer * Most constructors have been modified to take a context as input * unfortunately I cannot remove the default and copy constructors, but developers should avoid these * Added accessors to parents of basic block and function * Removed the copy constructors for BasicBlock and Function and replaced them with Clone functions * Reworked BuildModule to return an IRContext owning the built module * Since all instructions require a context, the context now becomes the basic unit for IR * Added a constructor to context to create an owned module internally * Replaced uses of Instruction's copy constructor with Clone whereever I found them * Reworked the linker functionality to perform clones into a different context instead of moves * Updated many tests to be consistent with the above changes * Still need to add new tests to cover added functionality * Added comparison operators to Instruction * Added an internal option to LinkerOptions to verify merged ids are unique * Added a test for the linker to verify merged ids are unique * Updated MergeReturnPass to supply a context * Updated DecorationManager to supply a context for cloned decorations * Reworked several portions of the def use tests in anticipation of next set of changes
2017-11-14 19:11:50 +00:00
EXPECT_NE(nullptr, context()) << "Assembling failed for shader:\n"
<< original << std::endl;
if (!context()) {
return std::make_tuple(std::vector<uint32_t>(), Pass::Status::Failure);
}
context()->set_preserve_bindings(OptimizerOptions()->preserve_bindings_);
context()->set_preserve_spec_constants(
OptimizerOptions()->preserve_spec_constants_);
Adding an unique id to Instruction generated by IRContext Each instruction is given an unique id that can be used for ordering purposes. The ids are generated via the IRContext. Major changes: * Instructions now contain a uint32_t for unique id and a cached context pointer * Most constructors have been modified to take a context as input * unfortunately I cannot remove the default and copy constructors, but developers should avoid these * Added accessors to parents of basic block and function * Removed the copy constructors for BasicBlock and Function and replaced them with Clone functions * Reworked BuildModule to return an IRContext owning the built module * Since all instructions require a context, the context now becomes the basic unit for IR * Added a constructor to context to create an owned module internally * Replaced uses of Instruction's copy constructor with Clone whereever I found them * Reworked the linker functionality to perform clones into a different context instead of moves * Updated many tests to be consistent with the above changes * Still need to add new tests to cover added functionality * Added comparison operators to Instruction * Added an internal option to LinkerOptions to verify merged ids are unique * Added a test for the linker to verify merged ids are unique * Updated MergeReturnPass to supply a context * Updated DecorationManager to supply a context for cloned decorations * Reworked several portions of the def use tests in anticipation of next set of changes
2017-11-14 19:11:50 +00:00
const auto status = pass->Run(context());
std::vector<uint32_t> binary;
if (status != Pass::Status::Failure) {
context()->module()->ToBinary(&binary, skip_nop);
}
return std::make_tuple(binary, status);
}
// Runs a single pass of class |PassT| on the binary assembled from the
Adding an unique id to Instruction generated by IRContext Each instruction is given an unique id that can be used for ordering purposes. The ids are generated via the IRContext. Major changes: * Instructions now contain a uint32_t for unique id and a cached context pointer * Most constructors have been modified to take a context as input * unfortunately I cannot remove the default and copy constructors, but developers should avoid these * Added accessors to parents of basic block and function * Removed the copy constructors for BasicBlock and Function and replaced them with Clone functions * Reworked BuildModule to return an IRContext owning the built module * Since all instructions require a context, the context now becomes the basic unit for IR * Added a constructor to context to create an owned module internally * Replaced uses of Instruction's copy constructor with Clone whereever I found them * Reworked the linker functionality to perform clones into a different context instead of moves * Updated many tests to be consistent with the above changes * Still need to add new tests to cover added functionality * Added comparison operators to Instruction * Added an internal option to LinkerOptions to verify merged ids are unique * Added a test for the linker to verify merged ids are unique * Updated MergeReturnPass to supply a context * Updated DecorationManager to supply a context for cloned decorations * Reworked several portions of the def use tests in anticipation of next set of changes
2017-11-14 19:11:50 +00:00
// |assembly|. Returns a tuple of the optimized binary and the boolean value
// from the pass Process() function.
template <typename PassT, typename... Args>
std::tuple<std::vector<uint32_t>, Pass::Status> SinglePassRunToBinary(
const std::string& assembly, bool skip_nop, Args&&... args) {
auto pass = MakeUnique<PassT>(std::forward<Args>(args)...);
pass->SetMessageConsumer(consumer_);
return OptimizeToBinary(pass.get(), assembly, skip_nop);
}
// Runs a single pass of class |PassT| on the binary assembled from the
// |assembly|, disassembles the optimized binary. Returns a tuple of
// disassembly string and the boolean value from the pass Process() function.
template <typename PassT, typename... Args>
std::tuple<std::string, Pass::Status> SinglePassRunAndDisassemble(
const std::string& assembly, bool skip_nop, bool do_validation,
Args&&... args) {
std::vector<uint32_t> optimized_bin;
auto status = Pass::Status::SuccessWithoutChange;
std::tie(optimized_bin, status) = SinglePassRunToBinary<PassT>(
assembly, skip_nop, std::forward<Args>(args)...);
if (do_validation) {
spv_context spvContext = spvContextCreate(env_);
spv_diagnostic diagnostic = nullptr;
spv_const_binary_t binary = {optimized_bin.data(), optimized_bin.size()};
spv_result_t error = spvValidateWithOptions(
spvContext, ValidatorOptions(), &binary, &diagnostic);
EXPECT_EQ(error, 0);
if (error != 0) spvDiagnosticPrint(diagnostic);
spvDiagnosticDestroy(diagnostic);
spvContextDestroy(spvContext);
}
std::string optimized_asm;
SpirvTools tools(env_);
EXPECT_TRUE(
tools.Disassemble(optimized_bin, &optimized_asm, disassemble_options_))
<< "Disassembling failed for shader:\n"
<< assembly << std::endl;
return std::make_tuple(optimized_asm, status);
}
// Runs a single pass of class |PassT| on the binary assembled from the
// |original| assembly, and checks whether the optimized binary can be
// disassembled to the |expected| assembly. Optionally will also validate
Adding an unique id to Instruction generated by IRContext Each instruction is given an unique id that can be used for ordering purposes. The ids are generated via the IRContext. Major changes: * Instructions now contain a uint32_t for unique id and a cached context pointer * Most constructors have been modified to take a context as input * unfortunately I cannot remove the default and copy constructors, but developers should avoid these * Added accessors to parents of basic block and function * Removed the copy constructors for BasicBlock and Function and replaced them with Clone functions * Reworked BuildModule to return an IRContext owning the built module * Since all instructions require a context, the context now becomes the basic unit for IR * Added a constructor to context to create an owned module internally * Replaced uses of Instruction's copy constructor with Clone whereever I found them * Reworked the linker functionality to perform clones into a different context instead of moves * Updated many tests to be consistent with the above changes * Still need to add new tests to cover added functionality * Added comparison operators to Instruction * Added an internal option to LinkerOptions to verify merged ids are unique * Added a test for the linker to verify merged ids are unique * Updated MergeReturnPass to supply a context * Updated DecorationManager to supply a context for cloned decorations * Reworked several portions of the def use tests in anticipation of next set of changes
2017-11-14 19:11:50 +00:00
// the optimized binary. This does *not* involve pass manager. Callers
// are suggested to use SCOPED_TRACE() for better messages.
template <typename PassT, typename... Args>
void SinglePassRunAndCheck(const std::string& original,
const std::string& expected, bool skip_nop,
bool do_validation, Args&&... args) {
std::vector<uint32_t> optimized_bin;
auto status = Pass::Status::SuccessWithoutChange;
std::tie(optimized_bin, status) = SinglePassRunToBinary<PassT>(
original, skip_nop, std::forward<Args>(args)...);
// Check whether the pass returns the correct modification indication.
EXPECT_NE(Pass::Status::Failure, status);
EXPECT_EQ(original == expected,
status == Pass::Status::SuccessWithoutChange);
if (do_validation) {
spv_context spvContext = spvContextCreate(env_);
spv_diagnostic diagnostic = nullptr;
spv_const_binary_t binary = {optimized_bin.data(), optimized_bin.size()};
spv_result_t error = spvValidateWithOptions(
spvContext, ValidatorOptions(), &binary, &diagnostic);
EXPECT_EQ(error, 0);
if (error != 0) spvDiagnosticPrint(diagnostic);
spvDiagnosticDestroy(diagnostic);
Adding an unique id to Instruction generated by IRContext Each instruction is given an unique id that can be used for ordering purposes. The ids are generated via the IRContext. Major changes: * Instructions now contain a uint32_t for unique id and a cached context pointer * Most constructors have been modified to take a context as input * unfortunately I cannot remove the default and copy constructors, but developers should avoid these * Added accessors to parents of basic block and function * Removed the copy constructors for BasicBlock and Function and replaced them with Clone functions * Reworked BuildModule to return an IRContext owning the built module * Since all instructions require a context, the context now becomes the basic unit for IR * Added a constructor to context to create an owned module internally * Replaced uses of Instruction's copy constructor with Clone whereever I found them * Reworked the linker functionality to perform clones into a different context instead of moves * Updated many tests to be consistent with the above changes * Still need to add new tests to cover added functionality * Added comparison operators to Instruction * Added an internal option to LinkerOptions to verify merged ids are unique * Added a test for the linker to verify merged ids are unique * Updated MergeReturnPass to supply a context * Updated DecorationManager to supply a context for cloned decorations * Reworked several portions of the def use tests in anticipation of next set of changes
2017-11-14 19:11:50 +00:00
spvContextDestroy(spvContext);
}
std::string optimized_asm;
SpirvTools tools(env_);
EXPECT_TRUE(
tools.Disassemble(optimized_bin, &optimized_asm, disassemble_options_))
<< "Disassembling failed for shader:\n"
<< original << std::endl;
EXPECT_EQ(expected, optimized_asm);
}
// Runs a single pass of class |PassT| on the binary assembled from the
// |original| assembly, and checks whether the optimized binary can be
// disassembled to the |expected| assembly. This does *not* involve pass
// manager. Callers are suggested to use SCOPED_TRACE() for better messages.
template <typename PassT, typename... Args>
void SinglePassRunAndCheck(const std::string& original,
const std::string& expected, bool skip_nop,
Args&&... args) {
SinglePassRunAndCheck<PassT>(original, expected, skip_nop, false,
std::forward<Args>(args)...);
}
// Runs a single pass of class |PassT| on the binary assembled from the
// |original| assembly, then runs an Effcee matcher over the disassembled
// result, using checks parsed from |original|. Always skips OpNop.
// This does *not* involve pass manager. Callers are suggested to use
// SCOPED_TRACE() for better messages.
template <typename PassT, typename... Args>
void SinglePassRunAndMatch(const std::string& original, bool do_validation,
Args&&... args) {
const bool skip_nop = true;
auto pass_result = SinglePassRunAndDisassemble<PassT>(
original, skip_nop, do_validation, std::forward<Args>(args)...);
auto disassembly = std::get<0>(pass_result);
auto match_result = effcee::Match(disassembly, original);
EXPECT_EQ(effcee::Result::Status::Ok, match_result.status())
<< match_result.message() << "\nChecking result:\n"
<< disassembly;
}
// Runs a single pass of class |PassT| on the binary assembled from the
// |original| assembly. Check for failure and expect an Effcee matcher
// to pass when run on the diagnostic messages. This does *not* involve
// pass manager. Callers are suggested to use SCOPED_TRACE() for better
// messages.
template <typename PassT, typename... Args>
void SinglePassRunAndFail(const std::string& original, Args&&... args) {
context_ =
std::move(BuildModule(env_, consumer_, original, assemble_options_));
EXPECT_NE(nullptr, context()) << "Assembling failed for shader:\n"
<< original << std::endl;
std::ostringstream errs;
auto error_consumer = [&errs](spv_message_level_t, const char*,
const spv_position_t&, const char* message) {
errs << message << std::endl;
};
auto pass = MakeUnique<PassT>(std::forward<Args>(args)...);
pass->SetMessageConsumer(error_consumer);
const auto status = pass->Run(context());
EXPECT_EQ(Pass::Status::Failure, status);
auto match_result = effcee::Match(errs.str(), original);
EXPECT_EQ(effcee::Result::Status::Ok, match_result.status())
<< match_result.message() << "\nChecking messages:\n"
<< errs.str();
}
// Adds a pass to be run.
template <typename PassT, typename... Args>
void AddPass(Args&&... args) {
manager_->AddPass<PassT>(std::forward<Args>(args)...);
}
// Renews the pass manager, including clearing all previously added passes.
void RenewPassManger() {
manager_ = MakeUnique<PassManager>();
manager_->SetMessageConsumer(consumer_);
}
// Runs the passes added thus far using a pass manager on the binary assembled
// from the |original| assembly, and checks whether the optimized binary can
// be disassembled to the |expected| assembly. Callers are suggested to use
// SCOPED_TRACE() for better messages.
void RunAndCheck(const std::string& original, const std::string& expected) {
assert(manager_->NumPasses());
context_ =
std::move(BuildModule(env_, nullptr, original, assemble_options_));
Adding an unique id to Instruction generated by IRContext Each instruction is given an unique id that can be used for ordering purposes. The ids are generated via the IRContext. Major changes: * Instructions now contain a uint32_t for unique id and a cached context pointer * Most constructors have been modified to take a context as input * unfortunately I cannot remove the default and copy constructors, but developers should avoid these * Added accessors to parents of basic block and function * Removed the copy constructors for BasicBlock and Function and replaced them with Clone functions * Reworked BuildModule to return an IRContext owning the built module * Since all instructions require a context, the context now becomes the basic unit for IR * Added a constructor to context to create an owned module internally * Replaced uses of Instruction's copy constructor with Clone whereever I found them * Reworked the linker functionality to perform clones into a different context instead of moves * Updated many tests to be consistent with the above changes * Still need to add new tests to cover added functionality * Added comparison operators to Instruction * Added an internal option to LinkerOptions to verify merged ids are unique * Added a test for the linker to verify merged ids are unique * Updated MergeReturnPass to supply a context * Updated DecorationManager to supply a context for cloned decorations * Reworked several portions of the def use tests in anticipation of next set of changes
2017-11-14 19:11:50 +00:00
ASSERT_NE(nullptr, context());
context()->set_preserve_bindings(OptimizerOptions()->preserve_bindings_);
context()->set_preserve_spec_constants(
OptimizerOptions()->preserve_spec_constants_);
auto status = manager_->Run(context());
EXPECT_NE(status, Pass::Status::Failure);
if (status != Pass::Status::Failure) {
std::vector<uint32_t> binary;
context()->module()->ToBinary(&binary, /* skip_nop = */ false);
std::string optimized;
SpirvTools tools(env_);
EXPECT_TRUE(tools.Disassemble(binary, &optimized, disassemble_options_));
EXPECT_EQ(expected, optimized);
}
}
void SetAssembleOptions(uint32_t assemble_options) {
assemble_options_ = assemble_options;
}
void SetDisassembleOptions(uint32_t disassemble_options) {
disassemble_options_ = disassemble_options;
}
MessageConsumer consumer() { return consumer_; }
IRContext* context() { return context_.get(); }
void SetMessageConsumer(MessageConsumer msg_consumer) {
consumer_ = msg_consumer;
}
spv_optimizer_options OptimizerOptions() { return &optimizer_options_; }
spv_validator_options ValidatorOptions() { return &validator_options_; }
void SetTargetEnv(spv_target_env env) { env_ = env; }
private:
MessageConsumer consumer_; // Message consumer.
std::unique_ptr<IRContext> context_; // IR context
std::unique_ptr<PassManager> manager_; // The pass manager.
uint32_t assemble_options_;
uint32_t disassemble_options_;
spv_optimizer_options_t optimizer_options_;
spv_validator_options_t validator_options_;
spv_target_env env_;
};
} // namespace opt
} // namespace spvtools
#endif // TEST_OPT_PASS_FIXTURE_H_