SPIRV-Tools/test/opt/replace_invalid_opc_test.cpp

567 lines
23 KiB
C++
Raw Normal View History

// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cstdarg>
#include <string>
#include <vector>
#include "gmock/gmock.h"
#include "pass_utils.h"
#include "test/opt/assembly_builder.h"
#include "test/opt/pass_fixture.h"
namespace spvtools {
namespace opt {
namespace {
using ReplaceInvalidOpcodeTest = PassTest<::testing::Test>;
TEST_F(ReplaceInvalidOpcodeTest, ReplaceInstruction) {
const std::string text = R"(
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
; CHECK: [[special_const:%\w+]] = OpConstant %float -6.2598534e+18
; CHECK: [[constant:%\w+]] = OpConstantComposite %v4float [[special_const]] [[special_const]] [[special_const]] [[special_const]]
; CHECK-NOT: OpImageSampleImplicitLod
; CHECK: OpStore [[:%\w+]] [[constant]]
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Vertex %main "main" %3 %gl_VertexIndex %5
OpSource GLSL 400
OpSourceExtension "GL_ARB_separate_shader_objects"
OpSourceExtension "GL_ARB_shading_language_420pack"
OpName %main "main"
OpDecorate %3 Location 0
OpDecorate %gl_VertexIndex BuiltIn VertexIndex
OpMemberDecorate %_struct_6 0 BuiltIn Position
OpDecorate %_struct_6 Block
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%10 = OpTypeImage %float 2D 0 0 0 1 Unknown
%_ptr_UniformConstant_10 = OpTypePointer UniformConstant %10
%12 = OpTypeSampler
%_ptr_UniformConstant_12 = OpTypePointer UniformConstant %12
%14 = OpTypeSampledImage %10
%v4float = OpTypeVector %float 4
%v2float = OpTypeVector %float 2
%_ptr_Output_v4float = OpTypePointer Output %v4float
%3 = OpVariable %_ptr_Output_v4float Output
%int = OpTypeInt 32 1
%_ptr_Input_int = OpTypePointer Input %int
%gl_VertexIndex = OpVariable %_ptr_Input_int Input
%_struct_6 = OpTypeStruct %v4float
%_ptr_Output__struct_6 = OpTypePointer Output %_struct_6
%5 = OpVariable %_ptr_Output__struct_6 Output
%int_0 = OpConstant %int 0
%float_0 = OpConstant %float 0
%23 = OpConstantComposite %v2float %float_0 %float_0
%24 = OpVariable %_ptr_UniformConstant_10 UniformConstant
%25 = OpVariable %_ptr_UniformConstant_12 UniformConstant
%main = OpFunction %void None %8
%26 = OpLabel
%27 = OpLoad %12 %25
%28 = OpLoad %10 %24
%29 = OpSampledImage %14 %28 %27
%30 = OpImageSampleImplicitLod %v4float %29 %23
%31 = OpAccessChain %_ptr_Output_v4float %5 %int_0
OpStore %31 %30
OpReturn
OpFunctionEnd)";
SinglePassRunAndMatch<ReplaceInvalidOpcodePass>(text, false);
}
TEST_F(ReplaceInvalidOpcodeTest, ReplaceInstructionInNonEntryPoint) {
const std::string text = R"(
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
; CHECK: [[special_const:%\w+]] = OpConstant %float -6.2598534e+18
; CHECK: [[constant:%\w+]] = OpConstantComposite %v4float [[special_const]] [[special_const]] [[special_const]] [[special_const]]
; CHECK-NOT: OpImageSampleImplicitLod
; CHECK: OpStore [[:%\w+]] [[constant]]
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Vertex %main "main" %3 %gl_VertexIndex %5
OpSource GLSL 400
OpSourceExtension "GL_ARB_separate_shader_objects"
OpSourceExtension "GL_ARB_shading_language_420pack"
OpName %main "main"
OpDecorate %3 Location 0
OpDecorate %gl_VertexIndex BuiltIn VertexIndex
OpMemberDecorate %_struct_6 0 BuiltIn Position
OpDecorate %_struct_6 Block
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%10 = OpTypeImage %float 2D 0 0 0 1 Unknown
%_ptr_UniformConstant_10 = OpTypePointer UniformConstant %10
%12 = OpTypeSampler
%_ptr_UniformConstant_12 = OpTypePointer UniformConstant %12
%14 = OpTypeSampledImage %10
%v4float = OpTypeVector %float 4
%v2float = OpTypeVector %float 2
%_ptr_Output_v4float = OpTypePointer Output %v4float
%3 = OpVariable %_ptr_Output_v4float Output
%int = OpTypeInt 32 1
%_ptr_Input_int = OpTypePointer Input %int
%gl_VertexIndex = OpVariable %_ptr_Input_int Input
%_struct_6 = OpTypeStruct %v4float
%_ptr_Output__struct_6 = OpTypePointer Output %_struct_6
%5 = OpVariable %_ptr_Output__struct_6 Output
%int_0 = OpConstant %int 0
%float_0 = OpConstant %float 0
%23 = OpConstantComposite %v2float %float_0 %float_0
%24 = OpVariable %_ptr_UniformConstant_10 UniformConstant
%25 = OpVariable %_ptr_UniformConstant_12 UniformConstant
%main = OpFunction %void None %8
%26 = OpLabel
%27 = OpFunctionCall %void %28
OpReturn
OpFunctionEnd
%28 = OpFunction %void None %8
%29 = OpLabel
%30 = OpLoad %12 %25
%31 = OpLoad %10 %24
%32 = OpSampledImage %14 %31 %30
%33 = OpImageSampleImplicitLod %v4float %32 %23
%34 = OpAccessChain %_ptr_Output_v4float %5 %int_0
OpStore %34 %33
OpReturn
OpFunctionEnd)";
SinglePassRunAndMatch<ReplaceInvalidOpcodePass>(text, false);
}
TEST_F(ReplaceInvalidOpcodeTest, ReplaceInstructionMultipleEntryPoints) {
const std::string text = R"(
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
; CHECK: [[special_const:%\w+]] = OpConstant %float -6.2598534e+18
; CHECK: [[constant:%\w+]] = OpConstantComposite %v4float [[special_const]] [[special_const]] [[special_const]] [[special_const]]
; CHECK-NOT: OpImageSampleImplicitLod
; CHECK: OpStore [[:%\w+]] [[constant]]
; CHECK-NOT: OpImageSampleImplicitLod
; CHECK: OpStore [[:%\w+]] [[constant]]
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Vertex %main "main" %3 %gl_VertexIndex %5
OpEntryPoint Vertex %main2 "main2" %3 %gl_VertexIndex %5
OpSource GLSL 400
OpSourceExtension "GL_ARB_separate_shader_objects"
OpSourceExtension "GL_ARB_shading_language_420pack"
OpName %main "main"
OpName %main2 "main2"
OpDecorate %3 Location 0
OpDecorate %gl_VertexIndex BuiltIn VertexIndex
OpMemberDecorate %_struct_6 0 BuiltIn Position
OpDecorate %_struct_6 Block
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%10 = OpTypeImage %float 2D 0 0 0 1 Unknown
%_ptr_UniformConstant_10 = OpTypePointer UniformConstant %10
%12 = OpTypeSampler
%_ptr_UniformConstant_12 = OpTypePointer UniformConstant %12
%14 = OpTypeSampledImage %10
%v4float = OpTypeVector %float 4
%v2float = OpTypeVector %float 2
%_ptr_Output_v4float = OpTypePointer Output %v4float
%3 = OpVariable %_ptr_Output_v4float Output
%int = OpTypeInt 32 1
%_ptr_Input_int = OpTypePointer Input %int
%gl_VertexIndex = OpVariable %_ptr_Input_int Input
%_struct_6 = OpTypeStruct %v4float
%_ptr_Output__struct_6 = OpTypePointer Output %_struct_6
%5 = OpVariable %_ptr_Output__struct_6 Output
%int_0 = OpConstant %int 0
%float_0 = OpConstant %float 0
%23 = OpConstantComposite %v2float %float_0 %float_0
%24 = OpVariable %_ptr_UniformConstant_10 UniformConstant
%25 = OpVariable %_ptr_UniformConstant_12 UniformConstant
%main = OpFunction %void None %8
%26 = OpLabel
%27 = OpLoad %12 %25
%28 = OpLoad %10 %24
%29 = OpSampledImage %14 %28 %27
%30 = OpImageSampleImplicitLod %v4float %29 %23
%31 = OpAccessChain %_ptr_Output_v4float %5 %int_0
OpStore %31 %30
OpReturn
OpFunctionEnd
%main2 = OpFunction %void None %8
%46 = OpLabel
%47 = OpLoad %12 %25
%48 = OpLoad %10 %24
%49 = OpSampledImage %14 %48 %47
%50 = OpImageSampleImplicitLod %v4float %49 %23
%51 = OpAccessChain %_ptr_Output_v4float %5 %int_0
OpStore %51 %50
OpReturn
OpFunctionEnd)";
SinglePassRunAndMatch<ReplaceInvalidOpcodePass>(text, false);
}
TEST_F(ReplaceInvalidOpcodeTest, DontReplaceInstruction) {
const std::string text = R"(
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %3 %gl_VertexIndex %5
OpSource GLSL 400
OpSourceExtension "GL_ARB_separate_shader_objects"
OpSourceExtension "GL_ARB_shading_language_420pack"
OpName %main "main"
OpDecorate %3 Location 0
OpDecorate %gl_VertexIndex BuiltIn VertexIndex
OpMemberDecorate %_struct_6 0 BuiltIn Position
OpDecorate %_struct_6 Block
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%10 = OpTypeImage %float 2D 0 0 0 1 Unknown
%_ptr_UniformConstant_10 = OpTypePointer UniformConstant %10
%12 = OpTypeSampler
%_ptr_UniformConstant_12 = OpTypePointer UniformConstant %12
%14 = OpTypeSampledImage %10
%v4float = OpTypeVector %float 4
%v2float = OpTypeVector %float 2
%_ptr_Output_v4float = OpTypePointer Output %v4float
%3 = OpVariable %_ptr_Output_v4float Output
%int = OpTypeInt 32 1
%_ptr_Input_int = OpTypePointer Input %int
%gl_VertexIndex = OpVariable %_ptr_Input_int Input
%_struct_6 = OpTypeStruct %v4float
%_ptr_Output__struct_6 = OpTypePointer Output %_struct_6
%5 = OpVariable %_ptr_Output__struct_6 Output
%int_0 = OpConstant %int 0
%float_0 = OpConstant %float 0
%23 = OpConstantComposite %v2float %float_0 %float_0
%24 = OpVariable %_ptr_UniformConstant_10 UniformConstant
%25 = OpVariable %_ptr_UniformConstant_12 UniformConstant
%main = OpFunction %void None %8
%26 = OpLabel
%27 = OpLoad %12 %25
%28 = OpLoad %10 %24
%29 = OpSampledImage %14 %28 %27
%30 = OpImageSampleImplicitLod %v4float %29 %23
%31 = OpAccessChain %_ptr_Output_v4float %5 %int_0
OpStore %31 %30
OpReturn
OpFunctionEnd)";
auto result = SinglePassRunAndDisassemble<ReplaceInvalidOpcodePass>(
text, /* skip_nop = */ true, /* do_validation = */ false);
EXPECT_EQ(Pass::Status::SuccessWithoutChange, std::get<1>(result));
}
TEST_F(ReplaceInvalidOpcodeTest, MultipleEntryPointsDifferentStage) {
const std::string text = R"(
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Vertex %main "main" %3 %gl_VertexIndex %5
OpEntryPoint Fragment %main2 "main2" %3 %gl_VertexIndex %5
OpSource GLSL 400
OpSourceExtension "GL_ARB_separate_shader_objects"
OpSourceExtension "GL_ARB_shading_language_420pack"
OpName %main "main"
OpName %main2 "main2"
OpDecorate %3 Location 0
OpDecorate %gl_VertexIndex BuiltIn VertexIndex
OpMemberDecorate %_struct_6 0 BuiltIn Position
OpDecorate %_struct_6 Block
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%10 = OpTypeImage %float 2D 0 0 0 1 Unknown
%_ptr_UniformConstant_10 = OpTypePointer UniformConstant %10
%12 = OpTypeSampler
%_ptr_UniformConstant_12 = OpTypePointer UniformConstant %12
%14 = OpTypeSampledImage %10
%v4float = OpTypeVector %float 4
%v2float = OpTypeVector %float 2
%_ptr_Output_v4float = OpTypePointer Output %v4float
%3 = OpVariable %_ptr_Output_v4float Output
%int = OpTypeInt 32 1
%_ptr_Input_int = OpTypePointer Input %int
%gl_VertexIndex = OpVariable %_ptr_Input_int Input
%_struct_6 = OpTypeStruct %v4float
%_ptr_Output__struct_6 = OpTypePointer Output %_struct_6
%5 = OpVariable %_ptr_Output__struct_6 Output
%int_0 = OpConstant %int 0
%float_0 = OpConstant %float 0
%23 = OpConstantComposite %v2float %float_0 %float_0
%24 = OpVariable %_ptr_UniformConstant_10 UniformConstant
%25 = OpVariable %_ptr_UniformConstant_12 UniformConstant
%main = OpFunction %void None %8
%26 = OpLabel
%27 = OpLoad %12 %25
%28 = OpLoad %10 %24
%29 = OpSampledImage %14 %28 %27
%30 = OpImageSampleImplicitLod %v4float %29 %23
%31 = OpAccessChain %_ptr_Output_v4float %5 %int_0
OpStore %31 %30
OpReturn
OpFunctionEnd
%main2 = OpFunction %void None %8
%46 = OpLabel
%47 = OpLoad %12 %25
%48 = OpLoad %10 %24
%49 = OpSampledImage %14 %48 %47
%50 = OpImageSampleImplicitLod %v4float %49 %23
%51 = OpAccessChain %_ptr_Output_v4float %5 %int_0
OpStore %51 %50
OpReturn
OpFunctionEnd)";
auto result = SinglePassRunAndDisassemble<ReplaceInvalidOpcodePass>(
text, /* skip_nop = */ true, /* do_validation = */ false);
EXPECT_EQ(Pass::Status::SuccessWithoutChange, std::get<1>(result));
}
TEST_F(ReplaceInvalidOpcodeTest, DontReplaceLinkage) {
const std::string text = R"(
OpCapability Shader
OpCapability Linkage
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Vertex %main "main" %3 %gl_VertexIndex %5
OpSource GLSL 400
OpSourceExtension "GL_ARB_separate_shader_objects"
OpSourceExtension "GL_ARB_shading_language_420pack"
OpName %main "main"
OpDecorate %3 Location 0
OpDecorate %gl_VertexIndex BuiltIn VertexIndex
OpMemberDecorate %_struct_6 0 BuiltIn Position
OpDecorate %_struct_6 Block
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%10 = OpTypeImage %float 2D 0 0 0 1 Unknown
%_ptr_UniformConstant_10 = OpTypePointer UniformConstant %10
%12 = OpTypeSampler
%_ptr_UniformConstant_12 = OpTypePointer UniformConstant %12
%14 = OpTypeSampledImage %10
%v4float = OpTypeVector %float 4
%v2float = OpTypeVector %float 2
%_ptr_Output_v4float = OpTypePointer Output %v4float
%3 = OpVariable %_ptr_Output_v4float Output
%int = OpTypeInt 32 1
%_ptr_Input_int = OpTypePointer Input %int
%gl_VertexIndex = OpVariable %_ptr_Input_int Input
%_struct_6 = OpTypeStruct %v4float
%_ptr_Output__struct_6 = OpTypePointer Output %_struct_6
%5 = OpVariable %_ptr_Output__struct_6 Output
%int_0 = OpConstant %int 0
%float_0 = OpConstant %float 0
%23 = OpConstantComposite %v2float %float_0 %float_0
%24 = OpVariable %_ptr_UniformConstant_10 UniformConstant
%25 = OpVariable %_ptr_UniformConstant_12 UniformConstant
%main = OpFunction %void None %8
%26 = OpLabel
%27 = OpLoad %12 %25
%28 = OpLoad %10 %24
%29 = OpSampledImage %14 %28 %27
%30 = OpImageSampleImplicitLod %v4float %29 %23
%31 = OpAccessChain %_ptr_Output_v4float %5 %int_0
OpStore %31 %30
OpReturn
OpFunctionEnd)";
auto result = SinglePassRunAndDisassemble<ReplaceInvalidOpcodePass>(
text, /* skip_nop = */ true, /* do_validation = */ false);
EXPECT_EQ(Pass::Status::SuccessWithoutChange, std::get<1>(result));
}
TEST_F(ReplaceInvalidOpcodeTest, BarrierDontReplace) {
const std::string text = R"(
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %main "main"
OpExecutionMode %main LocalSize 1 1 1
OpSource GLSL 450
OpSourceExtension "GL_GOOGLE_cpp_style_line_directive"
OpSourceExtension "GL_GOOGLE_include_directive"
OpName %main "main"
%void = OpTypeVoid
%3 = OpTypeFunction %void
%uint = OpTypeInt 32 0
%uint_2 = OpConstant %uint 2
%uint_264 = OpConstant %uint 264
%main = OpFunction %void None %3
%5 = OpLabel
OpControlBarrier %uint_2 %uint_2 %uint_264
OpReturn
OpFunctionEnd)";
auto result = SinglePassRunAndDisassemble<ReplaceInvalidOpcodePass>(
text, /* skip_nop = */ true, /* do_validation = */ false);
EXPECT_EQ(Pass::Status::SuccessWithoutChange, std::get<1>(result));
}
TEST_F(ReplaceInvalidOpcodeTest, BarrierReplace) {
const std::string text = R"(
; CHECK-NOT: OpControlBarrier
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Vertex %main "main"
OpExecutionMode %main LocalSize 1 1 1
OpSource GLSL 450
OpSourceExtension "GL_GOOGLE_cpp_style_line_directive"
OpSourceExtension "GL_GOOGLE_include_directive"
OpName %main "main"
%void = OpTypeVoid
%3 = OpTypeFunction %void
%uint = OpTypeInt 32 0
%uint_2 = OpConstant %uint 2
%uint_264 = OpConstant %uint 264
%main = OpFunction %void None %3
%5 = OpLabel
OpControlBarrier %uint_2 %uint_2 %uint_264
OpReturn
OpFunctionEnd)";
SinglePassRunAndMatch<ReplaceInvalidOpcodePass>(text, false);
}
TEST_F(ReplaceInvalidOpcodeTest, MessageTest) {
const std::string text = R"(
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Vertex %main "main" %3 %gl_VertexIndex %5
OpSource GLSL 400
%6 = OpString "test.hlsl"
OpSourceExtension "GL_ARB_separate_shader_objects"
OpSourceExtension "GL_ARB_shading_language_420pack"
OpName %main "main"
OpDecorate %3 Location 0
OpDecorate %gl_VertexIndex BuiltIn VertexIndex
OpMemberDecorate %_struct_7 0 BuiltIn Position
OpDecorate %_struct_7 Block
%void = OpTypeVoid
%9 = OpTypeFunction %void
%float = OpTypeFloat 32
%11 = OpTypeImage %float 2D 0 0 0 1 Unknown
%_ptr_UniformConstant_11 = OpTypePointer UniformConstant %11
%13 = OpTypeSampler
%_ptr_UniformConstant_13 = OpTypePointer UniformConstant %13
%15 = OpTypeSampledImage %11
%v4float = OpTypeVector %float 4
%v2float = OpTypeVector %float 2
%_ptr_Output_v4float = OpTypePointer Output %v4float
%3 = OpVariable %_ptr_Output_v4float Output
%int = OpTypeInt 32 1
%_ptr_Input_int = OpTypePointer Input %int
%gl_VertexIndex = OpVariable %_ptr_Input_int Input
%_struct_7 = OpTypeStruct %v4float
%_ptr_Output__struct_7 = OpTypePointer Output %_struct_7
%5 = OpVariable %_ptr_Output__struct_7 Output
%int_0 = OpConstant %int 0
%float_0 = OpConstant %float 0
%24 = OpConstantComposite %v2float %float_0 %float_0
%25 = OpVariable %_ptr_UniformConstant_11 UniformConstant
%26 = OpVariable %_ptr_UniformConstant_13 UniformConstant
%main = OpFunction %void None %9
%27 = OpLabel
OpLine %6 2 4
%28 = OpLoad %13 %26
%29 = OpLoad %11 %25
%30 = OpSampledImage %15 %29 %28
%31 = OpImageSampleImplicitLod %v4float %30 %24
%32 = OpAccessChain %_ptr_Output_v4float %5 %int_0
OpStore %32 %31
OpReturn
OpFunctionEnd)";
std::vector<Message> messages = {
{SPV_MSG_WARNING, "test.hlsl", 2, 4,
"Removing ImageSampleImplicitLod instruction because of incompatible "
"execution model."}};
SetMessageConsumer(GetTestMessageConsumer(messages));
auto result = SinglePassRunAndDisassemble<ReplaceInvalidOpcodePass>(
text, /* skip_nop = */ true, /* do_validation = */ false);
EXPECT_EQ(Pass::Status::SuccessWithChange, std::get<1>(result));
}
TEST_F(ReplaceInvalidOpcodeTest, MultipleMessageTest) {
const std::string text = R"(
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Vertex %main "main" %3 %gl_VertexIndex %5
OpSource GLSL 400
%6 = OpString "test.hlsl"
OpSourceExtension "GL_ARB_separate_shader_objects"
OpSourceExtension "GL_ARB_shading_language_420pack"
OpName %main "main"
OpDecorate %3 Location 0
OpDecorate %gl_VertexIndex BuiltIn VertexIndex
OpMemberDecorate %_struct_7 0 BuiltIn Position
OpDecorate %_struct_7 Block
%void = OpTypeVoid
%9 = OpTypeFunction %void
%float = OpTypeFloat 32
%11 = OpTypeImage %float 2D 0 0 0 1 Unknown
%_ptr_UniformConstant_11 = OpTypePointer UniformConstant %11
%13 = OpTypeSampler
%_ptr_UniformConstant_13 = OpTypePointer UniformConstant %13
%15 = OpTypeSampledImage %11
%v4float = OpTypeVector %float 4
%v2float = OpTypeVector %float 2
%_ptr_Output_v4float = OpTypePointer Output %v4float
%3 = OpVariable %_ptr_Output_v4float Output
%int = OpTypeInt 32 1
%_ptr_Input_int = OpTypePointer Input %int
%gl_VertexIndex = OpVariable %_ptr_Input_int Input
%_struct_7 = OpTypeStruct %v4float
%_ptr_Output__struct_7 = OpTypePointer Output %_struct_7
%5 = OpVariable %_ptr_Output__struct_7 Output
%int_0 = OpConstant %int 0
%float_0 = OpConstant %float 0
%24 = OpConstantComposite %v2float %float_0 %float_0
%25 = OpVariable %_ptr_UniformConstant_11 UniformConstant
%26 = OpVariable %_ptr_UniformConstant_13 UniformConstant
%main = OpFunction %void None %9
%27 = OpLabel
OpLine %6 2 4
%28 = OpLoad %13 %26
%29 = OpLoad %11 %25
%30 = OpSampledImage %15 %29 %28
%31 = OpImageSampleImplicitLod %v4float %30 %24
OpLine %6 12 4
%41 = OpImageSampleProjImplicitLod %v4float %30 %24
%32 = OpAccessChain %_ptr_Output_v4float %5 %int_0
OpStore %32 %31
OpReturn
OpFunctionEnd)";
std::vector<Message> messages = {
{SPV_MSG_WARNING, "test.hlsl", 2, 4,
"Removing ImageSampleImplicitLod instruction because of incompatible "
"execution model."},
{SPV_MSG_WARNING, "test.hlsl", 12, 4,
"Removing ImageSampleProjImplicitLod instruction because of "
"incompatible "
"execution model."}};
SetMessageConsumer(GetTestMessageConsumer(messages));
auto result = SinglePassRunAndDisassemble<ReplaceInvalidOpcodePass>(
text, /* skip_nop = */ true, /* do_validation = */ false);
EXPECT_EQ(Pass::Status::SuccessWithChange, std::get<1>(result));
}
} // namespace
} // namespace opt
} // namespace spvtools