SPIRV-Tools/source/text_handler.cpp

366 lines
12 KiB
C++
Raw Normal View History

2016-01-07 18:44:22 +00:00
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "text_handler.h"
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <tuple>
#include "assembly_grammar.h"
#include "binary.h"
#include "ext_inst.h"
#include "instruction.h"
#include "opcode.h"
#include "text.h"
#include "util/bitutils.h"
#include "util/hex_float.h"
Pull out the number parsing logic Pull out the number parsing logic from AssemblyContext::binaryEncodeNumericLiteral() to utilities. The new utility function: `ParseAndEncodeNumber()` now accepts: * number text to parse * number type * a emit function, which is a function which will be called with each parsed uint32 word. * a pointer to std::string to be overwritten with error messages. (pass nullptr if expect no error message) and returns: * an enum result type to indicate the status Type/Structs moved to utility: * template<typename T> class ClampToZeroIfUnsignedType New type: * enum EncodeNumberStatus: success or error code * NumberType: hold the number type information for the number to be parsed. * several helper functions are also added for NumberType. Functions moved to utility: * Helpers: * template<typename T> checkRangeAndIfHexThenSignExtend() -> CheckRangeAndIfHex....() * Interfaces: * template<typename T> parseNumber() -> ParseNumber() * binaryEncodeIntegerLiteral() -> ParseAndEncodeIntegerNumber() * binaryEncodeFloatingPointLiteral() -> ParseAndEncodeFloatingPointNumber() * binaryEncodeNumericLiteral() -> ParseAndEncodeNumber() Tests added/moved to test/ParseNumber.cpp, including tests for: * ParseNumber(): This is moved from TextToBinary.cpp to ParseNumber.cpp * ParseAndEncodeIntegerNumber(): New added * ParseAndEncodeFloatingPointNumber(): New added * ParseAndEncodeNumber(): New added Note that the error messages are kept almost the same as before, but they may be inappropriate for an utility function. Those will be fixed in another CL.
2016-09-01 18:27:04 +00:00
#include "util/parse_number.h"
namespace {
// Advances |text| to the start of the next line and writes the new position to
// |position|.
spv_result_t advanceLine(spv_text text, spv_position position) {
while (true) {
if (position->index >= text->length) return SPV_END_OF_STREAM;
switch (text->str[position->index]) {
case '\0':
return SPV_END_OF_STREAM;
case '\n':
position->column = 0;
position->line++;
position->index++;
return SPV_SUCCESS;
default:
position->column++;
position->index++;
break;
}
}
}
// Advances |text| to first non white space character and writes the new
// position to |position|.
// If a null terminator is found during the text advance, SPV_END_OF_STREAM is
// returned, SPV_SUCCESS otherwise. No error checking is performed on the
// parameters, its the users responsibility to ensure these are non null.
spv_result_t advance(spv_text text, spv_position position) {
// NOTE: Consume white space, otherwise don't advance.
if (position->index >= text->length) return SPV_END_OF_STREAM;
switch (text->str[position->index]) {
case '\0':
return SPV_END_OF_STREAM;
case ';':
if (spv_result_t error = advanceLine(text, position)) return error;
return advance(text, position);
case ' ':
case '\t':
2016-04-01 04:47:02 +00:00
case '\r':
position->column++;
position->index++;
return advance(text, position);
case '\n':
position->column = 0;
position->line++;
position->index++;
return advance(text, position);
default:
break;
}
return SPV_SUCCESS;
}
// Fetches the next word from the given text stream starting from the given
// *position. On success, writes the decoded word into *word and updates
// *position to the location past the returned word.
//
// A word ends at the next comment or whitespace. However, double-quoted
// strings remain intact, and a backslash always escapes the next character.
spv_result_t getWord(spv_text text, spv_position position, std::string* word) {
if (!text->str || !text->length) return SPV_ERROR_INVALID_TEXT;
if (!position) return SPV_ERROR_INVALID_POINTER;
const size_t start_index = position->index;
bool quoting = false;
bool escaping = false;
// NOTE: Assumes first character is not white space!
while (true) {
if (position->index >= text->length) {
word->assign(text->str + start_index, text->str + position->index);
return SPV_SUCCESS;
}
const char ch = text->str[position->index];
if (ch == '\\')
escaping = !escaping;
else {
switch (ch) {
case '"':
if (!escaping) quoting = !quoting;
break;
case ' ':
case ';':
case '\t':
case '\n':
2016-04-01 04:47:02 +00:00
case '\r':
if (escaping || quoting) break;
// Fall through.
case '\0': { // NOTE: End of word found!
word->assign(text->str + start_index, text->str + position->index);
return SPV_SUCCESS;
}
default:
break;
}
escaping = false;
}
position->column++;
position->index++;
}
}
// Returns true if the characters in the text as position represent
// the start of an Opcode.
bool startsWithOp(spv_text text, spv_position position) {
if (text->length < position->index + 3) return false;
char ch0 = text->str[position->index];
char ch1 = text->str[position->index + 1];
char ch2 = text->str[position->index + 2];
return ('O' == ch0 && 'p' == ch1 && ('A' <= ch2 && ch2 <= 'Z'));
}
} // anonymous namespace
namespace libspirv {
const IdType kUnknownType = {0, false, IdTypeClass::kBottom};
// TODO(dneto): Reorder AssemblyContext definitions to match declaration order.
// This represents all of the data that is only valid for the duration of
// a single compilation.
uint32_t AssemblyContext::spvNamedIdAssignOrGet(const char* textValue) {
if (named_ids_.end() == named_ids_.find(textValue)) {
named_ids_[std::string(textValue)] = bound_++;
}
return named_ids_[textValue];
}
uint32_t AssemblyContext::getBound() const { return bound_; }
spv_result_t AssemblyContext::advance() {
return ::advance(text_, &current_position_);
}
spv_result_t AssemblyContext::getWord(std::string* word,
spv_position next_position) {
*next_position = current_position_;
return ::getWord(text_, next_position, word);
}
bool AssemblyContext::startsWithOp() {
return ::startsWithOp(text_, &current_position_);
}
bool AssemblyContext::isStartOfNewInst() {
spv_position_t pos = current_position_;
if (::advance(text_, &pos)) return false;
if (::startsWithOp(text_, &pos)) return true;
std::string word;
pos = current_position_;
if (::getWord(text_, &pos, &word)) return false;
if ('%' != word.front()) return false;
if (::advance(text_, &pos)) return false;
if (::getWord(text_, &pos, &word)) return false;
if ("=" != word) return false;
if (::advance(text_, &pos)) return false;
if (::startsWithOp(text_, &pos)) return true;
return false;
}
char AssemblyContext::peek() const {
return text_->str[current_position_.index];
}
bool AssemblyContext::hasText() const {
return text_->length > current_position_.index;
}
void AssemblyContext::seekForward(uint32_t size) {
current_position_.index += size;
current_position_.column += size;
}
spv_result_t AssemblyContext::binaryEncodeU32(const uint32_t value,
spv_instruction_t* pInst) {
pInst->words.insert(pInst->words.end(), value);
return SPV_SUCCESS;
}
spv_result_t AssemblyContext::binaryEncodeNumericLiteral(
const char* val, spv_result_t error_code, const IdType& type,
spv_instruction_t* pInst) {
Pull out the number parsing logic Pull out the number parsing logic from AssemblyContext::binaryEncodeNumericLiteral() to utilities. The new utility function: `ParseAndEncodeNumber()` now accepts: * number text to parse * number type * a emit function, which is a function which will be called with each parsed uint32 word. * a pointer to std::string to be overwritten with error messages. (pass nullptr if expect no error message) and returns: * an enum result type to indicate the status Type/Structs moved to utility: * template<typename T> class ClampToZeroIfUnsignedType New type: * enum EncodeNumberStatus: success or error code * NumberType: hold the number type information for the number to be parsed. * several helper functions are also added for NumberType. Functions moved to utility: * Helpers: * template<typename T> checkRangeAndIfHexThenSignExtend() -> CheckRangeAndIfHex....() * Interfaces: * template<typename T> parseNumber() -> ParseNumber() * binaryEncodeIntegerLiteral() -> ParseAndEncodeIntegerNumber() * binaryEncodeFloatingPointLiteral() -> ParseAndEncodeFloatingPointNumber() * binaryEncodeNumericLiteral() -> ParseAndEncodeNumber() Tests added/moved to test/ParseNumber.cpp, including tests for: * ParseNumber(): This is moved from TextToBinary.cpp to ParseNumber.cpp * ParseAndEncodeIntegerNumber(): New added * ParseAndEncodeFloatingPointNumber(): New added * ParseAndEncodeNumber(): New added Note that the error messages are kept almost the same as before, but they may be inappropriate for an utility function. Those will be fixed in another CL.
2016-09-01 18:27:04 +00:00
using spvutils::EncodeNumberStatus;
// Populate the NumberType from the IdType for parsing.
spvutils::NumberType number_type;
switch (type.type_class) {
case IdTypeClass::kOtherType:
return diagnostic(SPV_ERROR_INTERNAL)
<< "Unexpected numeric literal type";
case IdTypeClass::kScalarIntegerType:
if (type.isSigned) {
number_type = {type.bitwidth, SPV_NUMBER_SIGNED_INT};
} else {
number_type = {type.bitwidth, SPV_NUMBER_UNSIGNED_INT};
}
break;
case IdTypeClass::kScalarFloatType:
number_type = {type.bitwidth, SPV_NUMBER_FLOATING};
break;
case IdTypeClass::kBottom:
// kBottom means the type is unknown and we need to infer the type before
// parsing the number. The rule is: If there is a decimal point, treat
// the value as a floating point value, otherwise a integer value, then
// if the first char of the integer text is '-', treat the integer as a
// signed integer, otherwise an unsigned integer.
uint32_t bitwidth = static_cast<uint32_t>(assumedBitWidth(type));
if (strchr(val, '.')) {
number_type = {bitwidth, SPV_NUMBER_FLOATING};
} else if (type.isSigned || val[0] == '-') {
number_type = {bitwidth, SPV_NUMBER_SIGNED_INT};
} else {
number_type = {bitwidth, SPV_NUMBER_UNSIGNED_INT};
}
break;
}
Pull out the number parsing logic Pull out the number parsing logic from AssemblyContext::binaryEncodeNumericLiteral() to utilities. The new utility function: `ParseAndEncodeNumber()` now accepts: * number text to parse * number type * a emit function, which is a function which will be called with each parsed uint32 word. * a pointer to std::string to be overwritten with error messages. (pass nullptr if expect no error message) and returns: * an enum result type to indicate the status Type/Structs moved to utility: * template<typename T> class ClampToZeroIfUnsignedType New type: * enum EncodeNumberStatus: success or error code * NumberType: hold the number type information for the number to be parsed. * several helper functions are also added for NumberType. Functions moved to utility: * Helpers: * template<typename T> checkRangeAndIfHexThenSignExtend() -> CheckRangeAndIfHex....() * Interfaces: * template<typename T> parseNumber() -> ParseNumber() * binaryEncodeIntegerLiteral() -> ParseAndEncodeIntegerNumber() * binaryEncodeFloatingPointLiteral() -> ParseAndEncodeFloatingPointNumber() * binaryEncodeNumericLiteral() -> ParseAndEncodeNumber() Tests added/moved to test/ParseNumber.cpp, including tests for: * ParseNumber(): This is moved from TextToBinary.cpp to ParseNumber.cpp * ParseAndEncodeIntegerNumber(): New added * ParseAndEncodeFloatingPointNumber(): New added * ParseAndEncodeNumber(): New added Note that the error messages are kept almost the same as before, but they may be inappropriate for an utility function. Those will be fixed in another CL.
2016-09-01 18:27:04 +00:00
std::string error_msg;
EncodeNumberStatus parse_status = ParseAndEncodeNumber(
val, number_type,
[this, pInst](uint32_t d) { this->binaryEncodeU32(d, pInst); },
&error_msg);
switch (parse_status) {
case EncodeNumberStatus::kSuccess:
return SPV_SUCCESS;
case EncodeNumberStatus::kInvalidText:
return diagnostic(error_code) << error_msg;
case EncodeNumberStatus::kUnsupported:
return diagnostic(SPV_ERROR_INTERNAL) << error_msg;
case EncodeNumberStatus::kInvalidUsage:
return diagnostic(SPV_ERROR_INVALID_TEXT) << error_msg;
}
// This line is not reachable, only added to satisfy the compiler.
return diagnostic(SPV_ERROR_INTERNAL)
<< "Unexpected result code from ParseAndEncodeNumber()";
}
spv_result_t AssemblyContext::binaryEncodeString(const char* value,
spv_instruction_t* pInst) {
const size_t length = strlen(value);
const size_t wordCount = (length / 4) + 1;
const size_t oldWordCount = pInst->words.size();
const size_t newWordCount = oldWordCount + wordCount;
// TODO(dneto): We can just defer this check until later.
if (newWordCount > SPV_LIMIT_INSTRUCTION_WORD_COUNT_MAX) {
return diagnostic() << "Instruction too long: more than "
<< SPV_LIMIT_INSTRUCTION_WORD_COUNT_MAX << " words.";
}
pInst->words.resize(newWordCount);
// Make sure all the bytes in the last word are 0, in case we only
// write a partial word at the end.
pInst->words.back() = 0;
char* dest = (char*)&pInst->words[oldWordCount];
strncpy(dest, value, length);
return SPV_SUCCESS;
}
spv_result_t AssemblyContext::recordTypeDefinition(
const spv_instruction_t* pInst) {
uint32_t value = pInst->words[1];
if (types_.find(value) != types_.end()) {
return diagnostic() << "Value " << value
<< " has already been used to generate a type";
}
if (pInst->opcode == SpvOpTypeInt) {
if (pInst->words.size() != 4)
return diagnostic() << "Invalid OpTypeInt instruction";
types_[value] = {pInst->words[2], pInst->words[3] != 0,
IdTypeClass::kScalarIntegerType};
} else if (pInst->opcode == SpvOpTypeFloat) {
if (pInst->words.size() != 3)
return diagnostic() << "Invalid OpTypeFloat instruction";
types_[value] = {pInst->words[2], false, IdTypeClass::kScalarFloatType};
} else {
types_[value] = {0, false, IdTypeClass::kOtherType};
}
return SPV_SUCCESS;
}
IdType AssemblyContext::getTypeOfTypeGeneratingValue(uint32_t value) const {
auto type = types_.find(value);
if (type == types_.end()) {
return kUnknownType;
}
return std::get<1>(*type);
}
IdType AssemblyContext::getTypeOfValueInstruction(uint32_t value) const {
auto type_value = value_types_.find(value);
if (type_value == value_types_.end()) {
return {0, false, IdTypeClass::kBottom};
}
return getTypeOfTypeGeneratingValue(std::get<1>(*type_value));
}
spv_result_t AssemblyContext::recordTypeIdForValue(uint32_t value,
uint32_t type) {
bool successfully_inserted = false;
std::tie(std::ignore, successfully_inserted) =
value_types_.insert(std::make_pair(value, type));
if (!successfully_inserted)
return diagnostic() << "Value is being defined a second time";
return SPV_SUCCESS;
}
spv_result_t AssemblyContext::recordIdAsExtInstImport(
uint32_t id, spv_ext_inst_type_t type) {
bool successfully_inserted = false;
std::tie(std::ignore, successfully_inserted) =
import_id_to_ext_inst_type_.insert(std::make_pair(id, type));
if (!successfully_inserted)
return diagnostic() << "Import Id is being defined a second time";
return SPV_SUCCESS;
}
spv_ext_inst_type_t AssemblyContext::getExtInstTypeForId(uint32_t id) const {
auto type = import_id_to_ext_inst_type_.find(id);
if (type == import_id_to_ext_inst_type_.end()) {
return SPV_EXT_INST_TYPE_NONE;
}
return std::get<1>(*type);
}
} // namespace libspirv