SPIRV-Tools/test/opt/local_ssa_elim_test.cpp

4266 lines
133 KiB
C++
Raw Normal View History

// Copyright (c) 2017 Valve Corporation
// Copyright (c) 2017 LunarG Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include <string>
#include "test/opt/pass_fixture.h"
#include "test/opt/pass_utils.h"
namespace spvtools {
namespace opt {
namespace {
using LocalSSAElimTest = PassTest<::testing::Test>;
TEST_F(LocalSSAElimTest, ForLoop) {
// #version 140
//
// in vec4 BC;
// out float fo;
//
// void main()
// {
// float f = 0.0;
// for (int i=0; i<4; i++) {
// f = f + BC[i];
// }
// fo = f;
// }
const std::string predefs =
R"(OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BC %fo
OpExecutionMode %main OriginUpperLeft
OpSource GLSL 140
OpName %main "main"
OpName %f "f"
OpName %i "i"
OpName %BC "BC"
OpName %fo "fo"
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Function_float = OpTypePointer Function %float
%float_0 = OpConstant %float 0
%int = OpTypeInt 32 1
%_ptr_Function_int = OpTypePointer Function %int
%int_0 = OpConstant %int 0
%int_4 = OpConstant %int 4
%bool = OpTypeBool
%v4float = OpTypeVector %float 4
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BC = OpVariable %_ptr_Input_v4float Input
%_ptr_Input_float = OpTypePointer Input %float
%int_1 = OpConstant %int 1
%_ptr_Output_float = OpTypePointer Output %float
%fo = OpVariable %_ptr_Output_float Output
)";
const std::string before =
R"(%main = OpFunction %void None %8
%22 = OpLabel
%f = OpVariable %_ptr_Function_float Function
%i = OpVariable %_ptr_Function_int Function
OpStore %f %float_0
OpStore %i %int_0
OpBranch %23
%23 = OpLabel
OpLoopMerge %24 %25 None
OpBranch %26
%26 = OpLabel
%27 = OpLoad %int %i
%28 = OpSLessThan %bool %27 %int_4
OpBranchConditional %28 %29 %24
%29 = OpLabel
%30 = OpLoad %float %f
%31 = OpLoad %int %i
%32 = OpAccessChain %_ptr_Input_float %BC %31
%33 = OpLoad %float %32
%34 = OpFAdd %float %30 %33
OpStore %f %34
OpBranch %25
%25 = OpLabel
%35 = OpLoad %int %i
%36 = OpIAdd %int %35 %int_1
OpStore %i %36
OpBranch %23
%24 = OpLabel
%37 = OpLoad %float %f
OpStore %fo %37
OpReturn
OpFunctionEnd
)";
const std::string after =
R"(%main = OpFunction %void None %8
%22 = OpLabel
%f = OpVariable %_ptr_Function_float Function
%i = OpVariable %_ptr_Function_int Function
OpStore %f %float_0
OpStore %i %int_0
OpBranch %23
%23 = OpLabel
%39 = OpPhi %float %float_0 %22 %34 %25
%38 = OpPhi %int %int_0 %22 %36 %25
OpLoopMerge %24 %25 None
OpBranch %26
%26 = OpLabel
%28 = OpSLessThan %bool %38 %int_4
OpBranchConditional %28 %29 %24
%29 = OpLabel
%32 = OpAccessChain %_ptr_Input_float %BC %38
%33 = OpLoad %float %32
%34 = OpFAdd %float %39 %33
OpStore %f %34
OpBranch %25
%25 = OpLabel
%36 = OpIAdd %int %38 %int_1
OpStore %i %36
OpBranch %23
%24 = OpLabel
OpStore %fo %39
OpReturn
OpFunctionEnd
)";
SinglePassRunAndCheck<SSARewritePass>(predefs + before, predefs + after, true,
true);
}
TEST_F(LocalSSAElimTest, NestedForLoop) {
// #version 450
//
// layout (location=0) in mat4 BC;
// layout (location=0) out float fo;
//
// void main()
// {
// float f = 0.0;
// for (int i=0; i<4; i++)
// for (int j=0; j<4; j++)
// f = f + BC[i][j];
// fo = f;
// }
const std::string predefs =
R"(OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BC %fo
OpExecutionMode %main OriginUpperLeft
OpSource GLSL 450
OpName %main "main"
OpName %f "f"
OpName %i "i"
OpName %j "j"
OpName %BC "BC"
OpName %fo "fo"
OpDecorate %BC Location 0
OpDecorate %fo Location 0
%void = OpTypeVoid
%9 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Function_float = OpTypePointer Function %float
%float_0 = OpConstant %float 0
%int = OpTypeInt 32 1
%_ptr_Function_int = OpTypePointer Function %int
%int_0 = OpConstant %int 0
%int_4 = OpConstant %int 4
%bool = OpTypeBool
%v4float = OpTypeVector %float 4
%mat4v4float = OpTypeMatrix %v4float 4
%_ptr_Input_mat4v4float = OpTypePointer Input %mat4v4float
%BC = OpVariable %_ptr_Input_mat4v4float Input
%_ptr_Input_float = OpTypePointer Input %float
%int_1 = OpConstant %int 1
%_ptr_Output_float = OpTypePointer Output %float
%fo = OpVariable %_ptr_Output_float Output
)";
const std::string before =
R"(
; CHECK: = OpFunction
; CHECK-NEXT: [[entry:%\w+]] = OpLabel
; CHECK: [[outer_header:%\w+]] = OpLabel
; CHECK-NEXT: [[outer_f:%\w+]] = OpPhi %float %float_0 [[entry]] [[inner_f:%\w+]] [[outer_be:%\w+]]
; CHECK-NEXT: [[i:%\w+]] = OpPhi %int %int_0 [[entry]] [[i_next:%\w+]] [[outer_be]]
; CHECK-NEXT: OpSLessThan {{%\w+}} [[i]]
; CHECK: [[inner_pre_header:%\w+]] = OpLabel
; CHECK: [[inner_header:%\w+]] = OpLabel
; CHECK-NEXT: [[inner_f]] = OpPhi %float [[outer_f]] [[inner_pre_header]] [[f_next:%\w+]] [[inner_be:%\w+]]
; CHECK-NEXT: [[j:%\w+]] = OpPhi %int %int_0 [[inner_pre_header]] [[j_next:%\w+]] [[inner_be]]
; CHECK: [[inner_be]] = OpLabel
; CHECK: [[f_next]] = OpFAdd %float [[inner_f]]
; CHECK: [[j_next]] = OpIAdd %int [[j]] %int_1
; CHECK: [[outer_be]] = OpLabel
; CHECK: [[i_next]] = OpIAdd
; CHECK: OpStore %fo [[outer_f]]
%main = OpFunction %void None %9
%24 = OpLabel
%f = OpVariable %_ptr_Function_float Function
%i = OpVariable %_ptr_Function_int Function
%j = OpVariable %_ptr_Function_int Function
OpStore %f %float_0
OpStore %i %int_0
OpBranch %25
%25 = OpLabel
%26 = OpLoad %int %i
%27 = OpSLessThan %bool %26 %int_4
OpLoopMerge %28 %29 None
OpBranchConditional %27 %30 %28
%30 = OpLabel
OpStore %j %int_0
OpBranch %31
%31 = OpLabel
%32 = OpLoad %int %j
%33 = OpSLessThan %bool %32 %int_4
OpLoopMerge %50 %34 None
OpBranchConditional %33 %34 %50
%34 = OpLabel
%35 = OpLoad %float %f
%36 = OpLoad %int %i
%37 = OpLoad %int %j
%38 = OpAccessChain %_ptr_Input_float %BC %36 %37
%39 = OpLoad %float %38
%40 = OpFAdd %float %35 %39
OpStore %f %40
%41 = OpLoad %int %j
%42 = OpIAdd %int %41 %int_1
OpStore %j %42
OpBranch %31
%50 = OpLabel
OpBranch %29
%29 = OpLabel
%43 = OpLoad %int %i
%44 = OpIAdd %int %43 %int_1
OpStore %i %44
OpBranch %25
%28 = OpLabel
%45 = OpLoad %float %f
OpStore %fo %45
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(predefs + before, true);
}
TEST_F(LocalSSAElimTest, ForLoopWithContinue) {
// #version 140
//
// in vec4 BC;
// out float fo;
//
// void main()
// {
// float f = 0.0;
// for (int i=0; i<4; i++) {
// float t = BC[i];
// if (t < 0.0)
// continue;
// f = f + t;
// }
// fo = f;
// }
const std::string predefs =
R"(OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BC %fo
OpExecutionMode %main OriginUpperLeft
OpSource GLSL 140
)";
const std::string names =
R"(OpName %main "main"
OpName %f "f"
OpName %i "i"
OpName %t "t"
OpName %BC "BC"
OpName %fo "fo"
)";
const std::string predefs2 =
R"(%void = OpTypeVoid
%9 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Function_float = OpTypePointer Function %float
%float_0 = OpConstant %float 0
%int = OpTypeInt 32 1
%_ptr_Function_int = OpTypePointer Function %int
%int_0 = OpConstant %int 0
%int_4 = OpConstant %int 4
%bool = OpTypeBool
%v4float = OpTypeVector %float 4
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BC = OpVariable %_ptr_Input_v4float Input
%_ptr_Input_float = OpTypePointer Input %float
%int_1 = OpConstant %int 1
%_ptr_Output_float = OpTypePointer Output %float
%fo = OpVariable %_ptr_Output_float Output
)";
const std::string before =
R"(%main = OpFunction %void None %9
%23 = OpLabel
%f = OpVariable %_ptr_Function_float Function
%i = OpVariable %_ptr_Function_int Function
%t = OpVariable %_ptr_Function_float Function
OpStore %f %float_0
OpStore %i %int_0
OpBranch %24
%24 = OpLabel
OpLoopMerge %25 %26 None
OpBranch %27
%27 = OpLabel
%28 = OpLoad %int %i
%29 = OpSLessThan %bool %28 %int_4
OpBranchConditional %29 %30 %25
%30 = OpLabel
%31 = OpLoad %int %i
%32 = OpAccessChain %_ptr_Input_float %BC %31
%33 = OpLoad %float %32
OpStore %t %33
%34 = OpLoad %float %t
%35 = OpFOrdLessThan %bool %34 %float_0
OpSelectionMerge %36 None
OpBranchConditional %35 %37 %36
%37 = OpLabel
OpBranch %26
%36 = OpLabel
%38 = OpLoad %float %f
%39 = OpLoad %float %t
%40 = OpFAdd %float %38 %39
OpStore %f %40
OpBranch %26
%26 = OpLabel
%41 = OpLoad %int %i
%42 = OpIAdd %int %41 %int_1
OpStore %i %42
OpBranch %24
%25 = OpLabel
%43 = OpLoad %float %f
OpStore %fo %43
OpReturn
OpFunctionEnd
)";
const std::string after =
R"(%main = OpFunction %void None %9
%23 = OpLabel
%f = OpVariable %_ptr_Function_float Function
%i = OpVariable %_ptr_Function_int Function
%t = OpVariable %_ptr_Function_float Function
OpStore %f %float_0
OpStore %i %int_0
OpBranch %24
%24 = OpLabel
%45 = OpPhi %float %float_0 %23 %47 %26
%44 = OpPhi %int %int_0 %23 %42 %26
OpLoopMerge %25 %26 None
OpBranch %27
%27 = OpLabel
%29 = OpSLessThan %bool %44 %int_4
OpBranchConditional %29 %30 %25
%30 = OpLabel
%32 = OpAccessChain %_ptr_Input_float %BC %44
%33 = OpLoad %float %32
OpStore %t %33
%35 = OpFOrdLessThan %bool %33 %float_0
OpSelectionMerge %36 None
OpBranchConditional %35 %37 %36
%37 = OpLabel
OpBranch %26
%36 = OpLabel
%40 = OpFAdd %float %45 %33
OpStore %f %40
OpBranch %26
%26 = OpLabel
%47 = OpPhi %float %45 %37 %40 %36
%42 = OpIAdd %int %44 %int_1
OpStore %i %42
OpBranch %24
%25 = OpLabel
OpStore %fo %45
OpReturn
OpFunctionEnd
)";
SinglePassRunAndCheck<SSARewritePass>(predefs + names + predefs2 + before,
predefs + names + predefs2 + after,
true, true);
}
TEST_F(LocalSSAElimTest, ForLoopWithBreak) {
// #version 140
//
// in vec4 BC;
// out float fo;
//
// void main()
// {
// float f = 0.0;
// for (int i=0; i<4; i++) {
// float t = f + BC[i];
// if (t > 1.0)
// break;
// f = t;
// }
// fo = f;
// }
const std::string predefs =
R"(OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BC %fo
OpExecutionMode %main OriginUpperLeft
OpSource GLSL 140
OpName %main "main"
OpName %f "f"
OpName %i "i"
OpName %t "t"
OpName %BC "BC"
OpName %fo "fo"
%void = OpTypeVoid
%9 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Function_float = OpTypePointer Function %float
%float_0 = OpConstant %float 0
%int = OpTypeInt 32 1
%_ptr_Function_int = OpTypePointer Function %int
%int_0 = OpConstant %int 0
%int_4 = OpConstant %int 4
%bool = OpTypeBool
%v4float = OpTypeVector %float 4
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BC = OpVariable %_ptr_Input_v4float Input
%_ptr_Input_float = OpTypePointer Input %float
%float_1 = OpConstant %float 1
%int_1 = OpConstant %int 1
%_ptr_Output_float = OpTypePointer Output %float
%fo = OpVariable %_ptr_Output_float Output
)";
const std::string before =
R"(%main = OpFunction %void None %9
%24 = OpLabel
%f = OpVariable %_ptr_Function_float Function
%i = OpVariable %_ptr_Function_int Function
%t = OpVariable %_ptr_Function_float Function
OpStore %f %float_0
OpStore %i %int_0
OpBranch %25
%25 = OpLabel
OpLoopMerge %26 %27 None
OpBranch %28
%28 = OpLabel
%29 = OpLoad %int %i
%30 = OpSLessThan %bool %29 %int_4
OpBranchConditional %30 %31 %26
%31 = OpLabel
%32 = OpLoad %float %f
%33 = OpLoad %int %i
%34 = OpAccessChain %_ptr_Input_float %BC %33
%35 = OpLoad %float %34
%36 = OpFAdd %float %32 %35
OpStore %t %36
%37 = OpLoad %float %t
%38 = OpFOrdGreaterThan %bool %37 %float_1
OpSelectionMerge %39 None
OpBranchConditional %38 %40 %39
%40 = OpLabel
OpBranch %26
%39 = OpLabel
%41 = OpLoad %float %t
OpStore %f %41
OpBranch %27
%27 = OpLabel
%42 = OpLoad %int %i
%43 = OpIAdd %int %42 %int_1
OpStore %i %43
OpBranch %25
%26 = OpLabel
%44 = OpLoad %float %f
OpStore %fo %44
OpReturn
OpFunctionEnd
)";
const std::string after =
R"(%main = OpFunction %void None %9
%24 = OpLabel
%f = OpVariable %_ptr_Function_float Function
%i = OpVariable %_ptr_Function_int Function
%t = OpVariable %_ptr_Function_float Function
OpStore %f %float_0
OpStore %i %int_0
OpBranch %25
%25 = OpLabel
%46 = OpPhi %float %float_0 %24 %36 %27
%45 = OpPhi %int %int_0 %24 %43 %27
OpLoopMerge %26 %27 None
OpBranch %28
%28 = OpLabel
%30 = OpSLessThan %bool %45 %int_4
OpBranchConditional %30 %31 %26
%31 = OpLabel
%34 = OpAccessChain %_ptr_Input_float %BC %45
%35 = OpLoad %float %34
%36 = OpFAdd %float %46 %35
OpStore %t %36
%38 = OpFOrdGreaterThan %bool %36 %float_1
OpSelectionMerge %39 None
OpBranchConditional %38 %40 %39
%40 = OpLabel
OpBranch %26
%39 = OpLabel
OpStore %f %36
OpBranch %27
%27 = OpLabel
%43 = OpIAdd %int %45 %int_1
OpStore %i %43
OpBranch %25
%26 = OpLabel
OpStore %fo %46
OpReturn
OpFunctionEnd
)";
SinglePassRunAndCheck<SSARewritePass>(predefs + before, predefs + after, true,
true);
}
TEST_F(LocalSSAElimTest, SwapProblem) {
// #version 140
//
// in float fe;
// out float fo;
//
// void main()
// {
// float f1 = 0.0;
// float f2 = 1.0;
// int ie = int(fe);
// for (int i=0; i<ie; i++) {
// float t = f1;
// f1 = f2;
// f2 = t;
// }
// fo = f1;
// }
const std::string predefs =
R"(OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %fe %fo
OpExecutionMode %main OriginUpperLeft
OpSource GLSL 140
OpName %main "main"
OpName %f1 "f1"
OpName %f2 "f2"
OpName %ie "ie"
OpName %fe "fe"
OpName %i "i"
OpName %t "t"
OpName %fo "fo"
%void = OpTypeVoid
%11 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Function_float = OpTypePointer Function %float
%float_0 = OpConstant %float 0
%float_1 = OpConstant %float 1
%int = OpTypeInt 32 1
%_ptr_Function_int = OpTypePointer Function %int
%_ptr_Input_float = OpTypePointer Input %float
%fe = OpVariable %_ptr_Input_float Input
%int_0 = OpConstant %int 0
%bool = OpTypeBool
%int_1 = OpConstant %int 1
%_ptr_Output_float = OpTypePointer Output %float
%fo = OpVariable %_ptr_Output_float Output
)";
const std::string before =
R"(%main = OpFunction %void None %11
%23 = OpLabel
%f1 = OpVariable %_ptr_Function_float Function
%f2 = OpVariable %_ptr_Function_float Function
%ie = OpVariable %_ptr_Function_int Function
%i = OpVariable %_ptr_Function_int Function
%t = OpVariable %_ptr_Function_float Function
OpStore %f1 %float_0
OpStore %f2 %float_1
%24 = OpLoad %float %fe
%25 = OpConvertFToS %int %24
OpStore %ie %25
OpStore %i %int_0
OpBranch %26
%26 = OpLabel
OpLoopMerge %27 %28 None
OpBranch %29
%29 = OpLabel
%30 = OpLoad %int %i
%31 = OpLoad %int %ie
%32 = OpSLessThan %bool %30 %31
OpBranchConditional %32 %33 %27
%33 = OpLabel
%34 = OpLoad %float %f1
OpStore %t %34
%35 = OpLoad %float %f2
OpStore %f1 %35
%36 = OpLoad %float %t
OpStore %f2 %36
OpBranch %28
%28 = OpLabel
%37 = OpLoad %int %i
%38 = OpIAdd %int %37 %int_1
OpStore %i %38
OpBranch %26
%27 = OpLabel
%39 = OpLoad %float %f1
OpStore %fo %39
OpReturn
OpFunctionEnd
)";
const std::string after =
R"(%main = OpFunction %void None %11
%23 = OpLabel
%f1 = OpVariable %_ptr_Function_float Function
%f2 = OpVariable %_ptr_Function_float Function
%ie = OpVariable %_ptr_Function_int Function
%i = OpVariable %_ptr_Function_int Function
%t = OpVariable %_ptr_Function_float Function
OpStore %f1 %float_0
OpStore %f2 %float_1
%24 = OpLoad %float %fe
%25 = OpConvertFToS %int %24
OpStore %ie %25
OpStore %i %int_0
OpBranch %26
%26 = OpLabel
%43 = OpPhi %float %float_1 %23 %42 %28
%42 = OpPhi %float %float_0 %23 %43 %28
%40 = OpPhi %int %int_0 %23 %38 %28
OpLoopMerge %27 %28 None
OpBranch %29
%29 = OpLabel
%32 = OpSLessThan %bool %40 %25
OpBranchConditional %32 %33 %27
%33 = OpLabel
OpStore %t %42
OpStore %f1 %43
OpStore %f2 %42
OpBranch %28
%28 = OpLabel
%38 = OpIAdd %int %40 %int_1
OpStore %i %38
OpBranch %26
%27 = OpLabel
OpStore %fo %42
OpReturn
OpFunctionEnd
)";
SinglePassRunAndCheck<SSARewritePass>(predefs + before, predefs + after, true,
true);
}
TEST_F(LocalSSAElimTest, LostCopyProblem) {
// #version 140
//
// in vec4 BC;
// out float fo;
//
// void main()
// {
// float f = 0.0;
// float t;
// for (int i=0; i<4; i++) {
// t = f;
// f = f + BC[i];
// if (f > 1.0)
// break;
// }
// fo = t;
// }
const std::string predefs =
R"(OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BC %fo
OpExecutionMode %main OriginUpperLeft
OpSource GLSL 140
OpName %main "main"
OpName %f "f"
OpName %i "i"
OpName %t "t"
OpName %BC "BC"
OpName %fo "fo"
%void = OpTypeVoid
%9 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Function_float = OpTypePointer Function %float
%float_0 = OpConstant %float 0
%int = OpTypeInt 32 1
%_ptr_Function_int = OpTypePointer Function %int
%int_0 = OpConstant %int 0
%int_4 = OpConstant %int 4
%bool = OpTypeBool
%v4float = OpTypeVector %float 4
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BC = OpVariable %_ptr_Input_v4float Input
%_ptr_Input_float = OpTypePointer Input %float
%float_1 = OpConstant %float 1
%int_1 = OpConstant %int 1
%_ptr_Output_float = OpTypePointer Output %float
%fo = OpVariable %_ptr_Output_float Output
)";
const std::string before =
R"(%main = OpFunction %void None %9
%24 = OpLabel
%f = OpVariable %_ptr_Function_float Function
%i = OpVariable %_ptr_Function_int Function
%t = OpVariable %_ptr_Function_float Function
OpStore %f %float_0
OpStore %i %int_0
OpBranch %25
%25 = OpLabel
OpLoopMerge %26 %27 None
OpBranch %28
%28 = OpLabel
%29 = OpLoad %int %i
%30 = OpSLessThan %bool %29 %int_4
OpBranchConditional %30 %31 %26
%31 = OpLabel
%32 = OpLoad %float %f
OpStore %t %32
%33 = OpLoad %float %f
%34 = OpLoad %int %i
%35 = OpAccessChain %_ptr_Input_float %BC %34
%36 = OpLoad %float %35
%37 = OpFAdd %float %33 %36
OpStore %f %37
%38 = OpLoad %float %f
%39 = OpFOrdGreaterThan %bool %38 %float_1
OpSelectionMerge %40 None
OpBranchConditional %39 %41 %40
%41 = OpLabel
OpBranch %26
%40 = OpLabel
OpBranch %27
%27 = OpLabel
%42 = OpLoad %int %i
%43 = OpIAdd %int %42 %int_1
OpStore %i %43
OpBranch %25
%26 = OpLabel
%44 = OpLoad %float %t
OpStore %fo %44
OpReturn
OpFunctionEnd
)";
const std::string after =
R"(%49 = OpUndef %float
%main = OpFunction %void None %9
%24 = OpLabel
%f = OpVariable %_ptr_Function_float Function
%i = OpVariable %_ptr_Function_int Function
%t = OpVariable %_ptr_Function_float Function
OpStore %f %float_0
OpStore %i %int_0
OpBranch %25
%25 = OpLabel
%46 = OpPhi %float %float_0 %24 %37 %27
%45 = OpPhi %int %int_0 %24 %43 %27
%48 = OpPhi %float %49 %24 %46 %27
OpLoopMerge %26 %27 None
OpBranch %28
%28 = OpLabel
%30 = OpSLessThan %bool %45 %int_4
OpBranchConditional %30 %31 %26
%31 = OpLabel
OpStore %t %46
%35 = OpAccessChain %_ptr_Input_float %BC %45
%36 = OpLoad %float %35
%37 = OpFAdd %float %46 %36
OpStore %f %37
%39 = OpFOrdGreaterThan %bool %37 %float_1
OpSelectionMerge %40 None
OpBranchConditional %39 %41 %40
%41 = OpLabel
OpBranch %26
%40 = OpLabel
OpBranch %27
%27 = OpLabel
%43 = OpIAdd %int %45 %int_1
OpStore %i %43
OpBranch %25
%26 = OpLabel
%47 = OpPhi %float %48 %28 %46 %41
OpStore %fo %47
OpReturn
OpFunctionEnd
)";
SinglePassRunAndCheck<SSARewritePass>(predefs + before, predefs + after, true,
true);
}
TEST_F(LocalSSAElimTest, IfThenElse) {
// #version 140
//
// in vec4 BaseColor;
// in float f;
//
// void main()
// {
// vec4 v;
// if (f >= 0)
// v = BaseColor * 0.5;
// else
// v = BaseColor + vec4(1.0,1.0,1.0,1.0);
// gl_FragColor = v;
// }
const std::string predefs =
R"(OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %f %BaseColor %gl_FragColor
OpExecutionMode %main OriginUpperLeft
OpSource GLSL 140
OpName %main "main"
OpName %f "f"
OpName %v "v"
OpName %BaseColor "BaseColor"
OpName %gl_FragColor "gl_FragColor"
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Input_float = OpTypePointer Input %float
%f = OpVariable %_ptr_Input_float Input
%float_0 = OpConstant %float 0
%bool = OpTypeBool
%v4float = OpTypeVector %float 4
%_ptr_Function_v4float = OpTypePointer Function %v4float
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BaseColor = OpVariable %_ptr_Input_v4float Input
%float_0_5 = OpConstant %float 0.5
%float_1 = OpConstant %float 1
%18 = OpConstantComposite %v4float %float_1 %float_1 %float_1 %float_1
%_ptr_Output_v4float = OpTypePointer Output %v4float
%gl_FragColor = OpVariable %_ptr_Output_v4float Output
)";
const std::string before =
R"(%main = OpFunction %void None %8
%20 = OpLabel
%v = OpVariable %_ptr_Function_v4float Function
%21 = OpLoad %float %f
%22 = OpFOrdGreaterThanEqual %bool %21 %float_0
OpSelectionMerge %23 None
OpBranchConditional %22 %24 %25
%24 = OpLabel
%26 = OpLoad %v4float %BaseColor
%27 = OpVectorTimesScalar %v4float %26 %float_0_5
OpStore %v %27
OpBranch %23
%25 = OpLabel
%28 = OpLoad %v4float %BaseColor
%29 = OpFAdd %v4float %28 %18
OpStore %v %29
OpBranch %23
%23 = OpLabel
%30 = OpLoad %v4float %v
OpStore %gl_FragColor %30
OpReturn
OpFunctionEnd
)";
const std::string after =
R"(%main = OpFunction %void None %8
%20 = OpLabel
%v = OpVariable %_ptr_Function_v4float Function
%21 = OpLoad %float %f
%22 = OpFOrdGreaterThanEqual %bool %21 %float_0
OpSelectionMerge %23 None
OpBranchConditional %22 %24 %25
%24 = OpLabel
%26 = OpLoad %v4float %BaseColor
%27 = OpVectorTimesScalar %v4float %26 %float_0_5
OpStore %v %27
OpBranch %23
%25 = OpLabel
%28 = OpLoad %v4float %BaseColor
%29 = OpFAdd %v4float %28 %18
OpStore %v %29
OpBranch %23
%23 = OpLabel
%31 = OpPhi %v4float %27 %24 %29 %25
OpStore %gl_FragColor %31
OpReturn
OpFunctionEnd
)";
SinglePassRunAndCheck<SSARewritePass>(predefs + before, predefs + after, true,
true);
}
TEST_F(LocalSSAElimTest, IfThen) {
// #version 140
//
// in vec4 BaseColor;
// in float f;
//
// void main()
// {
// vec4 v = BaseColor;
// if (f <= 0)
// v = v * 0.5;
// gl_FragColor = v;
// }
const std::string predefs =
R"(OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BaseColor %f %gl_FragColor
OpExecutionMode %main OriginUpperLeft
OpSource GLSL 140
OpName %main "main"
OpName %v "v"
OpName %BaseColor "BaseColor"
OpName %f "f"
OpName %gl_FragColor "gl_FragColor"
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%_ptr_Function_v4float = OpTypePointer Function %v4float
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BaseColor = OpVariable %_ptr_Input_v4float Input
%_ptr_Input_float = OpTypePointer Input %float
%f = OpVariable %_ptr_Input_float Input
%float_0 = OpConstant %float 0
%bool = OpTypeBool
%float_0_5 = OpConstant %float 0.5
%_ptr_Output_v4float = OpTypePointer Output %v4float
%gl_FragColor = OpVariable %_ptr_Output_v4float Output
)";
const std::string before =
R"(%main = OpFunction %void None %8
%18 = OpLabel
%v = OpVariable %_ptr_Function_v4float Function
%19 = OpLoad %v4float %BaseColor
OpStore %v %19
%20 = OpLoad %float %f
%21 = OpFOrdLessThanEqual %bool %20 %float_0
OpSelectionMerge %22 None
OpBranchConditional %21 %23 %22
%23 = OpLabel
%24 = OpLoad %v4float %v
%25 = OpVectorTimesScalar %v4float %24 %float_0_5
OpStore %v %25
OpBranch %22
%22 = OpLabel
%26 = OpLoad %v4float %v
OpStore %gl_FragColor %26
OpReturn
OpFunctionEnd
)";
const std::string after =
R"(%main = OpFunction %void None %8
%18 = OpLabel
%v = OpVariable %_ptr_Function_v4float Function
%19 = OpLoad %v4float %BaseColor
OpStore %v %19
%20 = OpLoad %float %f
%21 = OpFOrdLessThanEqual %bool %20 %float_0
OpSelectionMerge %22 None
OpBranchConditional %21 %23 %22
%23 = OpLabel
%25 = OpVectorTimesScalar %v4float %19 %float_0_5
OpStore %v %25
OpBranch %22
%22 = OpLabel
%27 = OpPhi %v4float %19 %18 %25 %23
OpStore %gl_FragColor %27
OpReturn
OpFunctionEnd
)";
SinglePassRunAndCheck<SSARewritePass>(predefs + before, predefs + after, true,
true);
}
TEST_F(LocalSSAElimTest, Switch) {
// #version 140
//
// in vec4 BaseColor;
// in float f;
//
// void main()
// {
// vec4 v = BaseColor;
// int i = int(f);
// switch (i) {
// case 0:
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
// v = v * 0.25;
// break;
// case 1:
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
// v = v * 0.625;
// break;
// case 2:
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
// v = v * 0.75;
// break;
// default:
// break;
// }
// gl_FragColor = v;
// }
const std::string predefs =
R"(OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BaseColor %f %gl_FragColor
OpExecutionMode %main OriginUpperLeft
OpSource GLSL 140
OpName %main "main"
OpName %v "v"
OpName %BaseColor "BaseColor"
OpName %i "i"
OpName %f "f"
OpName %gl_FragColor "gl_FragColor"
%void = OpTypeVoid
%9 = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%_ptr_Function_v4float = OpTypePointer Function %v4float
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BaseColor = OpVariable %_ptr_Input_v4float Input
%int = OpTypeInt 32 1
%_ptr_Function_int = OpTypePointer Function %int
%_ptr_Input_float = OpTypePointer Input %float
%f = OpVariable %_ptr_Input_float Input
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
%float_0_25 = OpConstant %float 0.25
%float_0_625 = OpConstant %float 0.625
%float_0_75 = OpConstant %float 0.75
%_ptr_Output_v4float = OpTypePointer Output %v4float
%gl_FragColor = OpVariable %_ptr_Output_v4float Output
)";
const std::string before =
R"(%main = OpFunction %void None %9
%21 = OpLabel
%v = OpVariable %_ptr_Function_v4float Function
%i = OpVariable %_ptr_Function_int Function
%22 = OpLoad %v4float %BaseColor
OpStore %v %22
%23 = OpLoad %float %f
%24 = OpConvertFToS %int %23
OpStore %i %24
%25 = OpLoad %int %i
OpSelectionMerge %26 None
OpSwitch %25 %27 0 %28 1 %29 2 %30
%27 = OpLabel
OpBranch %26
%28 = OpLabel
%31 = OpLoad %v4float %v
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
%32 = OpVectorTimesScalar %v4float %31 %float_0_25
OpStore %v %32
OpBranch %26
%29 = OpLabel
%33 = OpLoad %v4float %v
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
%34 = OpVectorTimesScalar %v4float %33 %float_0_625
OpStore %v %34
OpBranch %26
%30 = OpLabel
%35 = OpLoad %v4float %v
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
%36 = OpVectorTimesScalar %v4float %35 %float_0_75
OpStore %v %36
OpBranch %26
%26 = OpLabel
%37 = OpLoad %v4float %v
OpStore %gl_FragColor %37
OpReturn
OpFunctionEnd
)";
const std::string after =
R"(%main = OpFunction %void None %9
%21 = OpLabel
%v = OpVariable %_ptr_Function_v4float Function
%i = OpVariable %_ptr_Function_int Function
%22 = OpLoad %v4float %BaseColor
OpStore %v %22
%23 = OpLoad %float %f
%24 = OpConvertFToS %int %23
OpStore %i %24
OpSelectionMerge %26 None
OpSwitch %24 %27 0 %28 1 %29 2 %30
%27 = OpLabel
OpBranch %26
%28 = OpLabel
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
%32 = OpVectorTimesScalar %v4float %22 %float_0_25
OpStore %v %32
OpBranch %26
%29 = OpLabel
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
%34 = OpVectorTimesScalar %v4float %22 %float_0_625
OpStore %v %34
OpBranch %26
%30 = OpLabel
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
%36 = OpVectorTimesScalar %v4float %22 %float_0_75
OpStore %v %36
OpBranch %26
%26 = OpLabel
%38 = OpPhi %v4float %22 %27 %32 %28 %34 %29 %36 %30
OpStore %gl_FragColor %38
OpReturn
OpFunctionEnd
)";
SinglePassRunAndCheck<SSARewritePass>(predefs + before, predefs + after, true,
true);
}
TEST_F(LocalSSAElimTest, SwitchWithFallThrough) {
// #version 140
//
// in vec4 BaseColor;
// in float f;
//
// void main()
// {
// vec4 v = BaseColor;
// int i = int(f);
// switch (i) {
// case 0:
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
// v = v * 0.25;
// break;
// case 1:
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
// v = v + 0.25;
// case 2:
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
// v = v * 0.75;
// break;
// default:
// break;
// }
// gl_FragColor = v;
// }
const std::string predefs =
R"(OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BaseColor %f %gl_FragColor
OpExecutionMode %main OriginUpperLeft
OpSource GLSL 140
OpName %main "main"
OpName %v "v"
OpName %BaseColor "BaseColor"
OpName %i "i"
OpName %f "f"
OpName %gl_FragColor "gl_FragColor"
%void = OpTypeVoid
%9 = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%_ptr_Function_v4float = OpTypePointer Function %v4float
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BaseColor = OpVariable %_ptr_Input_v4float Input
%int = OpTypeInt 32 1
%_ptr_Function_int = OpTypePointer Function %int
%_ptr_Input_float = OpTypePointer Input %float
%f = OpVariable %_ptr_Input_float Input
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
%float_0_25 = OpConstant %float 0.25
%float_0_75 = OpConstant %float 0.75
%_ptr_Output_v4float = OpTypePointer Output %v4float
%gl_FragColor = OpVariable %_ptr_Output_v4float Output
)";
const std::string before =
R"(%main = OpFunction %void None %9
%20 = OpLabel
%v = OpVariable %_ptr_Function_v4float Function
%i = OpVariable %_ptr_Function_int Function
%21 = OpLoad %v4float %BaseColor
OpStore %v %21
%22 = OpLoad %float %f
%23 = OpConvertFToS %int %22
OpStore %i %23
%24 = OpLoad %int %i
OpSelectionMerge %25 None
OpSwitch %24 %26 0 %27 1 %28 2 %29
%26 = OpLabel
OpBranch %25
%27 = OpLabel
%30 = OpLoad %v4float %v
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
%31 = OpVectorTimesScalar %v4float %30 %float_0_25
OpStore %v %31
OpBranch %25
%28 = OpLabel
%32 = OpLoad %v4float %v
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
%33 = OpCompositeConstruct %v4float %float_0_25 %float_0_25 %float_0_25 %float_0_25
%34 = OpFAdd %v4float %32 %33
OpStore %v %34
OpBranch %29
%29 = OpLabel
%35 = OpLoad %v4float %v
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
%36 = OpVectorTimesScalar %v4float %35 %float_0_75
OpStore %v %36
OpBranch %25
%25 = OpLabel
%37 = OpLoad %v4float %v
OpStore %gl_FragColor %37
OpReturn
OpFunctionEnd
)";
const std::string after =
R"(%main = OpFunction %void None %9
%20 = OpLabel
%v = OpVariable %_ptr_Function_v4float Function
%i = OpVariable %_ptr_Function_int Function
%21 = OpLoad %v4float %BaseColor
OpStore %v %21
%22 = OpLoad %float %f
%23 = OpConvertFToS %int %22
OpStore %i %23
OpSelectionMerge %25 None
OpSwitch %23 %26 0 %27 1 %28 2 %29
%26 = OpLabel
OpBranch %25
%27 = OpLabel
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
%31 = OpVectorTimesScalar %v4float %21 %float_0_25
OpStore %v %31
OpBranch %25
%28 = OpLabel
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
%33 = OpCompositeConstruct %v4float %float_0_25 %float_0_25 %float_0_25 %float_0_25
%34 = OpFAdd %v4float %21 %33
OpStore %v %34
OpBranch %29
%29 = OpLabel
%38 = OpPhi %v4float %21 %20 %34 %28
hex_float: Use max_digits10 for the float precision CPPreference.com has this description of digits10: “The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T without change, that is, any number with this many significant decimal digits can be converted to a value of type T and back to decimal form, without change due to rounding or overflow.” This means that any number with this many digits can be represented accurately in the corresponding type. A change in any digit in a number after that may or may not cause it a different bitwise representation. Therefore this isn’t necessarily enough precision to accurately represent the value in text. Instead we need max_digits10 which has the following description: “The value of std::numeric_limits<T>::max_digits10 is the number of base-10 digits that are necessary to uniquely represent all distinct values of the type T, such as necessary for serialization/deserialization to text.” The patch includes a test case in hex_float_test which tries to do a round-robin conversion of a number that requires more than 6 decimal places to be accurately represented. This would fail without the patch. Sadly this also breaks a bunch of other tests. Some of the tests in hex_float_test use ldexp and then compare it with a value which is not the same as the one returned by ldexp but instead is the value rounded to 6 decimals. Others use values that are not evenly representable as a binary floating fraction but then happened to generate the same value when rounded to 6 decimals. Where the actual value didn’t seem to matter these have been changed with different values that can be represented as a binary fraction.
2018-03-30 23:35:45 +00:00
%36 = OpVectorTimesScalar %v4float %38 %float_0_75
OpStore %v %36
OpBranch %25
%25 = OpLabel
%39 = OpPhi %v4float %21 %26 %31 %27 %36 %29
OpStore %gl_FragColor %39
OpReturn
OpFunctionEnd
)";
SinglePassRunAndCheck<SSARewritePass>(predefs + before, predefs + after, true,
true);
}
TEST_F(LocalSSAElimTest, DontPatchPhiInLoopHeaderThatIsNotAVar) {
// From https://github.com/KhronosGroup/SPIRV-Tools/issues/826
// Don't try patching the (%16 %7) value/predecessor pair in the OpPhi.
// That OpPhi is unrelated to this optimization: we did not set that up
// in the SSA initialization for the loop header block.
// The pass should be a no-op on this module.
const std::string before = R"(OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %1 "main"
%void = OpTypeVoid
%3 = OpTypeFunction %void
%float = OpTypeFloat 32
%float_1 = OpConstant %float 1
%1 = OpFunction %void None %3
%6 = OpLabel
OpBranch %7
%7 = OpLabel
%8 = OpPhi %float %float_1 %6 %9 %7
%9 = OpFAdd %float %8 %float_1
OpLoopMerge %10 %7 None
OpBranch %7
%10 = OpLabel
OpReturn
OpFunctionEnd
)";
SinglePassRunAndCheck<SSARewritePass>(before, before, true, true);
}
TEST_F(LocalSSAElimTest, OptInitializedVariableLikeStore) {
// Note: SPIR-V edited to change store to v into variable initialization
//
// #version 450
//
// layout (location=0) in vec4 iColor;
// layout (location=1) in float fi;
// layout (location=0) out vec4 oColor;
//
// void main()
// {
// vec4 v = vec4(0.0);
// if (fi < 0.0)
// v.x = iColor.x;
// oColor = v;
// }
const std::string predefs =
R"(OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %fi %iColor %oColor
OpExecutionMode %main OriginUpperLeft
OpSource GLSL 450
OpName %main "main"
OpName %v "v"
OpName %fi "fi"
OpName %iColor "iColor"
OpName %oColor "oColor"
OpDecorate %fi Location 1
OpDecorate %iColor Location 0
OpDecorate %oColor Location 0
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%_ptr_Function_v4float = OpTypePointer Function %v4float
%float_0 = OpConstant %float 0
%13 = OpConstantComposite %v4float %float_0 %float_0 %float_0 %float_0
%_ptr_Input_float = OpTypePointer Input %float
%fi = OpVariable %_ptr_Input_float Input
%bool = OpTypeBool
%_ptr_Input_v4float = OpTypePointer Input %v4float
%iColor = OpVariable %_ptr_Input_v4float Input
%uint = OpTypeInt 32 0
%uint_0 = OpConstant %uint 0
%_ptr_Function_float = OpTypePointer Function %float
%_ptr_Output_v4float = OpTypePointer Output %v4float
%oColor = OpVariable %_ptr_Output_v4float Output
)";
const std::string func_before =
R"(%main = OpFunction %void None %8
%21 = OpLabel
%v = OpVariable %_ptr_Function_v4float Function %13
%22 = OpLoad %float %fi
%23 = OpFOrdLessThan %bool %22 %float_0
OpSelectionMerge %24 None
OpBranchConditional %23 %25 %24
%25 = OpLabel
%26 = OpAccessChain %_ptr_Input_float %iColor %uint_0
%27 = OpLoad %float %26
%28 = OpLoad %v4float %v
%29 = OpCompositeInsert %v4float %27 %28 0
OpStore %v %29
OpBranch %24
%24 = OpLabel
%30 = OpLoad %v4float %v
OpStore %oColor %30
OpReturn
OpFunctionEnd
)";
const std::string func_after =
R"(%main = OpFunction %void None %8
%21 = OpLabel
%v = OpVariable %_ptr_Function_v4float Function %13
%22 = OpLoad %float %fi
%23 = OpFOrdLessThan %bool %22 %float_0
OpSelectionMerge %24 None
OpBranchConditional %23 %25 %24
%25 = OpLabel
%26 = OpAccessChain %_ptr_Input_float %iColor %uint_0
%27 = OpLoad %float %26
%29 = OpCompositeInsert %v4float %27 %13 0
OpStore %v %29
OpBranch %24
%24 = OpLabel
%31 = OpPhi %v4float %13 %21 %29 %25
OpStore %oColor %31
OpReturn
OpFunctionEnd
)";
SinglePassRunAndCheck<SSARewritePass>(predefs + func_before,
predefs + func_after, true, true);
}
TEST_F(LocalSSAElimTest, PointerVariable) {
// Test that checks if a pointer variable is removed.
const std::string before =
R"(OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %1 "main" %2
OpExecutionMode %1 OriginUpperLeft
OpMemberDecorate %_struct_3 0 Offset 0
OpDecorate %_runtimearr__struct_3 ArrayStride 16
OpMemberDecorate %_struct_5 0 Offset 0
OpDecorate %_struct_5 BufferBlock
OpMemberDecorate %_struct_6 0 Offset 0
OpDecorate %_struct_6 BufferBlock
OpDecorate %2 Location 0
OpDecorate %7 DescriptorSet 0
OpDecorate %7 Binding 0
%void = OpTypeVoid
%10 = OpTypeFunction %void
%int = OpTypeInt 32 1
%uint = OpTypeInt 32 0
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%_ptr_Output_v4float = OpTypePointer Output %v4float
%_ptr_Uniform_v4float = OpTypePointer Uniform %v4float
%_struct_3 = OpTypeStruct %v4float
%_runtimearr__struct_3 = OpTypeRuntimeArray %_struct_3
%_struct_5 = OpTypeStruct %_runtimearr__struct_3
%_ptr_Uniform__struct_5 = OpTypePointer Uniform %_struct_5
%_struct_6 = OpTypeStruct %int
%_ptr_Uniform__struct_6 = OpTypePointer Uniform %_struct_6
%_ptr_Function__ptr_Uniform__struct_5 = OpTypePointer Function %_ptr_Uniform__struct_5
%_ptr_Function__ptr_Uniform__struct_6 = OpTypePointer Function %_ptr_Uniform__struct_6
%int_0 = OpConstant %int 0
%uint_0 = OpConstant %uint 0
%2 = OpVariable %_ptr_Output_v4float Output
%7 = OpVariable %_ptr_Uniform__struct_5 Uniform
%1 = OpFunction %void None %10
%23 = OpLabel
%24 = OpVariable %_ptr_Function__ptr_Uniform__struct_5 Function
OpStore %24 %7
%26 = OpLoad %_ptr_Uniform__struct_5 %24
%27 = OpAccessChain %_ptr_Uniform_v4float %26 %int_0 %uint_0 %int_0
%28 = OpLoad %v4float %27
%29 = OpCopyObject %v4float %28
OpStore %2 %28
OpReturn
OpFunctionEnd
)";
const std::string after =
R"(OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %1 "main" %2
OpExecutionMode %1 OriginUpperLeft
OpMemberDecorate %_struct_3 0 Offset 0
OpDecorate %_runtimearr__struct_3 ArrayStride 16
OpMemberDecorate %_struct_5 0 Offset 0
OpDecorate %_struct_5 BufferBlock
OpMemberDecorate %_struct_6 0 Offset 0
OpDecorate %_struct_6 BufferBlock
OpDecorate %2 Location 0
OpDecorate %7 DescriptorSet 0
OpDecorate %7 Binding 0
%void = OpTypeVoid
%10 = OpTypeFunction %void
%int = OpTypeInt 32 1
%uint = OpTypeInt 32 0
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%_ptr_Output_v4float = OpTypePointer Output %v4float
%_ptr_Uniform_v4float = OpTypePointer Uniform %v4float
%_struct_3 = OpTypeStruct %v4float
%_runtimearr__struct_3 = OpTypeRuntimeArray %_struct_3
%_struct_5 = OpTypeStruct %_runtimearr__struct_3
%_ptr_Uniform__struct_5 = OpTypePointer Uniform %_struct_5
%_struct_6 = OpTypeStruct %int
%_ptr_Uniform__struct_6 = OpTypePointer Uniform %_struct_6
%_ptr_Function__ptr_Uniform__struct_5 = OpTypePointer Function %_ptr_Uniform__struct_5
%_ptr_Function__ptr_Uniform__struct_6 = OpTypePointer Function %_ptr_Uniform__struct_6
%int_0 = OpConstant %int 0
%uint_0 = OpConstant %uint 0
%2 = OpVariable %_ptr_Output_v4float Output
%7 = OpVariable %_ptr_Uniform__struct_5 Uniform
%1 = OpFunction %void None %10
%23 = OpLabel
%24 = OpVariable %_ptr_Function__ptr_Uniform__struct_5 Function
OpStore %24 %7
%27 = OpAccessChain %_ptr_Uniform_v4float %7 %int_0 %uint_0 %int_0
%28 = OpLoad %v4float %27
%29 = OpCopyObject %v4float %28
OpStore %2 %28
OpReturn
OpFunctionEnd
)";
// Relax logical pointers to allow pointer allocations.
SetAssembleOptions(SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS);
ValidatorOptions()->relax_logical_pointer = true;
SinglePassRunAndCheck<SSARewritePass>(before, after, true, true);
}
TEST_F(LocalSSAElimTest, VerifyInstToBlockMap) {
// #version 140
//
// in vec4 BC;
// out float fo;
//
// void main()
// {
// float f = 0.0;
// for (int i=0; i<4; i++) {
// f = f + BC[i];
// }
// fo = f;
// }
const std::string text = R"(
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BC %fo
OpExecutionMode %main OriginUpperLeft
OpSource GLSL 140
OpName %main "main"
OpName %f "f"
OpName %i "i"
OpName %BC "BC"
OpName %fo "fo"
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Function_float = OpTypePointer Function %float
%float_0 = OpConstant %float 0
%int = OpTypeInt 32 1
%_ptr_Function_int = OpTypePointer Function %int
%int_0 = OpConstant %int 0
%int_4 = OpConstant %int 4
%bool = OpTypeBool
%v4float = OpTypeVector %float 4
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BC = OpVariable %_ptr_Input_v4float Input
%_ptr_Input_float = OpTypePointer Input %float
%int_1 = OpConstant %int 1
%_ptr_Output_float = OpTypePointer Output %float
%fo = OpVariable %_ptr_Output_float Output
%main = OpFunction %void None %8
%22 = OpLabel
%f = OpVariable %_ptr_Function_float Function
%i = OpVariable %_ptr_Function_int Function
OpStore %f %float_0
OpStore %i %int_0
OpBranch %23
%23 = OpLabel
OpLoopMerge %24 %25 None
OpBranch %26
%26 = OpLabel
%27 = OpLoad %int %i
%28 = OpSLessThan %bool %27 %int_4
OpBranchConditional %28 %29 %24
%29 = OpLabel
%30 = OpLoad %float %f
%31 = OpLoad %int %i
%32 = OpAccessChain %_ptr_Input_float %BC %31
%33 = OpLoad %float %32
%34 = OpFAdd %float %30 %33
OpStore %f %34
OpBranch %25
%25 = OpLabel
%35 = OpLoad %int %i
%36 = OpIAdd %int %35 %int_1
OpStore %i %36
OpBranch %23
%24 = OpLabel
%37 = OpLoad %float %f
OpStore %fo %37
OpReturn
OpFunctionEnd
)";
std::unique_ptr<IRContext> context =
BuildModule(SPV_ENV_UNIVERSAL_1_1, nullptr, text,
SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS);
EXPECT_NE(nullptr, context);
// Force the instruction to block mapping to get built.
context->get_instr_block(27u);
auto pass = MakeUnique<SSARewritePass>();
pass->SetMessageConsumer(nullptr);
const auto status = pass->Run(context.get());
EXPECT_TRUE(status == Pass::Status::SuccessWithChange);
}
TEST_F(LocalSSAElimTest, CompositeExtractProblem) {
const std::string spv_asm = R"(
OpCapability Tessellation
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint TessellationControl %2 "main" %16 %17 %18 %20 %22 %26 %27 %30 %31
%void = OpTypeVoid
%4 = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%uint = OpTypeInt 32 0
%uint_3 = OpConstant %uint 3
%v3float = OpTypeVector %float 3
%v2float = OpTypeVector %float 2
%_struct_11 = OpTypeStruct %v4float %v4float %v4float %v3float %v3float %v2float %v2float
%_arr__struct_11_uint_3 = OpTypeArray %_struct_11 %uint_3
%_ptr_Function__arr__struct_11_uint_3 = OpTypePointer Function %_arr__struct_11_uint_3
%_arr_v4float_uint_3 = OpTypeArray %v4float %uint_3
%_ptr_Input__arr_v4float_uint_3 = OpTypePointer Input %_arr_v4float_uint_3
%16 = OpVariable %_ptr_Input__arr_v4float_uint_3 Input
%17 = OpVariable %_ptr_Input__arr_v4float_uint_3 Input
%18 = OpVariable %_ptr_Input__arr_v4float_uint_3 Input
%_ptr_Input_uint = OpTypePointer Input %uint
%20 = OpVariable %_ptr_Input_uint Input
%_ptr_Output__arr_v4float_uint_3 = OpTypePointer Output %_arr_v4float_uint_3
%22 = OpVariable %_ptr_Output__arr_v4float_uint_3 Output
%_ptr_Output_v4float = OpTypePointer Output %v4float
%_arr_v3float_uint_3 = OpTypeArray %v3float %uint_3
%_ptr_Input__arr_v3float_uint_3 = OpTypePointer Input %_arr_v3float_uint_3
%26 = OpVariable %_ptr_Input__arr_v3float_uint_3 Input
%27 = OpVariable %_ptr_Input__arr_v3float_uint_3 Input
%_arr_v2float_uint_3 = OpTypeArray %v2float %uint_3
%_ptr_Input__arr_v2float_uint_3 = OpTypePointer Input %_arr_v2float_uint_3
%30 = OpVariable %_ptr_Input__arr_v2float_uint_3 Input
%31 = OpVariable %_ptr_Input__arr_v2float_uint_3 Input
%_ptr_Function__struct_11 = OpTypePointer Function %_struct_11
%2 = OpFunction %void None %4
%33 = OpLabel
%66 = OpVariable %_ptr_Function__arr__struct_11_uint_3 Function
%34 = OpLoad %_arr_v4float_uint_3 %16
%35 = OpLoad %_arr_v4float_uint_3 %17
%36 = OpLoad %_arr_v4float_uint_3 %18
%37 = OpLoad %_arr_v3float_uint_3 %26
%38 = OpLoad %_arr_v3float_uint_3 %27
%39 = OpLoad %_arr_v2float_uint_3 %30
%40 = OpLoad %_arr_v2float_uint_3 %31
%41 = OpCompositeExtract %v4float %34 0
%42 = OpCompositeExtract %v4float %35 0
%43 = OpCompositeExtract %v4float %36 0
%44 = OpCompositeExtract %v3float %37 0
%45 = OpCompositeExtract %v3float %38 0
%46 = OpCompositeExtract %v2float %39 0
%47 = OpCompositeExtract %v2float %40 0
%48 = OpCompositeConstruct %_struct_11 %41 %42 %43 %44 %45 %46 %47
%49 = OpCompositeExtract %v4float %34 1
%50 = OpCompositeExtract %v4float %35 1
%51 = OpCompositeExtract %v4float %36 1
%52 = OpCompositeExtract %v3float %37 1
%53 = OpCompositeExtract %v3float %38 1
%54 = OpCompositeExtract %v2float %39 1
%55 = OpCompositeExtract %v2float %40 1
%56 = OpCompositeConstruct %_struct_11 %49 %50 %51 %52 %53 %54 %55
%57 = OpCompositeExtract %v4float %34 2
%58 = OpCompositeExtract %v4float %35 2
%59 = OpCompositeExtract %v4float %36 2
%60 = OpCompositeExtract %v3float %37 2
%61 = OpCompositeExtract %v3float %38 2
%62 = OpCompositeExtract %v2float %39 2
%63 = OpCompositeExtract %v2float %40 2
%64 = OpCompositeConstruct %_struct_11 %57 %58 %59 %60 %61 %62 %63
%65 = OpCompositeConstruct %_arr__struct_11_uint_3 %48 %56 %64
%67 = OpLoad %uint %20
; CHECK OpStore {{%\d+}} [[store_source:%\d+]]
OpStore %66 %65
%68 = OpAccessChain %_ptr_Function__struct_11 %66 %67
; This load was being removed, because %_ptr_Function__struct_11 was being
; wrongfully considered an SSA target.
; CHECK OpLoad %_struct_11 %68
%69 = OpLoad %_struct_11 %68
; Similarly, %69 cannot be replaced with %65.
; CHECK-NOT: OpCompositeExtract %v4float [[store_source]] 0
%70 = OpCompositeExtract %v4float %69 0
%71 = OpAccessChain %_ptr_Output_v4float %22 %67
OpStore %71 %70
OpReturn
OpFunctionEnd)";
SinglePassRunAndMatch<SSARewritePass>(spv_asm, true);
}
// Test that the RelaxedPrecision decoration on the variable to added to the
// result of the OpPhi instruction.
TEST_F(LocalSSAElimTest, DecoratedVariable) {
const std::string spv_asm = R"(
; CHECK: OpDecorate [[var:%\w+]] RelaxedPrecision
; CHECK: OpDecorate [[phi_id:%\w+]] RelaxedPrecision
; CHECK: [[phi_id]] = OpPhi
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %2 "main"
OpDecorate %v RelaxedPrecision
%void = OpTypeVoid
%func_t = OpTypeFunction %void
%bool = OpTypeBool
%true = OpConstantTrue %bool
%int = OpTypeInt 32 0
%int_p = OpTypePointer Function %int
%int_1 = OpConstant %int 1
%int_0 = OpConstant %int 0
%2 = OpFunction %void None %func_t
%33 = OpLabel
%v = OpVariable %int_p Function
OpSelectionMerge %merge None
OpBranchConditional %true %l1 %l2
%l1 = OpLabel
OpStore %v %int_1
OpBranch %merge
%l2 = OpLabel
OpStore %v %int_0
OpBranch %merge
%merge = OpLabel
%ld = OpLoad %int %v
OpReturn
OpFunctionEnd)";
SinglePassRunAndMatch<SSARewritePass>(spv_asm, true);
}
// Test that the RelaxedPrecision decoration on the variable to added to the
// result of the OpPhi instruction.
TEST_F(LocalSSAElimTest, MultipleEdges) {
const std::string spv_asm = R"(
; CHECK: OpSelectionMerge
; CHECK: [[header_bb:%\w+]] = OpLabel
; CHECK-NOT: OpLabel
; CHECK: OpSwitch {{%\w+}} {{%\w+}} 76 [[bb1:%\w+]] 17 [[bb2:%\w+]]
; CHECK-SAME: 4 [[bb2]]
; CHECK: [[bb2]] = OpLabel
; CHECK-NEXT: OpPhi [[type:%\w+]] [[val:%\w+]] [[header_bb]] %int_0 [[bb1]]
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %4 "main"
OpExecutionMode %4 OriginUpperLeft
OpSource ESSL 310
%void = OpTypeVoid
%3 = OpTypeFunction %void
%int = OpTypeInt 32 1
%_ptr_Function_int = OpTypePointer Function %int
%int_0 = OpConstant %int 0
%bool = OpTypeBool
%true = OpConstantTrue %bool
%false = OpConstantFalse %bool
%int_1 = OpConstant %int 1
%4 = OpFunction %void None %3
%5 = OpLabel
%8 = OpVariable %_ptr_Function_int Function
OpBranch %10
%10 = OpLabel
OpLoopMerge %12 %13 None
OpBranch %14
%14 = OpLabel
OpBranchConditional %true %11 %12
%11 = OpLabel
OpSelectionMerge %19 None
OpBranchConditional %false %18 %19
%18 = OpLabel
OpSelectionMerge %22 None
OpSwitch %int_0 %22 76 %20 17 %21 4 %21
%20 = OpLabel
%23 = OpLoad %int %8
OpStore %8 %int_0
OpBranch %21
%21 = OpLabel
OpBranch %22
%22 = OpLabel
OpBranch %19
%19 = OpLabel
OpBranch %13
%13 = OpLabel
OpBranch %10
%12 = OpLabel
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(spv_asm, true);
}
TEST_F(LocalSSAElimTest, VariablePointerTest1) {
// Check that the load of the first variable is still used and that the load
// of the third variable is propagated. The first load has to remain because
// of the store to the variable pointer.
const std::string text = R"(
; CHECK: [[v1:%\w+]] = OpVariable
; CHECK: [[v2:%\w+]] = OpVariable
; CHECK: [[v3:%\w+]] = OpVariable
; CHECK: [[ld1:%\w+]] = OpLoad %int [[v1]]
; CHECK: OpIAdd %int [[ld1]] %int_0
OpCapability Shader
OpCapability VariablePointers
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %2 "main"
OpExecutionMode %2 LocalSize 1 1 1
OpSource GLSL 450
OpMemberDecorate %_struct_3 0 Offset 0
OpMemberDecorate %_struct_3 1 Offset 4
%void = OpTypeVoid
%5 = OpTypeFunction %void
%int = OpTypeInt 32 1
%bool = OpTypeBool
%_struct_3 = OpTypeStruct %int %int
%_ptr_Function__struct_3 = OpTypePointer Function %_struct_3
%_ptr_Function_int = OpTypePointer Function %int
%true = OpConstantTrue %bool
%int_0 = OpConstant %int 0
%int_1 = OpConstant %int 1
%13 = OpConstantNull %_struct_3
%2 = OpFunction %void None %5
%14 = OpLabel
%15 = OpVariable %_ptr_Function_int Function
%16 = OpVariable %_ptr_Function_int Function
%17 = OpVariable %_ptr_Function_int Function
OpStore %15 %int_1
OpStore %17 %int_0
OpSelectionMerge %18 None
OpBranchConditional %true %19 %20
%19 = OpLabel
OpBranch %18
%20 = OpLabel
OpBranch %18
%18 = OpLabel
%21 = OpPhi %_ptr_Function_int %15 %19 %16 %20
OpStore %21 %int_0
%22 = OpLoad %int %15
%23 = OpLoad %int %17
%24 = OpIAdd %int %22 %23
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(text, false);
}
TEST_F(LocalSSAElimTest, VariablePointerTest2) {
// Check that the load of the first variable is still used and that the load
// of the third variable is propagated. The first load has to remain because
// of the store to the variable pointer.
const std::string text = R"(
; CHECK: [[v1:%\w+]] = OpVariable
; CHECK: [[v2:%\w+]] = OpVariable
; CHECK: [[v3:%\w+]] = OpVariable
; CHECK: [[ld1:%\w+]] = OpLoad %int [[v1]]
; CHECK: OpIAdd %int [[ld1]] %int_0
OpCapability Shader
OpCapability VariablePointers
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %2 "main"
OpExecutionMode %2 LocalSize 1 1 1
OpSource GLSL 450
OpMemberDecorate %_struct_3 0 Offset 0
OpMemberDecorate %_struct_3 1 Offset 4
%void = OpTypeVoid
%5 = OpTypeFunction %void
%int = OpTypeInt 32 1
%bool = OpTypeBool
%_struct_3 = OpTypeStruct %int %int
%_ptr_Function__struct_3 = OpTypePointer Function %_struct_3
%_ptr_Function_int = OpTypePointer Function %int
%true = OpConstantTrue %bool
%int_0 = OpConstant %int 0
%int_1 = OpConstant %int 1
%13 = OpConstantNull %_struct_3
%2 = OpFunction %void None %5
%14 = OpLabel
%15 = OpVariable %_ptr_Function_int Function
%16 = OpVariable %_ptr_Function_int Function
%17 = OpVariable %_ptr_Function_int Function
OpStore %15 %int_1
OpStore %17 %int_0
OpSelectionMerge %18 None
OpBranchConditional %true %19 %20
%19 = OpLabel
OpBranch %18
%20 = OpLabel
OpBranch %18
%18 = OpLabel
%21 = OpPhi %_ptr_Function_int %15 %19 %16 %20
OpStore %21 %int_0
%22 = OpLoad %int %15
%23 = OpLoad %int %17
%24 = OpIAdd %int %22 %23
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(text, false);
}
TEST_F(LocalSSAElimTest, ChainedTrivialPhis) {
// Check that the copy object get the undef value implicitly assigned in the
// entry block.
const std::string text = R"(
; CHECK: [[undef:%\w+]] = OpUndef %v4float
; CHECK: OpCopyObject %v4float [[undef]]
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %2 "main"
OpExecutionMode %2 LocalSize 1 18 6
OpSource ESSL 310
%void = OpTypeVoid
%4 = OpTypeFunction %void
%bool = OpTypeBool
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%_ptr_Function_v4float = OpTypePointer Function %v4float
%2 = OpFunction %void None %4
%9 = OpLabel
%10 = OpVariable %_ptr_Function_v4float Function
OpBranch %11
%11 = OpLabel
OpLoopMerge %12 %13 None
OpBranch %14
%14 = OpLabel
%15 = OpUndef %bool
OpBranchConditional %15 %16 %12
%16 = OpLabel
%17 = OpUndef %bool
OpSelectionMerge %18 None
OpBranchConditional %17 %19 %18
%19 = OpLabel
%20 = OpUndef %bool
OpLoopMerge %21 %22 None
OpBranchConditional %20 %23 %21
%23 = OpLabel
%24 = OpLoad %v4float %10
%25 = OpCopyObject %v4float %24
%26 = OpUndef %bool
OpBranch %22
%22 = OpLabel
OpBranch %19
%21 = OpLabel
OpBranch %12
%18 = OpLabel
OpBranch %13
%13 = OpLabel
OpBranch %11
%12 = OpLabel
%27 = OpLoad %v4float %10
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(text, false);
}
TEST_F(LocalSSAElimTest, Overflowtest1) {
// Check that the copy object get the undef value implicitly assigned in the
// entry block.
const std::string text = R"(
OpCapability Geometry
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %4 "P2Mai" %12 %17
OpExecutionMode %4 OriginUpperLeft
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeVector %6 4
%11 = OpTypePointer Input %7
%16 = OpTypePointer Output %7
%23 = OpTypePointer Function %7
%12 = OpVariable %11 Input
%17 = OpVariable %16 Output
%4 = OpFunction %2 None %3
%2177 = OpLabel
%4194302 = OpVariable %23 Function
%4194301 = OpLoad %7 %4194302
OpStore %17 %4194301
OpReturn
OpFunctionEnd
)";
SetAssembleOptions(SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS);
std::vector<Message> messages = {
{SPV_MSG_ERROR, "", 0, 0, "ID overflow. Try running compact-ids."}};
SetMessageConsumer(GetTestMessageConsumer(messages));
auto result = SinglePassRunToBinary<SSARewritePass>(text, true);
EXPECT_EQ(Pass::Status::Failure, std::get<1>(result));
}
TEST_F(LocalSSAElimTest, OpConstantNull) {
const std::string text = R"(
OpCapability Addresses
OpCapability Kernel
OpCapability Int64
OpMemoryModel Physical64 OpenCL
OpEntryPoint Kernel %4 "A"
OpSource OpenCL_C 200000
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeInt 32 0
%11 = OpTypePointer CrossWorkgroup %6
%16 = OpConstantNull %11
%20 = OpConstant %6 269484031
%4 = OpFunction %2 None %3
%17 = OpLabel
%18 = OpLoad %6 %16 Aligned 536870912
%19 = OpBitwiseXor %6 %18 %20
OpStore %16 %19 Aligned 536870912
OpReturn
OpFunctionEnd
)";
SinglePassRunToBinary<SSARewritePass>(text, false);
}
TEST_F(LocalSSAElimTest, DebugForLoop) {
// #version 140
//
// in vec4 BC;
// out float fo;
//
// void main()
// {
// float f = 0.0;
// for (int i=0; i<4; i++) {
// f = f + BC[i];
// }
// fo = f;
// }
const std::string text = R"(
; CHECK: [[f_name:%\w+]] = OpString "f"
; CHECK: [[i_name:%\w+]] = OpString "i"
; CHECK: [[dbg_f:%\w+]] = OpExtInst %void [[ext:%\d+]] DebugLocalVariable [[f_name]]
; CHECK: [[dbg_i:%\w+]] = OpExtInst %void [[ext]] DebugLocalVariable [[i_name]]
; CHECK: OpStore %f %float_0
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_f]] %float_0
; CHECK-NEXT: OpStore %i %int_0
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_i]] %int_0
; CHECK-NOT: DebugDeclare
; CHECK: [[loop_head:%\w+]] = OpLabel
; CHECK: [[phi0:%\w+]] = OpPhi %float %float_0
; CHECK: [[phi1:%\w+]] = OpPhi %int %int_0
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_f]] [[phi0]]
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_i]] [[phi1]]
; CHECK: OpLoopMerge [[loop_merge:%\w+]] [[loop_cont:%\w+]] None
; CHECK-NEXT: OpBranch [[loop_body:%\w+]]
; CHECK-NEXT: [[loop_body]] = OpLabel
; CHECK: OpBranchConditional {{%\w+}} [[bb:%\w+]] [[loop_merge]]
; CHECK: [[bb]] = OpLabel
; CHECK: OpStore %f [[f_val:%\w+]]
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_f]] [[f_val]]
; CHECK-NEXT: OpBranch [[loop_cont]]
; CHECK: [[loop_cont]] = OpLabel
; CHECK: OpStore %i [[i_val:%\w+]]
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_i]] [[i_val]]
; CHECK-NEXT: OpBranch [[loop_head]]
; CHECK: [[loop_merge]] = OpLabel
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
%ext = OpExtInstImport "OpenCL.DebugInfo.100"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BC %fo
OpExecutionMode %main OriginUpperLeft
%file_name = OpString "test"
OpSource GLSL 140
%float_name = OpString "float"
%main_name = OpString "main"
%f_name = OpString "f"
%i_name = OpString "i"
OpName %main "main"
OpName %f "f"
OpName %i "i"
OpName %BC "BC"
OpName %fo "fo"
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Function_float = OpTypePointer Function %float
%float_0 = OpConstant %float 0
%int = OpTypeInt 32 1
%uint = OpTypeInt 32 0
%uint_32 = OpConstant %uint 32
%_ptr_Function_int = OpTypePointer Function %int
%int_0 = OpConstant %int 0
%int_4 = OpConstant %int 4
%bool = OpTypeBool
%v4float = OpTypeVector %float 4
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BC = OpVariable %_ptr_Input_v4float Input
%_ptr_Input_float = OpTypePointer Input %float
%int_1 = OpConstant %int 1
%_ptr_Output_float = OpTypePointer Output %float
%fo = OpVariable %_ptr_Output_float Output
%null_expr = OpExtInst %void %ext DebugExpression
%src = OpExtInst %void %ext DebugSource %file_name
%cu = OpExtInst %void %ext DebugCompilationUnit 1 4 %src HLSL
%dbg_tf = OpExtInst %void %ext DebugTypeBasic %float_name %uint_32 Float
%dbg_v4f = OpExtInst %void %ext DebugTypeVector %dbg_tf 4
%main_ty = OpExtInst %void %ext DebugTypeFunction FlagIsProtected|FlagIsPrivate %dbg_v4f %dbg_v4f
%dbg_main = OpExtInst %void %ext DebugFunction %main_name %main_ty %src 0 0 %cu %main_name FlagIsProtected|FlagIsPrivate 10 %main
%dbg_f = OpExtInst %void %ext DebugLocalVariable %f_name %dbg_v4f %src 0 0 %dbg_main FlagIsLocal
%dbg_i = OpExtInst %void %ext DebugLocalVariable %i_name %dbg_v4f %src 0 0 %dbg_main FlagIsLocal
%main = OpFunction %void None %8
%22 = OpLabel
%s0 = OpExtInst %void %ext DebugScope %dbg_main
%f = OpVariable %_ptr_Function_float Function
%i = OpVariable %_ptr_Function_int Function
OpStore %f %float_0
OpStore %i %int_0
%decl0 = OpExtInst %void %ext DebugDeclare %dbg_f %f %null_expr
%decl1 = OpExtInst %void %ext DebugDeclare %dbg_i %i %null_expr
OpBranch %23
%23 = OpLabel
%s1 = OpExtInst %void %ext DebugScope %dbg_main
OpLoopMerge %24 %25 None
OpBranch %26
%26 = OpLabel
%s2 = OpExtInst %void %ext DebugScope %dbg_main
%27 = OpLoad %int %i
%28 = OpSLessThan %bool %27 %int_4
OpBranchConditional %28 %29 %24
%29 = OpLabel
%s3 = OpExtInst %void %ext DebugScope %dbg_main
%30 = OpLoad %float %f
%31 = OpLoad %int %i
%32 = OpAccessChain %_ptr_Input_float %BC %31
%33 = OpLoad %float %32
%34 = OpFAdd %float %30 %33
OpStore %f %34
OpBranch %25
%25 = OpLabel
%s4 = OpExtInst %void %ext DebugScope %dbg_main
%35 = OpLoad %int %i
%36 = OpIAdd %int %35 %int_1
OpStore %i %36
OpBranch %23
%24 = OpLabel
%s5 = OpExtInst %void %ext DebugScope %dbg_main
%37 = OpLoad %float %f
OpStore %fo %37
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(text, true);
}
TEST_F(LocalSSAElimTest, ShaderDebugForLoop) {
const std::string text = R"(
; CHECK: [[f_name:%\w+]] = OpString "f"
; CHECK: [[i_name:%\w+]] = OpString "i"
; CHECK: [[dbg_f:%\w+]] = OpExtInst %void [[ext:%\d+]] DebugLocalVariable [[f_name]]
; CHECK: [[dbg_i:%\w+]] = OpExtInst %void [[ext]] DebugLocalVariable [[i_name]]
; CHECK: OpStore %f %float_0
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_f]] %float_0
; CHECK-NEXT: OpStore %i %int_0
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_i]] %int_0
; CHECK-NOT: DebugDeclare
; CHECK: [[loop_head:%\w+]] = OpLabel
; CHECK: [[phi0:%\w+]] = OpPhi %float %float_0
; CHECK: [[phi1:%\w+]] = OpPhi %int %int_0
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_f]] [[phi0]]
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_i]] [[phi1]]
; CHECK: OpLoopMerge [[loop_merge:%\w+]] [[loop_cont:%\w+]] None
; CHECK-NEXT: OpBranch [[loop_body:%\w+]]
; CHECK-NEXT: [[loop_body]] = OpLabel
; CHECK: OpBranchConditional {{%\w+}} [[bb:%\w+]] [[loop_merge]]
; CHECK: [[bb]] = OpLabel
; CHECK: OpStore %f [[f_val:%\w+]]
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_f]] [[f_val]]
; CHECK-NEXT: OpBranch [[loop_cont]]
; CHECK: [[loop_cont]] = OpLabel
; CHECK: OpStore %i [[i_val:%\w+]]
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_i]] [[i_val]]
; CHECK-NEXT: OpBranch [[loop_head]]
; CHECK: [[loop_merge]] = OpLabel
OpCapability Shader
OpExtension "SPV_KHR_non_semantic_info"
%1 = OpExtInstImport "GLSL.std.450"
%ext = OpExtInstImport "NonSemantic.Shader.DebugInfo.100"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BC %fo
OpExecutionMode %main OriginUpperLeft
%file_name = OpString "test"
OpSource GLSL 140
%float_name = OpString "float"
%main_name = OpString "main"
%f_name = OpString "f"
%i_name = OpString "i"
OpName %main "main"
OpName %f "f"
OpName %i "i"
OpName %BC "BC"
OpName %fo "fo"
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Function_float = OpTypePointer Function %float
%float_0 = OpConstant %float 0
%int = OpTypeInt 32 1
%uint = OpTypeInt 32 0
%uint_0 = OpConstant %uint 0
%uint_1 = OpConstant %uint 1
%uint_3 = OpConstant %uint 3
%uint_4 = OpConstant %uint 4
%uint_5 = OpConstant %uint 5
%uint_10 = OpConstant %uint 10
%uint_32 = OpConstant %uint 32
%_ptr_Function_int = OpTypePointer Function %int
%int_0 = OpConstant %int 0
%int_4 = OpConstant %int 4
%bool = OpTypeBool
%v4float = OpTypeVector %float 4
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BC = OpVariable %_ptr_Input_v4float Input
%_ptr_Input_float = OpTypePointer Input %float
%int_1 = OpConstant %int 1
%_ptr_Output_float = OpTypePointer Output %float
%fo = OpVariable %_ptr_Output_float Output
%null_expr = OpExtInst %void %ext DebugExpression
%src = OpExtInst %void %ext DebugSource %file_name
%cu = OpExtInst %void %ext DebugCompilationUnit %uint_1 %uint_4 %src %uint_5
%dbg_tf = OpExtInst %void %ext DebugTypeBasic %float_name %uint_32 %uint_3 %uint_0
%dbg_v4f = OpExtInst %void %ext DebugTypeVector %dbg_tf %uint_4
%main_ty = OpExtInst %void %ext DebugTypeFunction %uint_3 %dbg_v4f %dbg_v4f
%dbg_main = OpExtInst %void %ext DebugFunction %main_name %main_ty %src %uint_0 %uint_0 %cu %main_name %uint_3 %uint_10
%dbg_f = OpExtInst %void %ext DebugLocalVariable %f_name %dbg_v4f %src %uint_0 %uint_0 %dbg_main %uint_4
%dbg_i = OpExtInst %void %ext DebugLocalVariable %i_name %dbg_v4f %src %uint_0 %uint_0 %dbg_main %uint_4
%main = OpFunction %void None %8
%22 = OpLabel
%s0 = OpExtInst %void %ext DebugScope %dbg_main
%f = OpVariable %_ptr_Function_float Function
%i = OpVariable %_ptr_Function_int Function
OpStore %f %float_0
OpStore %i %int_0
%decl0 = OpExtInst %void %ext DebugDeclare %dbg_f %f %null_expr
%decl1 = OpExtInst %void %ext DebugDeclare %dbg_i %i %null_expr
OpBranch %23
%23 = OpLabel
%s1 = OpExtInst %void %ext DebugScope %dbg_main
OpLoopMerge %24 %25 None
OpBranch %26
%26 = OpLabel
%s2 = OpExtInst %void %ext DebugScope %dbg_main
%27 = OpLoad %int %i
%28 = OpSLessThan %bool %27 %int_4
OpBranchConditional %28 %29 %24
%29 = OpLabel
%s3 = OpExtInst %void %ext DebugScope %dbg_main
%30 = OpLoad %float %f
%31 = OpLoad %int %i
%32 = OpAccessChain %_ptr_Input_float %BC %31
%33 = OpLoad %float %32
%34 = OpFAdd %float %30 %33
OpStore %f %34
OpBranch %25
%25 = OpLabel
%s4 = OpExtInst %void %ext DebugScope %dbg_main
%35 = OpLoad %int %i
%36 = OpIAdd %int %35 %int_1
OpStore %i %36
OpBranch %23
%24 = OpLabel
%s5 = OpExtInst %void %ext DebugScope %dbg_main
%37 = OpLoad %float %f
OpStore %fo %37
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(text, true);
}
TEST_F(LocalSSAElimTest, AddDebugValueForFunctionParameterWithPhi) {
// Test the distribution of DebugValue for a parameter of an inlined function
// and the visibility of Phi instruction. The ssa-rewrite pass must add
// DebugValue for the value assignment of function argument even when it is an
// inlined function. It has to check the visibility Phi through all its value
// operands. See the DebugValue for "int i" of "foo()" in the following code.
//
// struct VS_OUTPUT {
// float4 pos : SV_POSITION;
// float4 color : COLOR;
// };
//
// float4 foo(int i, float4 pos) {
// while (i < pos.x) {
// pos = pos.x + i;
// ++i;
// }
// return pos;
// }
//
// VS_OUTPUT main(float4 pos : POSITION,
// float4 color : COLOR) {
// VS_OUTPUT vout;
// vout.pos = foo(4, pos);
// vout.color = color;
// return vout;
// }
const std::string text = R"(
OpCapability Shader
%1 = OpExtInstImport "OpenCL.DebugInfo.100"
OpMemoryModel Logical GLSL450
OpEntryPoint Vertex %main "main" %in_var_POSITION %in_var_COLOR %gl_Position %out_var_COLOR
%7 = OpString "vertex.hlsl"
%8 = OpString "float"
%9 = OpString "VS_OUTPUT"
%10 = OpString "color"
%11 = OpString "pos"
%12 = OpString "int"
%13 = OpString "foo"
%14 = OpString ""
%15 = OpString "i"
%16 = OpString "main"
%17 = OpString "vout"
OpName %in_var_POSITION "in.var.POSITION"
OpName %in_var_COLOR "in.var.COLOR"
OpName %out_var_COLOR "out.var.COLOR"
OpName %main "main"
OpName %param_var_pos "param.var.pos"
OpName %param_var_color "param.var.color"
OpName %VS_OUTPUT "VS_OUTPUT"
OpMemberName %VS_OUTPUT 0 "pos"
OpMemberName %VS_OUTPUT 1 "color"
OpDecorate %gl_Position BuiltIn Position
OpDecorate %in_var_POSITION Location 0
OpDecorate %in_var_COLOR Location 1
OpDecorate %out_var_COLOR Location 0
%int = OpTypeInt 32 1
%int_4 = OpConstant %int 4
%int_0 = OpConstant %int 0
%int_1 = OpConstant %int 1
%uint = OpTypeInt 32 0
%uint_32 = OpConstant %uint 32
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%_ptr_Input_v4float = OpTypePointer Input %v4float
%_ptr_Output_v4float = OpTypePointer Output %v4float
%void = OpTypeVoid
%uint_256 = OpConstant %uint 256
%uint_128 = OpConstant %uint 128
%uint_0 = OpConstant %uint 0
%50 = OpTypeFunction %void
%_ptr_Function_v4float = OpTypePointer Function %v4float
%VS_OUTPUT = OpTypeStruct %v4float %v4float
%_ptr_Function_int = OpTypePointer Function %int
%_ptr_Function_float = OpTypePointer Function %float
%bool = OpTypeBool
%in_var_POSITION = OpVariable %_ptr_Input_v4float Input
%in_var_COLOR = OpVariable %_ptr_Input_v4float Input
%gl_Position = OpVariable %_ptr_Output_v4float Output
%out_var_COLOR = OpVariable %_ptr_Output_v4float Output
%156 = OpExtInst %void %1 DebugInfoNone
%77 = OpExtInst %void %1 DebugExpression
%58 = OpExtInst %void %1 DebugTypeBasic %8 %uint_32 Float
%59 = OpExtInst %void %1 DebugTypeVector %58 4
%60 = OpExtInst %void %1 DebugSource %7
%61 = OpExtInst %void %1 DebugCompilationUnit 1 4 %60 HLSL
%62 = OpExtInst %void %1 DebugTypeComposite %9 Structure %60 1 8 %61 %9 %uint_256 FlagIsProtected|FlagIsPrivate %63 %64
%64 = OpExtInst %void %1 DebugTypeMember %10 %59 %60 3 10 %62 %uint_128 %uint_128 FlagIsProtected|FlagIsPrivate
%63 = OpExtInst %void %1 DebugTypeMember %11 %59 %60 2 10 %62 %uint_0 %uint_128 FlagIsProtected|FlagIsPrivate
%65 = OpExtInst %void %1 DebugTypeBasic %12 %uint_32 Signed
%66 = OpExtInst %void %1 DebugTypeFunction FlagIsProtected|FlagIsPrivate %59 %65 %59
%67 = OpExtInst %void %1 DebugFunction %13 %66 %60 6 1 %61 %14 FlagIsProtected|FlagIsPrivate 6 %156
%68 = OpExtInst %void %1 DebugLexicalBlock %60 6 31 %67
%69 = OpExtInst %void %1 DebugLexicalBlock %60 7 21 %68
%70 = OpExtInst %void %1 DebugLocalVariable %11 %59 %60 6 26 %67 FlagIsLocal 2
; CHECK: [[color_name:%\w+]] = OpString "color"
; CHECK: [[pos_name:%\w+]] = OpString "pos"
; CHECK: [[i_name:%\w+]] = OpString "i"
; CHECK: [[null_expr:%\w+]] = OpExtInst %void [[ext:%\w+]] DebugExpression
; CHECK: [[dbg_i:%\w+]] = OpExtInst %void [[ext]] DebugLocalVariable [[i_name]] {{%\w+}} {{%\w+}} 6 16 {{%\w+}} FlagIsLocal 1
; CHECK: [[dbg_color:%\w+]] = OpExtInst %void [[ext]] DebugLocalVariable [[color_name]] {{%\w+}} {{%\w+}} 15 23
; CHECK: [[dbg_pos:%\w+]] = OpExtInst %void [[ext]] DebugLocalVariable [[pos_name]] {{%\w+}} {{%\w+}} 14 23
%71 = OpExtInst %void %1 DebugLocalVariable %15 %65 %60 6 16 %67 FlagIsLocal 1
%72 = OpExtInst %void %1 DebugTypeFunction FlagIsProtected|FlagIsPrivate %62 %59 %59
%73 = OpExtInst %void %1 DebugFunction %16 %72 %60 14 1 %61 %14 FlagIsProtected|FlagIsPrivate 15 %156
%74 = OpExtInst %void %1 DebugLexicalBlock %60 15 38 %73
%75 = OpExtInst %void %1 DebugLocalVariable %17 %62 %60 16 13 %74 FlagIsLocal
%76 = OpExtInst %void %1 DebugLocalVariable %10 %59 %60 15 23 %73 FlagIsLocal 2
%78 = OpExtInst %void %1 DebugLocalVariable %11 %59 %60 14 23 %73 FlagIsLocal 1
%155 = OpExtInst %void %1 DebugInlinedAt 17 %74
%main = OpFunction %void None %50
%79 = OpLabel
%168 = OpExtInst %void %1 DebugScope %74
; CHECK: [[i:%\w+]] = OpVariable %_ptr_Function_int Function
%120 = OpVariable %_ptr_Function_int Function
%121 = OpVariable %_ptr_Function_v4float Function
%169 = OpExtInst %void %1 DebugNoScope
%param_var_pos = OpVariable %_ptr_Function_v4float Function
%param_var_color = OpVariable %_ptr_Function_v4float Function
OpLine %7 100 105
%80 = OpLoad %v4float %in_var_POSITION
OpStore %param_var_pos %80
OpNoLine
OpLine %7 200 205
%81 = OpLoad %v4float %in_var_COLOR
OpStore %param_var_color %81
OpNoLine
%170 = OpExtInst %void %1 DebugScope %73
; CHECK: OpLine {{%\w+}} 100 105
; CHECK: DebugValue [[dbg_pos]]
%124 = OpExtInst %void %1 DebugDeclare %78 %param_var_pos %77
; CHECK: OpLine {{%\w+}} 200 205
; CHECK: DebugValue [[dbg_color]]
%125 = OpExtInst %void %1 DebugDeclare %76 %param_var_color %77
%171 = OpExtInst %void %1 DebugScope %74
OpLine %7 17 18
; CHECK: OpStore {{%\w+}} %int_4
; CHECK: DebugValue [[dbg_i]] %int_4 [[null_expr]]
OpStore %120 %int_4
OpStore %121 %80
%172 = OpExtInst %void %1 DebugScope %67 %155
%135 = OpExtInst %void %1 DebugDeclare %71 %120 %77
%136 = OpExtInst %void %1 DebugDeclare %70 %121 %77
%173 = OpExtInst %void %1 DebugScope %68 %155
OpLine %7 7 3
OpBranch %137
%174 = OpExtInst %void %1 DebugNoScope
%137 = OpLabel
; CHECK: [[phi:%\w+]] = OpPhi %int %int_4
; CHECK: DebugValue [[dbg_i]] [[phi]] [[null_expr]]
%175 = OpExtInst %void %1 DebugScope %68 %155
OpLine %7 7 10
%138 = OpLoad %int %120
%139 = OpConvertSToF %float %138
OpLine %7 7 14
%140 = OpAccessChain %_ptr_Function_float %121 %int_0
%141 = OpLoad %float %140
OpLine %7 7 12
%142 = OpFOrdLessThan %bool %139 %141
OpLine %7 7 3
%176 = OpExtInst %void %1 DebugNoScope
OpLoopMerge %153 %152 None
OpBranchConditional %142 %143 %153
%177 = OpExtInst %void %1 DebugNoScope
%143 = OpLabel
%178 = OpExtInst %void %1 DebugScope %69 %155
OpLine %7 8 11
%144 = OpAccessChain %_ptr_Function_float %121 %int_0
%145 = OpLoad %float %144
OpLine %7 8 19
%146 = OpLoad %int %120
%147 = OpConvertSToF %float %146
OpLine %7 8 17
%148 = OpFAdd %float %145 %147
OpLine %7 8 11
%149 = OpCompositeConstruct %v4float %148 %148 %148 %148
OpLine %7 8 5
OpStore %121 %149
OpLine %7 9 5
%151 = OpIAdd %int %146 %int_1
OpLine %7 9 7
; CHECK: OpStore [[i]] [[value:%\w+]]
; CHECK: DebugValue [[dbg_i]] [[value]] [[null_expr]]
OpStore %120 %151
%179 = OpExtInst %void %1 DebugScope %68 %155
OpLine %7 10 3
OpBranch %152
%180 = OpExtInst %void %1 DebugNoScope
%152 = OpLabel
%181 = OpExtInst %void %1 DebugScope %68 %155
OpBranch %137
%182 = OpExtInst %void %1 DebugNoScope
%153 = OpLabel
%183 = OpExtInst %void %1 DebugScope %68 %155
OpLine %7 11 10
%154 = OpLoad %v4float %121
%184 = OpExtInst %void %1 DebugScope %74
%167 = OpExtInst %void %1 DebugValue %75 %154 %77 %int_0
%166 = OpExtInst %void %1 DebugValue %75 %81 %77 %int_1
OpLine %7 19 10
%165 = OpCompositeConstruct %VS_OUTPUT %154 %81
%185 = OpExtInst %void %1 DebugNoScope
%83 = OpCompositeExtract %v4float %165 0
OpStore %gl_Position %83
%84 = OpCompositeExtract %v4float %165 1
OpStore %out_var_COLOR %84
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(text, true);
}
TEST_F(LocalSSAElimTest, DebugValueWithIndexesInForLoop) {
// #version 140
//
// in vec4 BC;
// out float fo;
//
// struct T {
// float a;
// float f;
// };
//
// struct value {
// int x;
// int y;
// T z;
// };
//
// void main()
// {
// value v;
// v.z.f = 0.0;
// for (int i=0; i<4; i++) {
// v.z.f = v.z.f + BC[i];
// }
// fo = v.z.f;
// }
const std::string text = R"(
; CHECK: [[f_name:%\w+]] = OpString "f"
; CHECK: [[dbg_f:%\w+]] = OpExtInst %void [[ext:%\d+]] DebugLocalVariable [[f_name]]
; CHECK: OpStore %f %float_0
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_f]] %float_0 [[null_expr:%\d+]] %int_2 %int_1
; CHECK-NOT: DebugDeclare
; CHECK: [[loop_head:%\w+]] = OpLabel
; CHECK: [[phi0:%\w+]] = OpPhi %float %float_0
; CHECK: OpExtInst %void [[ext]] DebugValue [[dbg_f]] [[phi0]] [[null_expr]] %int_2 %int_1
; CHECK: OpLoopMerge [[loop_merge:%\w+]] [[loop_cont:%\w+]] None
; CHECK-NEXT: OpBranch [[loop_body:%\w+]]
; CHECK-NEXT: [[loop_body]] = OpLabel
; CHECK: OpBranchConditional {{%\w+}} [[bb:%\w+]] [[loop_merge]]
; CHECK: [[bb]] = OpLabel
; CHECK: OpStore %f [[f_val:%\w+]]
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_f]] [[f_val]] [[null_expr]] %int_2 %int_1
; CHECK-NEXT: OpBranch [[loop_cont]]
; CHECK: [[loop_cont]] = OpLabel
; CHECK: OpBranch [[loop_head]]
; CHECK: [[loop_merge]] = OpLabel
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
%ext = OpExtInstImport "OpenCL.DebugInfo.100"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BC %fo
OpExecutionMode %main OriginUpperLeft
%file_name = OpString "test"
OpSource GLSL 140
%float_name = OpString "float"
%main_name = OpString "main"
%f_name = OpString "f"
%i_name = OpString "i"
OpName %main "main"
OpName %f "f"
OpName %i "i"
OpName %BC "BC"
OpName %fo "fo"
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Function_float = OpTypePointer Function %float
%float_0 = OpConstant %float 0
%int = OpTypeInt 32 1
%uint = OpTypeInt 32 0
%uint_32 = OpConstant %uint 32
%_ptr_Function_int = OpTypePointer Function %int
%int_0 = OpConstant %int 0
%int_4 = OpConstant %int 4
%bool = OpTypeBool
%v4float = OpTypeVector %float 4
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BC = OpVariable %_ptr_Input_v4float Input
%_ptr_Input_float = OpTypePointer Input %float
%int_1 = OpConstant %int 1
%int_2 = OpConstant %int 2
%_ptr_Output_float = OpTypePointer Output %float
%fo = OpVariable %_ptr_Output_float Output
%deref = OpExtInst %void %ext DebugOperation Deref
%null_expr = OpExtInst %void %ext DebugExpression
%deref_expr = OpExtInst %void %ext DebugExpression %deref
%src = OpExtInst %void %ext DebugSource %file_name
%cu = OpExtInst %void %ext DebugCompilationUnit 1 4 %src HLSL
%dbg_tf = OpExtInst %void %ext DebugTypeBasic %float_name %uint_32 Float
%dbg_v4f = OpExtInst %void %ext DebugTypeVector %dbg_tf 4
%main_ty = OpExtInst %void %ext DebugTypeFunction FlagIsProtected|FlagIsPrivate %dbg_v4f %dbg_v4f
%dbg_main = OpExtInst %void %ext DebugFunction %main_name %main_ty %src 0 0 %cu %main_name FlagIsProtected|FlagIsPrivate 10 %main
%dbg_f = OpExtInst %void %ext DebugLocalVariable %f_name %dbg_v4f %src 0 0 %dbg_main FlagIsLocal
%dbg_i = OpExtInst %void %ext DebugLocalVariable %i_name %dbg_v4f %src 0 0 %dbg_main FlagIsLocal
%main = OpFunction %void None %8
%22 = OpLabel
%s0 = OpExtInst %void %ext DebugScope %dbg_main
%f = OpVariable %_ptr_Function_float Function
%i = OpVariable %_ptr_Function_int Function
OpStore %f %float_0
OpStore %i %int_0
%decl0 = OpExtInst %void %ext DebugValue %dbg_f %f %deref_expr %int_2 %int_1
%decl1 = OpExtInst %void %ext DebugDeclare %dbg_i %i %null_expr
OpBranch %23
%23 = OpLabel
%s1 = OpExtInst %void %ext DebugScope %dbg_main
OpLoopMerge %24 %25 None
OpBranch %26
%26 = OpLabel
%s2 = OpExtInst %void %ext DebugScope %dbg_main
%27 = OpLoad %int %i
%28 = OpSLessThan %bool %27 %int_4
OpBranchConditional %28 %29 %24
%29 = OpLabel
%s3 = OpExtInst %void %ext DebugScope %dbg_main
%30 = OpLoad %float %f
%31 = OpLoad %int %i
%32 = OpAccessChain %_ptr_Input_float %BC %31
%33 = OpLoad %float %32
%34 = OpFAdd %float %30 %33
OpStore %f %34
OpBranch %25
%25 = OpLabel
%s4 = OpExtInst %void %ext DebugScope %dbg_main
%35 = OpLoad %int %i
%36 = OpIAdd %int %35 %int_1
OpStore %i %36
OpBranch %23
%24 = OpLabel
%s5 = OpExtInst %void %ext DebugScope %dbg_main
%37 = OpLoad %float %f
OpStore %fo %37
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(text, true);
}
TEST_F(LocalSSAElimTest, PartiallyKillDebugDeclare) {
// For a reference variable e.g., int i in the following example,
// we do not propagate DebugValue for a store or phi instruction
// out of the variable's scope. In that case, we should not remove
// DebugDeclare for the variable that we did not add its DebugValue.
//
// #version 140
//
// in vec4 BC;
// out float fo;
//
// int j;
// void main()
// {
// float f = 0.0;
// for (j=0; j<4; j++) {
// int& i = j;
// f = f + BC[i];
// }
// fo = f;
// }
const std::string text = R"(
; CHECK: [[f_name:%\w+]] = OpString "f"
; CHECK: [[i_name:%\w+]] = OpString "i"
; CHECK: [[fn:%\w+]] = OpExtInst %void [[ext:%\d+]] DebugFunction
; CHECK: [[bb:%\w+]] = OpExtInst %void [[ext]] DebugLexicalBlock
; CHECK: [[dbg_f:%\w+]] = OpExtInst %void [[ext]] DebugLocalVariable [[f_name]] {{%\w+}} {{%\w+}} 0 0 [[fn]]
; CHECK: [[dbg_i:%\w+]] = OpExtInst %void [[ext]] DebugLocalVariable [[i_name]] {{%\w+}} {{%\w+}} 0 0 [[bb]]
; CHECK: OpStore %f %float_0
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_f]] %float_0
; CHECK-NOT: DebugDeclare [[dbg_f]]
; CHECK: OpExtInst %void [[ext]] DebugDeclare [[dbg_i]] %j
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
%ext = OpExtInstImport "OpenCL.DebugInfo.100"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BC %fo
OpExecutionMode %main OriginUpperLeft
%file_name = OpString "test"
OpSource GLSL 140
%float_name = OpString "float"
%main_name = OpString "main"
%f_name = OpString "f"
%i_name = OpString "i"
%j_name = OpString "j"
OpName %main "main"
OpName %f "f"
OpName %j "j"
OpName %BC "BC"
OpName %fo "fo"
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Function_float = OpTypePointer Function %float
%float_0 = OpConstant %float 0
%int = OpTypeInt 32 1
%uint = OpTypeInt 32 0
%uint_32 = OpConstant %uint 32
%_ptr_Function_int = OpTypePointer Function %int
%_ptr_Private_int = OpTypePointer Private %int
%int_0 = OpConstant %int 0
%int_4 = OpConstant %int 4
%bool = OpTypeBool
%v4float = OpTypeVector %float 4
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BC = OpVariable %_ptr_Input_v4float Input
%_ptr_Input_float = OpTypePointer Input %float
%int_1 = OpConstant %int 1
%_ptr_Output_float = OpTypePointer Output %float
%fo = OpVariable %_ptr_Output_float Output
%j = OpVariable %_ptr_Private_int Private
%null_expr = OpExtInst %void %ext DebugExpression
%src = OpExtInst %void %ext DebugSource %file_name
%cu = OpExtInst %void %ext DebugCompilationUnit 1 4 %src HLSL
%dbg_tf = OpExtInst %void %ext DebugTypeBasic %float_name %uint_32 Float
%dbg_v4f = OpExtInst %void %ext DebugTypeVector %dbg_tf 4
%main_ty = OpExtInst %void %ext DebugTypeFunction FlagIsProtected|FlagIsPrivate %dbg_v4f %dbg_v4f
%dbg_main = OpExtInst %void %ext DebugFunction %main_name %main_ty %src 0 0 %cu %main_name FlagIsProtected|FlagIsPrivate 10 %main
%bb = OpExtInst %void %ext DebugLexicalBlock %src 0 0 %dbg_main
%dbg_f = OpExtInst %void %ext DebugLocalVariable %f_name %dbg_v4f %src 0 0 %dbg_main FlagIsLocal
%dbg_i = OpExtInst %void %ext DebugLocalVariable %i_name %dbg_v4f %src 0 0 %bb FlagIsLocal
%dbg_j = OpExtInst %void %ext DebugGlobalVariable %j_name %dbg_v4f %src 0 0 %dbg_main %j_name %j FlagIsPrivate
%main = OpFunction %void None %8
%22 = OpLabel
%s0 = OpExtInst %void %ext DebugScope %dbg_main
%f = OpVariable %_ptr_Function_float Function
OpStore %f %float_0
OpStore %j %int_0
%decl0 = OpExtInst %void %ext DebugDeclare %dbg_f %f %null_expr
OpBranch %23
%23 = OpLabel
%s1 = OpExtInst %void %ext DebugScope %dbg_main
OpLoopMerge %24 %25 None
OpBranch %26
%26 = OpLabel
%s2 = OpExtInst %void %ext DebugScope %dbg_main
%27 = OpLoad %int %j
%28 = OpSLessThan %bool %27 %int_4
OpBranchConditional %28 %29 %24
%29 = OpLabel
%s3 = OpExtInst %void %ext DebugScope %bb
%decl1 = OpExtInst %void %ext DebugDeclare %dbg_i %j %null_expr
%30 = OpLoad %float %f
%31 = OpLoad %int %j
%32 = OpAccessChain %_ptr_Input_float %BC %31
%33 = OpLoad %float %32
%34 = OpFAdd %float %30 %33
OpStore %f %34
OpBranch %25
%25 = OpLabel
%s4 = OpExtInst %void %ext DebugScope %dbg_main
%35 = OpLoad %int %j
%36 = OpIAdd %int %35 %int_1
OpStore %j %36
OpBranch %23
%24 = OpLabel
%s5 = OpExtInst %void %ext DebugScope %dbg_main
%37 = OpLoad %float %f
OpStore %fo %37
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(text, true);
}
TEST_F(LocalSSAElimTest, DebugValueForReferenceVariable) {
// #version 140
//
// in vec4 BC;
// out float fo;
//
// void main()
// {
// float f = 0.0;
// float& x = f;
// for (int i=0; i<4; i++) {
// x = x + BC[i];
// }
// fo = f;
// }
const std::string text = R"(
; CHECK: [[f_name:%\w+]] = OpString "f"
; CHECK: [[i_name:%\w+]] = OpString "i"
; CHECK: [[x_name:%\w+]] = OpString "x"
; CHECK: [[dbg_f:%\w+]] = OpExtInst %void [[ext:%\d+]] DebugLocalVariable [[f_name]]
; CHECK: [[dbg_i:%\w+]] = OpExtInst %void [[ext]] DebugLocalVariable [[i_name]]
; CHECK: [[dbg_x:%\w+]] = OpExtInst %void [[ext]] DebugLocalVariable [[x_name]]
; CHECK: OpStore %f %float_0
; CHECK-DAG: OpExtInst %void [[ext]] DebugValue [[dbg_f]] %float_0
; CHECK-DAG: OpExtInst %void [[ext]] DebugValue [[dbg_x]] %float_0
; CHECK: OpStore %i %int_0
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_i]] %int_0
; CHECK-NOT: DebugDeclare
; CHECK: [[loop_head:%\w+]] = OpLabel
; CHECK: [[phi0:%\w+]] = OpPhi %float %float_0
; CHECK: [[phi1:%\w+]] = OpPhi %int %int_0
; CHECK-DAG: OpExtInst %void [[ext]] DebugValue [[dbg_f]] [[phi0]]
; CHECK-DAG: OpExtInst %void [[ext]] DebugValue [[dbg_x]] [[phi0]]
; CHECK: OpExtInst %void [[ext]] DebugValue [[dbg_i]] [[phi1]]
; CHECK: OpLoopMerge [[loop_merge:%\w+]] [[loop_cont:%\w+]] None
; CHECK-NEXT: OpBranch [[loop_body:%\w+]]
; CHECK: [[loop_body]] = OpLabel
; CHECK: OpBranchConditional {{%\w+}} [[bb:%\w+]] [[loop_merge]]
; CHECK: [[bb]] = OpLabel
; CHECK: OpStore %f [[f_val:%\w+]]
; CHECK-DAG: OpExtInst %void [[ext]] DebugValue [[dbg_f]] [[f_val]]
; CHECK-DAG: OpExtInst %void [[ext]] DebugValue [[dbg_x]] [[f_val]]
; CHECK: OpBranch [[loop_cont]]
; CHECK: [[loop_cont]] = OpLabel
; CHECK: OpStore %i [[i_val:%\w+]]
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_i]] [[i_val]]
; CHECK-NEXT: OpBranch [[loop_head]]
; CHECK: [[loop_merge]] = OpLabel
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
%ext = OpExtInstImport "OpenCL.DebugInfo.100"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BC %fo
OpExecutionMode %main OriginUpperLeft
%file_name = OpString "test"
OpSource GLSL 140
%float_name = OpString "float"
%main_name = OpString "main"
%f_name = OpString "f"
%i_name = OpString "i"
%x_name = OpString "x"
OpName %main "main"
OpName %f "f"
OpName %i "i"
OpName %BC "BC"
OpName %fo "fo"
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Function_float = OpTypePointer Function %float
%float_0 = OpConstant %float 0
%int = OpTypeInt 32 1
%uint = OpTypeInt 32 0
%uint_32 = OpConstant %uint 32
%_ptr_Function_int = OpTypePointer Function %int
%int_0 = OpConstant %int 0
%int_4 = OpConstant %int 4
%bool = OpTypeBool
%v4float = OpTypeVector %float 4
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BC = OpVariable %_ptr_Input_v4float Input
%_ptr_Input_float = OpTypePointer Input %float
%int_1 = OpConstant %int 1
%_ptr_Output_float = OpTypePointer Output %float
%fo = OpVariable %_ptr_Output_float Output
%null_expr = OpExtInst %void %ext DebugExpression
%src = OpExtInst %void %ext DebugSource %file_name
%cu = OpExtInst %void %ext DebugCompilationUnit 1 4 %src HLSL
%dbg_tf = OpExtInst %void %ext DebugTypeBasic %float_name %uint_32 Float
%dbg_v4f = OpExtInst %void %ext DebugTypeVector %dbg_tf 4
%main_ty = OpExtInst %void %ext DebugTypeFunction FlagIsProtected|FlagIsPrivate %dbg_v4f %dbg_v4f
%dbg_main = OpExtInst %void %ext DebugFunction %main_name %main_ty %src 0 0 %cu %main_name FlagIsProtected|FlagIsPrivate 10 %main
%dbg_f = OpExtInst %void %ext DebugLocalVariable %f_name %dbg_v4f %src 0 0 %dbg_main FlagIsLocal
%dbg_i = OpExtInst %void %ext DebugLocalVariable %i_name %dbg_v4f %src 1 0 %dbg_main FlagIsLocal
%dbg_x = OpExtInst %void %ext DebugLocalVariable %x_name %dbg_v4f %src 2 0 %dbg_main FlagIsLocal
%main = OpFunction %void None %8
%22 = OpLabel
%s0 = OpExtInst %void %ext DebugScope %dbg_main
%f = OpVariable %_ptr_Function_float Function
%i = OpVariable %_ptr_Function_int Function
OpStore %f %float_0
OpStore %i %int_0
%decl0 = OpExtInst %void %ext DebugDeclare %dbg_f %f %null_expr
%decl1 = OpExtInst %void %ext DebugDeclare %dbg_i %i %null_expr
%decl2 = OpExtInst %void %ext DebugDeclare %dbg_x %f %null_expr
OpBranch %23
%23 = OpLabel
%s1 = OpExtInst %void %ext DebugScope %dbg_main
OpLoopMerge %24 %25 None
OpBranch %26
%26 = OpLabel
%s2 = OpExtInst %void %ext DebugScope %dbg_main
%27 = OpLoad %int %i
%28 = OpSLessThan %bool %27 %int_4
OpBranchConditional %28 %29 %24
%29 = OpLabel
%s3 = OpExtInst %void %ext DebugScope %dbg_main
%30 = OpLoad %float %f
%31 = OpLoad %int %i
%32 = OpAccessChain %_ptr_Input_float %BC %31
%33 = OpLoad %float %32
%34 = OpFAdd %float %30 %33
OpStore %f %34
OpBranch %25
%25 = OpLabel
%s4 = OpExtInst %void %ext DebugScope %dbg_main
%35 = OpLoad %int %i
%36 = OpIAdd %int %35 %int_1
OpStore %i %36
OpBranch %23
%24 = OpLabel
%s5 = OpExtInst %void %ext DebugScope %dbg_main
%37 = OpLoad %float %f
OpStore %fo %37
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(text, true);
}
TEST_F(LocalSSAElimTest, DebugValueForReferenceVariableInBB) {
// #version 140
//
// in vec4 BC;
// out float fo;
//
// void main()
// {
// float f = 0.0;
// for (int i=0; i<4; i++) {
// float& x = f;
// x = x + BC[i];
// {
// x = x + BC[i];
// }
// }
// fo = f;
// }
const std::string text = R"(
; CHECK: [[f_name:%\w+]] = OpString "f"
; CHECK: [[i_name:%\w+]] = OpString "i"
; CHECK: [[x_name:%\w+]] = OpString "x"
; CHECK: [[dbg_main:%\w+]] = OpExtInst %void [[ext:%\d+]] DebugFunction
; CHECK: [[dbg_bb:%\w+]] = OpExtInst %void [[ext]] DebugLexicalBlock
; CHECK: [[dbg_bb_child:%\w+]] = OpExtInst %void [[ext]] DebugLexicalBlock
; CHECK: [[dbg_f:%\w+]] = OpExtInst %void [[ext]] DebugLocalVariable [[f_name]]
; CHECK: [[dbg_i:%\w+]] = OpExtInst %void [[ext]] DebugLocalVariable [[i_name]]
; CHECK: [[dbg_x:%\w+]] = OpExtInst %void [[ext]] DebugLocalVariable [[x_name]]
; CHECK: OpExtInst %void [[ext]] DebugScope [[dbg_main]]
; CHECK: OpStore %f %float_0
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_f]] %float_0
; CHECK-NEXT: OpStore %i %int_0
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_i]] %int_0
; CHECK-NOT: DebugDeclare
; CHECK: [[loop_head:%\w+]] = OpLabel
; CHECK: OpExtInst %void [[ext]] DebugScope [[dbg_main]]
; CHECK: [[phi0:%\w+]] = OpPhi %float %float_0
; CHECK: [[phi1:%\w+]] = OpPhi %int %int_0
; CHECK-DAG: OpExtInst %void [[ext]] DebugValue [[dbg_f]] [[phi0]]
; CHECK-DAG: OpExtInst %void [[ext]] DebugValue [[dbg_x]] [[phi0]]
; CHECK-DAG: OpExtInst %void [[ext]] DebugValue [[dbg_i]] [[phi1]]
; CHECK: OpLoopMerge [[loop_merge:%\w+]] [[loop_cont:%\w+]] None
; CHECK-NEXT: OpBranch [[loop_body:%\w+]]
; CHECK-NEXT: [[loop_body]] = OpLabel
; CHECK: OpBranchConditional {{%\w+}} [[bb:%\w+]] [[loop_merge]]
; CHECK: [[bb]] = OpLabel
; CHECK: OpExtInst %void [[ext]] DebugScope [[dbg_bb]]
; CHECK: OpStore %f [[f_val:%\w+]]
; CHECK-DAG: OpExtInst %void [[ext]] DebugValue [[dbg_f]] [[f_val]]
; CHECK-DAG: OpExtInst %void [[ext]] DebugValue [[dbg_x]] [[f_val]]
; CHECK: OpBranch [[bb_child:%\w+]]
; CHECK: [[bb_child]] = OpLabel
; CHECK: OpExtInst %void [[ext]] DebugScope [[dbg_bb_child]]
; CHECK: OpStore %f [[new_f_val:%\w+]]
; CHECK-DAG: OpExtInst %void [[ext]] DebugValue [[dbg_f]] [[new_f_val]]
; CHECK-DAG: OpExtInst %void [[ext]] DebugValue [[dbg_x]] [[new_f_val]]
; CHECK: OpBranch [[loop_cont]]
; CHECK: [[loop_cont]] = OpLabel
; CHECK: OpStore %i [[i_val:%\w+]]
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_i]] [[i_val]]
; CHECK-NEXT: OpBranch [[loop_head]]
; CHECK: [[loop_merge]] = OpLabel
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
%ext = OpExtInstImport "OpenCL.DebugInfo.100"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BC %fo
OpExecutionMode %main OriginUpperLeft
%file_name = OpString "test"
OpSource GLSL 140
%float_name = OpString "float"
%main_name = OpString "main"
%f_name = OpString "f"
%i_name = OpString "i"
%x_name = OpString "x"
OpName %main "main"
OpName %f "f"
OpName %i "i"
OpName %BC "BC"
OpName %fo "fo"
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Function_float = OpTypePointer Function %float
%float_0 = OpConstant %float 0
%int = OpTypeInt 32 1
%uint = OpTypeInt 32 0
%uint_32 = OpConstant %uint 32
%_ptr_Function_int = OpTypePointer Function %int
%int_0 = OpConstant %int 0
%int_4 = OpConstant %int 4
%bool = OpTypeBool
%v4float = OpTypeVector %float 4
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BC = OpVariable %_ptr_Input_v4float Input
%_ptr_Input_float = OpTypePointer Input %float
%int_1 = OpConstant %int 1
%_ptr_Output_float = OpTypePointer Output %float
%fo = OpVariable %_ptr_Output_float Output
%null_expr = OpExtInst %void %ext DebugExpression
%src = OpExtInst %void %ext DebugSource %file_name
%cu = OpExtInst %void %ext DebugCompilationUnit 1 4 %src HLSL
%dbg_tf = OpExtInst %void %ext DebugTypeBasic %float_name %uint_32 Float
%dbg_v4f = OpExtInst %void %ext DebugTypeVector %dbg_tf 4
%main_ty = OpExtInst %void %ext DebugTypeFunction FlagIsProtected|FlagIsPrivate %dbg_v4f %dbg_v4f
%dbg_main = OpExtInst %void %ext DebugFunction %main_name %main_ty %src 0 0 %cu %main_name FlagIsProtected|FlagIsPrivate 10 %main
%bb = OpExtInst %void %ext DebugLexicalBlock %src 0 0 %dbg_main
%bb_child = OpExtInst %void %ext DebugLexicalBlock %src 1 0 %bb
%dbg_f = OpExtInst %void %ext DebugLocalVariable %f_name %dbg_v4f %src 0 0 %dbg_main FlagIsLocal
%dbg_i = OpExtInst %void %ext DebugLocalVariable %i_name %dbg_v4f %src 1 0 %dbg_main FlagIsLocal
%dbg_x = OpExtInst %void %ext DebugLocalVariable %x_name %dbg_v4f %src 2 0 %bb FlagIsLocal
%main = OpFunction %void None %8
%22 = OpLabel
%s0 = OpExtInst %void %ext DebugScope %dbg_main
%f = OpVariable %_ptr_Function_float Function
%i = OpVariable %_ptr_Function_int Function
OpStore %f %float_0
OpStore %i %int_0
%decl0 = OpExtInst %void %ext DebugDeclare %dbg_f %f %null_expr
%decl1 = OpExtInst %void %ext DebugDeclare %dbg_i %i %null_expr
OpBranch %23
%23 = OpLabel
%s1 = OpExtInst %void %ext DebugScope %dbg_main
OpLoopMerge %24 %25 None
OpBranch %26
%26 = OpLabel
%s2 = OpExtInst %void %ext DebugScope %dbg_main
%27 = OpLoad %int %i
%28 = OpSLessThan %bool %27 %int_4
OpBranchConditional %28 %29 %24
%29 = OpLabel
%scope = OpExtInst %void %ext DebugScope %bb
%decl2 = OpExtInst %void %ext DebugDeclare %dbg_x %f %null_expr
%30 = OpLoad %float %f
%31 = OpLoad %int %i
%32 = OpAccessChain %_ptr_Input_float %BC %31
%33 = OpLoad %float %32
%34 = OpFAdd %float %30 %33
OpStore %f %34
OpBranch %38
%38 = OpLabel
%child_scope = OpExtInst %void %ext DebugScope %bb_child
%39 = OpLoad %float %f
%40 = OpFAdd %float %39 %33
OpStore %f %40
OpBranch %25
%25 = OpLabel
%s3 = OpExtInst %void %ext DebugScope %dbg_main
%35 = OpLoad %int %i
%36 = OpIAdd %int %35 %int_1
OpStore %i %36
OpBranch %23
%24 = OpLabel
%s4 = OpExtInst %void %ext DebugScope %dbg_main
%37 = OpLoad %float %f
OpStore %fo %37
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(text, true);
}
TEST_F(LocalSSAElimTest, DebugForLoopUseDebugValueInsteadOfDebugDeclare) {
// #version 140
//
// in vec4 BC;
// out float fo;
//
// struct S {
// float f;
// int i;
// };
//
// void main()
// {
// S foo = {0.0, 0};
// for (; foo.i<4; foo.i++) {
// foo.f = foo.f + BC[foo.i];
// }
// fo = foo.f;
// }
const std::string text = R"(
; CHECK: [[f_name:%\w+]] = OpString "f"
; CHECK: [[empty_expr:%\w+]] = OpExtInst %void [[ext:%\d+]] DebugExpression
; CHECK: [[deref_op:%\w+]] = OpExtInst %void [[ext]] DebugOperation Deref
; CHECK: [[deref:%\w+]] = OpExtInst %void [[ext]] DebugExpression [[deref_op]]
; CHECK: [[dbg_foo:%\w+]] = OpExtInst %void [[ext]] DebugLocalVariable [[f_name]]
; CHECK: OpStore %f %float_0
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_foo]] %float_0 [[empty_expr]] %uint_0
; CHECK-NEXT: OpStore %i %int_0
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_foo]] %int_0 [[empty_expr]] %uint_1
; CHECK: [[loop_head:%\w+]] = OpLabel
; CHECK: [[phi0:%\w+]] = OpPhi %float %float_0
; CHECK: [[phi1:%\w+]] = OpPhi %int %int_0
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_foo]] [[phi0]] [[empty_expr]] %uint_0
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_foo]] [[phi1]] [[empty_expr]] %uint_1
; CHECK: OpLoopMerge [[loop_merge:%\w+]] [[loop_cont:%\w+]] None
; CHECK-NEXT: OpBranch [[loop_body:%\w+]]
; CHECK: [[loop_body]] = OpLabel
; CHECK: OpBranchConditional {{%\w+}} [[bb:%\w+]] [[loop_merge]]
; CHECK: [[bb]] = OpLabel
; CHECK: OpStore %f [[f_val:%\w+]]
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_foo]] [[f_val]] [[empty_expr]] %uint_0
; CHECK-NEXT: OpBranch [[loop_cont]]
; CHECK: [[loop_cont]] = OpLabel
; CHECK: OpStore %i [[i_val:%\w+]]
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_foo]] [[i_val]] [[empty_expr]] %uint_1
; CHECK-NEXT: OpBranch [[loop_head]]
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
%ext = OpExtInstImport "OpenCL.DebugInfo.100"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BC %fo
OpExecutionMode %main OriginUpperLeft
%file_name = OpString "test"
OpSource GLSL 140
%float_name = OpString "float"
%main_name = OpString "main"
%f_name = OpString "f"
OpName %main "main"
OpName %f "f"
OpName %i "i"
OpName %BC "BC"
OpName %fo "fo"
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Function_float = OpTypePointer Function %float
%float_0 = OpConstant %float 0
%int = OpTypeInt 32 1
%uint = OpTypeInt 32 0
%uint_32 = OpConstant %uint 32
%uint_0 = OpConstant %uint 0
%uint_1 = OpConstant %uint 1
%_ptr_Function_int = OpTypePointer Function %int
%int_0 = OpConstant %int 0
%int_4 = OpConstant %int 4
%bool = OpTypeBool
%v4float = OpTypeVector %float 4
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BC = OpVariable %_ptr_Input_v4float Input
%_ptr_Input_float = OpTypePointer Input %float
%int_1 = OpConstant %int 1
%_ptr_Output_float = OpTypePointer Output %float
%fo = OpVariable %_ptr_Output_float Output
%deref_op = OpExtInst %void %ext DebugOperation Deref
%deref = OpExtInst %void %ext DebugExpression %deref_op
%src = OpExtInst %void %ext DebugSource %file_name
%cu = OpExtInst %void %ext DebugCompilationUnit 1 4 %src HLSL
%dbg_tf = OpExtInst %void %ext DebugTypeBasic %float_name %uint_32 Float
%dbg_v4f = OpExtInst %void %ext DebugTypeVector %dbg_tf 4
%main_ty = OpExtInst %void %ext DebugTypeFunction FlagIsProtected|FlagIsPrivate %dbg_v4f %dbg_v4f
%dbg_main = OpExtInst %void %ext DebugFunction %main_name %main_ty %src 0 0 %cu %main_name FlagIsProtected|FlagIsPrivate 10 %main
%dbg_foo = OpExtInst %void %ext DebugLocalVariable %f_name %dbg_v4f %src 0 0 %dbg_main FlagIsLocal
%main = OpFunction %void None %8
%22 = OpLabel
%s0 = OpExtInst %void %ext DebugScope %dbg_main
%f = OpVariable %_ptr_Function_float Function
%i = OpVariable %_ptr_Function_int Function
OpStore %f %float_0
OpStore %i %int_0
%decl0 = OpExtInst %void %ext DebugValue %dbg_foo %f %deref %uint_0
%decl1 = OpExtInst %void %ext DebugValue %dbg_foo %i %deref %uint_1
OpBranch %23
%23 = OpLabel
%s1 = OpExtInst %void %ext DebugScope %dbg_main
OpLoopMerge %24 %25 None
OpBranch %26
%26 = OpLabel
%s2 = OpExtInst %void %ext DebugScope %dbg_main
%27 = OpLoad %int %i
%28 = OpSLessThan %bool %27 %int_4
OpBranchConditional %28 %29 %24
%29 = OpLabel
%s3 = OpExtInst %void %ext DebugScope %dbg_main
%30 = OpLoad %float %f
%31 = OpLoad %int %i
%32 = OpAccessChain %_ptr_Input_float %BC %31
%33 = OpLoad %float %32
%34 = OpFAdd %float %30 %33
OpStore %f %34
OpBranch %25
%25 = OpLabel
%s4 = OpExtInst %void %ext DebugScope %dbg_main
%35 = OpLoad %int %i
%36 = OpIAdd %int %35 %int_1
OpStore %i %36
OpBranch %23
%24 = OpLabel
%s5 = OpExtInst %void %ext DebugScope %dbg_main
%37 = OpLoad %float %f
OpStore %fo %37
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(text, true);
}
TEST_F(LocalSSAElimTest, DebugValueNotUsedForDebugDeclare) {
// #version 140
//
// in vec4 BC;
// out float fo;
//
// void main()
// {
// float f = 0.0;
// for (int i=0; i<4; i++) {
// f = f + BC[i];
// }
// fo = f;
// }
const std::string text = R"(
; CHECK: [[f_name:%\w+]] = OpString "f"
; CHECK: [[i_name:%\w+]] = OpString "i"
; CHECK: [[dbg_f:%\w+]] = OpExtInst %void [[ext:%\d+]] DebugLocalVariable [[f_name]]
; CHECK: [[dbg_i:%\w+]] = OpExtInst %void [[ext]] DebugLocalVariable [[i_name]]
; CHECK: OpStore %f %float_0
; CHECK-NEXT: OpStore %i %int_0
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_f]] %f
; CHECK-NEXT: OpExtInst %void [[ext]] DebugValue [[dbg_i]] %i
; CHECK-NOT: DebugValue
; CHECK-NOT: DebugDeclare
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
%ext = OpExtInstImport "OpenCL.DebugInfo.100"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BC %fo
OpExecutionMode %main OriginUpperLeft
%file_name = OpString "test"
OpSource GLSL 140
%float_name = OpString "float"
%main_name = OpString "main"
%f_name = OpString "f"
%i_name = OpString "i"
OpName %main "main"
OpName %f "f"
OpName %i "i"
OpName %BC "BC"
OpName %fo "fo"
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Function_float = OpTypePointer Function %float
%float_0 = OpConstant %float 0
%int = OpTypeInt 32 1
%uint = OpTypeInt 32 0
%uint_32 = OpConstant %uint 32
%_ptr_Function_int = OpTypePointer Function %int
%int_0 = OpConstant %int 0
%int_4 = OpConstant %int 4
%bool = OpTypeBool
%v4float = OpTypeVector %float 4
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BC = OpVariable %_ptr_Input_v4float Input
%_ptr_Input_float = OpTypePointer Input %float
%int_1 = OpConstant %int 1
%_ptr_Output_float = OpTypePointer Output %float
%fo = OpVariable %_ptr_Output_float Output
%null_expr = OpExtInst %void %ext DebugExpression
%src = OpExtInst %void %ext DebugSource %file_name
%cu = OpExtInst %void %ext DebugCompilationUnit 1 4 %src HLSL
%dbg_tf = OpExtInst %void %ext DebugTypeBasic %float_name %uint_32 Float
%dbg_v4f = OpExtInst %void %ext DebugTypeVector %dbg_tf 4
%main_ty = OpExtInst %void %ext DebugTypeFunction FlagIsProtected|FlagIsPrivate %dbg_v4f %dbg_v4f
%dbg_main = OpExtInst %void %ext DebugFunction %main_name %main_ty %src 0 0 %cu %main_name FlagIsProtected|FlagIsPrivate 10 %main
%dbg_f = OpExtInst %void %ext DebugLocalVariable %f_name %dbg_v4f %src 0 0 %dbg_main FlagIsLocal
%dbg_i = OpExtInst %void %ext DebugLocalVariable %i_name %dbg_v4f %src 1 0 %dbg_main FlagIsLocal
%main = OpFunction %void None %8
%22 = OpLabel
%s0 = OpExtInst %void %ext DebugScope %dbg_main
%f = OpVariable %_ptr_Function_float Function
%i = OpVariable %_ptr_Function_int Function
OpStore %f %float_0
OpStore %i %int_0
%decl0 = OpExtInst %void %ext DebugValue %dbg_f %f %null_expr
%decl1 = OpExtInst %void %ext DebugValue %dbg_i %i %null_expr
OpBranch %23
%23 = OpLabel
%s1 = OpExtInst %void %ext DebugScope %dbg_main
OpLoopMerge %24 %25 None
OpBranch %26
%26 = OpLabel
%s2 = OpExtInst %void %ext DebugScope %dbg_main
%27 = OpLoad %int %i
%28 = OpSLessThan %bool %27 %int_4
OpBranchConditional %28 %29 %24
%29 = OpLabel
%s3 = OpExtInst %void %ext DebugScope %dbg_main
%30 = OpLoad %float %f
%31 = OpLoad %int %i
%32 = OpAccessChain %_ptr_Input_float %BC %31
%33 = OpLoad %float %32
%34 = OpFAdd %float %30 %33
OpStore %f %34
OpBranch %25
%25 = OpLabel
%s4 = OpExtInst %void %ext DebugScope %dbg_main
%35 = OpLoad %int %i
%36 = OpIAdd %int %35 %int_1
OpStore %i %36
OpBranch %23
%24 = OpLabel
%s5 = OpExtInst %void %ext DebugScope %dbg_main
%37 = OpLoad %float %f
OpStore %fo %37
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(text, true);
}
TEST_F(LocalSSAElimTest, DebugNestedForLoop) {
const std::string text = R"(
; CHECK: = OpFunction
; CHECK-NEXT: [[entry:%\w+]] = OpLabel
; CHECK: OpStore %f %float_0
; CHECK-NEXT: = OpExtInst %void [[ext:%\w+]] DebugValue [[dbg_f:%\w+]] %float_0
; CHECK: [[outer_header:%\w+]] = OpLabel
; CHECK: [[outer_f:%\w+]] = OpPhi %float %float_0 [[entry]] [[inner_f:%\w+]] [[outer_be:%\w+]]
; CHECK: = OpExtInst %void [[ext]] DebugValue [[dbg_f]] [[outer_f]]
; CHECK: [[inner_pre_header:%\w+]] = OpLabel
; CHECK: [[inner_header:%\w+]] = OpLabel
; CHECK: [[inner_f]] = OpPhi %float [[outer_f]] [[inner_pre_header]] [[f_next:%\w+]] [[inner_be:%\w+]]
; CHECK: = OpExtInst %void [[ext]] DebugValue [[dbg_f]] [[inner_f]]
; CHECK: [[inner_be]] = OpLabel
; CHECK: [[f_next]] = OpFAdd %float [[inner_f]]
; CHECK-NEXT: OpStore %f [[f_next]]
; CHECK-NEXT: = OpExtInst %void [[ext]] DebugValue [[dbg_f]] [[f_next]]
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
%ext = OpExtInstImport "OpenCL.DebugInfo.100"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BC %fo
OpExecutionMode %main OriginUpperLeft
%file_name = OpString "test"
%float_name = OpString "float"
%main_name = OpString "main"
%f_name = OpString "f"
OpSource GLSL 450
OpName %main "main"
OpName %f "f"
OpName %i "i"
OpName %j "j"
OpName %BC "BC"
OpName %fo "fo"
OpDecorate %BC Location 0
OpDecorate %fo Location 0
%void = OpTypeVoid
%9 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Function_float = OpTypePointer Function %float
%float_0 = OpConstant %float 0
%int = OpTypeInt 32 1
%_ptr_Function_int = OpTypePointer Function %int
%int_0 = OpConstant %int 0
%int_4 = OpConstant %int 4
%uint = OpTypeInt 32 0
%uint_32 = OpConstant %uint 32
%bool = OpTypeBool
%v4float = OpTypeVector %float 4
%mat4v4float = OpTypeMatrix %v4float 4
%_ptr_Input_mat4v4float = OpTypePointer Input %mat4v4float
%BC = OpVariable %_ptr_Input_mat4v4float Input
%_ptr_Input_float = OpTypePointer Input %float
%int_1 = OpConstant %int 1
%_ptr_Output_float = OpTypePointer Output %float
%fo = OpVariable %_ptr_Output_float Output
; Debug information
%null_expr = OpExtInst %void %ext DebugExpression
%src = OpExtInst %void %ext DebugSource %file_name
%cu = OpExtInst %void %ext DebugCompilationUnit 1 4 %src HLSL
%dbg_tf = OpExtInst %void %ext DebugTypeBasic %float_name %uint_32 Float
%main_ty = OpExtInst %void %ext DebugTypeFunction FlagIsProtected|FlagIsPrivate %void
%dbg_main = OpExtInst %void %ext DebugFunction %main_name %main_ty %src 0 0 %cu %main_name FlagIsProtected|FlagIsPrivate 10 %main
%dbg_f = OpExtInst %void %ext DebugLocalVariable %f_name %dbg_tf %src 0 0 %dbg_main FlagIsLocal
%main = OpFunction %void None %9
%24 = OpLabel
%s1 = OpExtInst %void %ext DebugScope %dbg_main
%f = OpVariable %_ptr_Function_float Function
%i = OpVariable %_ptr_Function_int Function
%j = OpVariable %_ptr_Function_int Function
; DebugDeclare
OpStore %f %float_0
%decl = OpExtInst %void %ext DebugDeclare %dbg_f %f %null_expr
OpStore %i %int_0
OpBranch %25
%25 = OpLabel
%s2 = OpExtInst %void %ext DebugScope %dbg_main
%26 = OpLoad %int %i
%27 = OpSLessThan %bool %26 %int_4
OpLoopMerge %28 %29 None
OpBranchConditional %27 %30 %28
%30 = OpLabel
%s3 = OpExtInst %void %ext DebugScope %dbg_main
OpStore %j %int_0
OpBranch %31
%31 = OpLabel
%s4 = OpExtInst %void %ext DebugScope %dbg_main
%32 = OpLoad %int %j
%33 = OpSLessThan %bool %32 %int_4
OpLoopMerge %50 %34 None
OpBranchConditional %33 %34 %50
%34 = OpLabel
%s5 = OpExtInst %void %ext DebugScope %dbg_main
%35 = OpLoad %float %f
%36 = OpLoad %int %i
%37 = OpLoad %int %j
%38 = OpAccessChain %_ptr_Input_float %BC %36 %37
%39 = OpLoad %float %38
%40 = OpFAdd %float %35 %39
OpStore %f %40
%41 = OpLoad %int %j
%42 = OpIAdd %int %41 %int_1
OpStore %j %42
OpBranch %31
%50 = OpLabel
%s6 = OpExtInst %void %ext DebugScope %dbg_main
OpBranch %29
%29 = OpLabel
%s7 = OpExtInst %void %ext DebugScope %dbg_main
%43 = OpLoad %int %i
%44 = OpIAdd %int %43 %int_1
OpStore %i %44
OpBranch %25
%28 = OpLabel
%s8 = OpExtInst %void %ext DebugScope %dbg_main
%45 = OpLoad %float %f
OpStore %fo %45
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(text, true);
}
TEST_F(LocalSSAElimTest, DebugForLoopWithContinue) {
const std::string text = R"(
; CHECK: = OpFunction
; CHECK-NEXT: [[entry:%\w+]] = OpLabel
; CHECK: OpStore %f %float_0
; CHECK-NEXT: = OpExtInst %void [[ext:%\w+]] DebugValue [[dbg_f:%\w+]] %float_0
; CHECK: [[outer_header:%\w+]] = OpLabel
; CHECK: [[outer_f:%\w+]] = OpPhi %float %float_0 [[entry]] [[inner_f:%\w+]] [[cont:%\w+]]
; CHECK: = OpExtInst %void [[ext]] DebugValue [[dbg_f]] [[outer_f]]
; CHECK: [[f_next:%\w+]] = OpFAdd %float [[outer_f]]
; CHECK-NEXT: OpStore %f [[f_next]]
; CHECK-NEXT: = OpExtInst %void [[ext]] DebugValue [[dbg_f]] [[f_next]]
; CHECK: [[cont]] = OpLabel
; CHECK: [[inner_f]] = OpPhi %float [[outer_f]] {{%\d+}} [[f_next]] {{%\d+}}
; CHECK-NEXT: = OpExtInst %void [[ext]] DebugValue [[dbg_f]] [[inner_f]]
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
%ext = OpExtInstImport "OpenCL.DebugInfo.100"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BC %fo
OpExecutionMode %main OriginUpperLeft
%file_name = OpString "test"
%float_name = OpString "float"
%main_name = OpString "main"
%f_name = OpString "f"
OpSource GLSL 140
OpName %main "main"
OpName %f "f"
OpName %i "i"
OpName %t "t"
OpName %BC "BC"
OpName %fo "fo"
%void = OpTypeVoid
%9 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Function_float = OpTypePointer Function %float
%float_0 = OpConstant %float 0
%int = OpTypeInt 32 1
%_ptr_Function_int = OpTypePointer Function %int
%int_0 = OpConstant %int 0
%int_4 = OpConstant %int 4
%uint = OpTypeInt 32 0
%uint_32 = OpConstant %uint 32
%bool = OpTypeBool
%v4float = OpTypeVector %float 4
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BC = OpVariable %_ptr_Input_v4float Input
%_ptr_Input_float = OpTypePointer Input %float
%int_1 = OpConstant %int 1
%_ptr_Output_float = OpTypePointer Output %float
%fo = OpVariable %_ptr_Output_float Output
; Debug information
%null_expr = OpExtInst %void %ext DebugExpression
%src = OpExtInst %void %ext DebugSource %file_name
%cu = OpExtInst %void %ext DebugCompilationUnit 1 4 %src HLSL
%dbg_tf = OpExtInst %void %ext DebugTypeBasic %float_name %uint_32 Float
%main_ty = OpExtInst %void %ext DebugTypeFunction FlagIsProtected|FlagIsPrivate %void
%dbg_main = OpExtInst %void %ext DebugFunction %main_name %main_ty %src 0 0 %cu %main_name FlagIsProtected|FlagIsPrivate 10 %main
%dbg_f = OpExtInst %void %ext DebugLocalVariable %f_name %dbg_tf %src 0 0 %dbg_main FlagIsLocal
%main = OpFunction %void None %9
%23 = OpLabel
%s0 = OpExtInst %void %ext DebugScope %dbg_main
%f = OpVariable %_ptr_Function_float Function
%i = OpVariable %_ptr_Function_int Function
%t = OpVariable %_ptr_Function_float Function
; DebugDeclare
OpStore %f %float_0
%decl = OpExtInst %void %ext DebugDeclare %dbg_f %f %null_expr
OpStore %i %int_0
OpBranch %24
%24 = OpLabel
%s1 = OpExtInst %void %ext DebugScope %dbg_main
OpLoopMerge %25 %26 None
OpBranch %27
%27 = OpLabel
%s2 = OpExtInst %void %ext DebugScope %dbg_main
%28 = OpLoad %int %i
%29 = OpSLessThan %bool %28 %int_4
OpBranchConditional %29 %30 %25
%30 = OpLabel
%s3 = OpExtInst %void %ext DebugScope %dbg_main
%31 = OpLoad %int %i
%32 = OpAccessChain %_ptr_Input_float %BC %31
%33 = OpLoad %float %32
OpStore %t %33
%34 = OpLoad %float %t
%35 = OpFOrdLessThan %bool %34 %float_0
OpSelectionMerge %36 None
OpBranchConditional %35 %37 %36
%37 = OpLabel
%s4 = OpExtInst %void %ext DebugScope %dbg_main
OpBranch %26
%36 = OpLabel
%s5 = OpExtInst %void %ext DebugScope %dbg_main
%38 = OpLoad %float %f
%39 = OpLoad %float %t
%40 = OpFAdd %float %38 %39
OpStore %f %40
OpBranch %26
%26 = OpLabel
%s6 = OpExtInst %void %ext DebugScope %dbg_main
%41 = OpLoad %int %i
%42 = OpIAdd %int %41 %int_1
OpStore %i %42
OpBranch %24
%25 = OpLabel
%s7 = OpExtInst %void %ext DebugScope %dbg_main
%43 = OpLoad %float %f
OpStore %fo %43
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(text, true);
}
TEST_F(LocalSSAElimTest, DebugIfElse) {
const std::string text = R"(
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
%ext = OpExtInstImport "OpenCL.DebugInfo.100"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %f %BaseColor %gl_FragColor
OpExecutionMode %main OriginUpperLeft
%file_name = OpString "test"
%float_name = OpString "float"
%main_name = OpString "main"
%v_name = OpString "v"
OpSource GLSL 140
OpName %main "main"
OpName %f "f"
OpName %v "v"
OpName %BaseColor "BaseColor"
OpName %gl_FragColor "gl_FragColor"
%void = OpTypeVoid
%8 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Input_float = OpTypePointer Input %float
%f = OpVariable %_ptr_Input_float Input
%float_0 = OpConstant %float 0
%uint = OpTypeInt 32 0
%uint_32 = OpConstant %uint 32
%bool = OpTypeBool
%v4float = OpTypeVector %float 4
%_ptr_Function_v4float = OpTypePointer Function %v4float
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BaseColor = OpVariable %_ptr_Input_v4float Input
%float_0_5 = OpConstant %float 0.5
%float_1 = OpConstant %float 1
%18 = OpConstantComposite %v4float %float_1 %float_1 %float_1 %float_1
%_ptr_Output_v4float = OpTypePointer Output %v4float
%gl_FragColor = OpVariable %_ptr_Output_v4float Output
; Debug information
%null_expr = OpExtInst %void %ext DebugExpression
%src = OpExtInst %void %ext DebugSource %file_name
%cu = OpExtInst %void %ext DebugCompilationUnit 1 4 %src HLSL
%dbg_tf = OpExtInst %void %ext DebugTypeBasic %float_name %uint_32 Float
%main_ty = OpExtInst %void %ext DebugTypeFunction FlagIsProtected|FlagIsPrivate %void
%dbg_main = OpExtInst %void %ext DebugFunction %main_name %main_ty %src 0 0 %cu %main_name FlagIsProtected|FlagIsPrivate 10 %main
%dbg_v = OpExtInst %void %ext DebugLocalVariable %v_name %dbg_tf %src 0 0 %dbg_main FlagIsLocal
%main = OpFunction %void None %8
%20 = OpLabel
%s0 = OpExtInst %void %ext DebugScope %dbg_main
; DebugDeclare
%v = OpVariable %_ptr_Function_v4float Function
%decl = OpExtInst %void %ext DebugDeclare %dbg_v %v %null_expr
%21 = OpLoad %float %f
%22 = OpFOrdGreaterThanEqual %bool %21 %float_0
OpSelectionMerge %23 None
OpBranchConditional %22 %24 %25
; CHECK: OpBranchConditional
; CHECK-NEXT: [[br0:%\w+]] = OpLabel
; CHECK: OpStore %v [[v0:%\w+]]
; CHECK-NEXT: = OpExtInst %void [[ext:%\w+]] DebugValue [[dbg_v:%\w+]] [[v0]]
%24 = OpLabel
%s1 = OpExtInst %void %ext DebugScope %dbg_main
%26 = OpLoad %v4float %BaseColor
%27 = OpVectorTimesScalar %v4float %26 %float_0_5
OpStore %v %27
OpBranch %23
; CHECK: [[br1:%\w+]] = OpLabel
; CHECK: OpStore %v [[v1:%\w+]]
; CHECK-NEXT: = OpExtInst %void [[ext]] DebugValue [[dbg_v]] [[v1]]
%25 = OpLabel
%s2 = OpExtInst %void %ext DebugScope %dbg_main
%28 = OpLoad %v4float %BaseColor
%29 = OpFAdd %v4float %28 %18
OpStore %v %29
OpBranch %23
; CHECK: [[phi:%\w+]] = OpPhi %v4float [[v0]] [[br0]] [[v1]] [[br1]]
; CHECK-NEXT: = OpExtInst %void [[ext]] DebugValue [[dbg_v]] [[phi]]
%23 = OpLabel
%s3 = OpExtInst %void %ext DebugScope %dbg_main
%30 = OpLoad %v4float %v
OpStore %gl_FragColor %30
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(text, true);
}
TEST_F(LocalSSAElimTest, DebugSwitch) {
const std::string text = R"(
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
%ext = OpExtInstImport "OpenCL.DebugInfo.100"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %BaseColor %f %gl_FragColor
OpExecutionMode %main OriginUpperLeft
%file_name = OpString "test"
%float_name = OpString "float"
%main_name = OpString "main"
%v_name = OpString "v"
OpSource GLSL 140
OpName %main "main"
OpName %v "v"
OpName %BaseColor "BaseColor"
OpName %i "i"
OpName %f "f"
OpName %gl_FragColor "gl_FragColor"
%void = OpTypeVoid
%9 = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%uint = OpTypeInt 32 0
%uint_32 = OpConstant %uint 32
%_ptr_Function_v4float = OpTypePointer Function %v4float
%_ptr_Input_v4float = OpTypePointer Input %v4float
%BaseColor = OpVariable %_ptr_Input_v4float Input
%int = OpTypeInt 32 1
%_ptr_Function_int = OpTypePointer Function %int
%_ptr_Input_float = OpTypePointer Input %float
%f = OpVariable %_ptr_Input_float Input
%float_0_25 = OpConstant %float 0.25
%float_0_75 = OpConstant %float 0.75
%_ptr_Output_v4float = OpTypePointer Output %v4float
%gl_FragColor = OpVariable %_ptr_Output_v4float Output
; Debug information
%null_expr = OpExtInst %void %ext DebugExpression
%src = OpExtInst %void %ext DebugSource %file_name
%cu = OpExtInst %void %ext DebugCompilationUnit 1 4 %src HLSL
%dbg_tf = OpExtInst %void %ext DebugTypeBasic %float_name %uint_32 Float
%main_ty = OpExtInst %void %ext DebugTypeFunction FlagIsProtected|FlagIsPrivate %void
%dbg_main = OpExtInst %void %ext DebugFunction %main_name %main_ty %src 0 0 %cu %main_name FlagIsProtected|FlagIsPrivate 10 %main
%dbg_v = OpExtInst %void %ext DebugLocalVariable %v_name %dbg_tf %src 0 0 %dbg_main FlagIsLocal
%main = OpFunction %void None %9
%20 = OpLabel
%s0 = OpExtInst %void %ext DebugScope %dbg_main
%v = OpVariable %_ptr_Function_v4float Function
%i = OpVariable %_ptr_Function_int Function
%21 = OpLoad %v4float %BaseColor
; DebugDeclare
OpStore %v %21
%decl = OpExtInst %void %ext DebugDeclare %dbg_v %v %null_expr
; CHECK: %main = OpFunction %void None
; CHECK-NEXT: [[entry:%\w+]] = OpLabel
; CHECK: OpStore %v [[v0:%\w+]]
; CHECK-NEXT: = OpExtInst %void [[ext:%\w+]] DebugValue [[dbg_v:%\w+]] [[v0]]
; CHECK: OpSwitch {{%\w+}} [[case0:%\w+]] 0 [[case1:%\w+]] 1 [[case2:%\w+]] 2 [[case3:%\w+]]
; CHECK: OpStore %v [[v1:%\w+]]
; CHECK-NEXT: = OpExtInst %void [[ext]] DebugValue [[dbg_v]] [[v1]]
; CHECK: OpStore %v [[v2:%\w+]]
; CHECK-NEXT: = OpExtInst %void [[ext]] DebugValue [[dbg_v]] [[v2]]
; CHECK: [[phi0:%\w+]] = OpPhi %v4float [[v0]] [[entry]] [[v2]] [[case2]]
; CHECK-NEXT: = OpExtInst %void [[ext]] DebugValue [[dbg_v]] [[phi0]]
; CHECK: OpStore %v [[v3:%\w+]]
; CHECK-NEXT: = OpExtInst %void [[ext]] DebugValue [[dbg_v]] [[v3]]
; CHECK: [[phi1:%\w+]] = OpPhi %v4float [[v0]] [[case0]] [[v1]] [[case1]] [[v3]] [[case3]]
; CHECK-NEXT: = OpExtInst %void [[ext]] DebugValue [[dbg_v]] [[phi1]]
%22 = OpLoad %float %f
%23 = OpConvertFToS %int %22
OpStore %i %23
%24 = OpLoad %int %i
OpSelectionMerge %25 None
OpSwitch %24 %26 0 %27 1 %28 2 %29
%26 = OpLabel
%s1 = OpExtInst %void %ext DebugScope %dbg_main
OpBranch %25
%27 = OpLabel
%s2 = OpExtInst %void %ext DebugScope %dbg_main
%30 = OpLoad %v4float %v
%31 = OpVectorTimesScalar %v4float %30 %float_0_25
OpStore %v %31
OpBranch %25
%28 = OpLabel
%s3 = OpExtInst %void %ext DebugScope %dbg_main
%32 = OpLoad %v4float %v
%33 = OpCompositeConstruct %v4float %float_0_25 %float_0_25 %float_0_25 %float_0_25
%34 = OpFAdd %v4float %32 %33
OpStore %v %34
OpBranch %29
%29 = OpLabel
%s4 = OpExtInst %void %ext DebugScope %dbg_main
%35 = OpLoad %v4float %v
%36 = OpVectorTimesScalar %v4float %35 %float_0_75
OpStore %v %36
OpBranch %25
%25 = OpLabel
%s5 = OpExtInst %void %ext DebugScope %dbg_main
%37 = OpLoad %v4float %v
OpStore %gl_FragColor %37
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(text, true);
}
TEST_F(LocalSSAElimTest, DebugSwapProblem) {
// #version 140
//
// in float fe;
// out float fo;
//
// void main()
// {
// float f1 = 0.0;
// float f2 = 1.0;
// int ie = int(fe);
// for (int i=0; i<ie; i++) {
// float t = f1;
// f1 = f2;
// f2 = t;
// }
// fo = f1;
// }
//
// Because of the swap in the for loop, it generates the following phi
// instructions:
//
// [[phi_f2]] = OpPhi %float %float_1 [[entry]] [[phi_f1]] ..
// [[phi_f1]] = OpPhi %float %float_0 [[entry]] [[phi_f2]] ..
//
// Since they are used as operands by each other, we want to clearly check
// what DebugValue we have to add for them.
const std::string text = R"(
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
%ext = OpExtInstImport "OpenCL.DebugInfo.100"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %fe %fo
OpExecutionMode %main OriginUpperLeft
OpSource GLSL 140
%file_name = OpString "test"
%float_name = OpString "float"
%main_name = OpString "main"
%t_name = OpString "t"
OpName %main "main"
OpName %f1 "f1"
OpName %f2 "f2"
OpName %ie "ie"
OpName %fe "fe"
OpName %i "i"
OpName %t "t"
OpName %fo "fo"
%void = OpTypeVoid
%11 = OpTypeFunction %void
%float = OpTypeFloat 32
%_ptr_Function_float = OpTypePointer Function %float
%float_0 = OpConstant %float 0
%float_1 = OpConstant %float 1
%int = OpTypeInt 32 1
%_ptr_Function_int = OpTypePointer Function %int
%_ptr_Input_float = OpTypePointer Input %float
%fe = OpVariable %_ptr_Input_float Input
%int_0 = OpConstant %int 0
%bool = OpTypeBool
%int_1 = OpConstant %int 1
%uint = OpTypeInt 32 0
%uint_32 = OpConstant %uint 32
%_ptr_Output_float = OpTypePointer Output %float
%fo = OpVariable %_ptr_Output_float Output
; Debug information
%null_expr = OpExtInst %void %ext DebugExpression
%src = OpExtInst %void %ext DebugSource %file_name
%cu = OpExtInst %void %ext DebugCompilationUnit 1 4 %src HLSL
%dbg_tf = OpExtInst %void %ext DebugTypeBasic %float_name %uint_32 Float
%main_ty = OpExtInst %void %ext DebugTypeFunction FlagIsProtected|FlagIsPrivate %void
%dbg_main = OpExtInst %void %ext DebugFunction %main_name %main_ty %src 0 0 %cu %main_name FlagIsProtected|FlagIsPrivate 10 %main
%dbg_f1 = OpExtInst %void %ext DebugLocalVariable %t_name %dbg_tf %src 0 0 %dbg_main FlagIsLocal
%dbg_f2 = OpExtInst %void %ext DebugLocalVariable %t_name %dbg_tf %src 0 0 %dbg_main FlagIsLocal
%dbg_i = OpExtInst %void %ext DebugLocalVariable %t_name %dbg_tf %src 0 0 %dbg_main FlagIsLocal
%main = OpFunction %void None %11
%23 = OpLabel
%s0 = OpExtInst %void %ext DebugScope %dbg_main
%f1 = OpVariable %_ptr_Function_float Function
%f2 = OpVariable %_ptr_Function_float Function
%ie = OpVariable %_ptr_Function_int Function
%i = OpVariable %_ptr_Function_int Function
%t = OpVariable %_ptr_Function_float Function
OpStore %f1 %float_0
OpStore %f2 %float_1
%24 = OpLoad %float %fe
%25 = OpConvertFToS %int %24
OpStore %ie %25
OpStore %i %int_0
; DebugDeclare
%decl0 = OpExtInst %void %ext DebugDeclare %dbg_f1 %f1 %null_expr
%decl1 = OpExtInst %void %ext DebugDeclare %dbg_f2 %f2 %null_expr
%decl2 = OpExtInst %void %ext DebugDeclare %dbg_i %i %null_expr
; CHECK: %main = OpFunction %void None
; CHECK-NEXT: [[entry:%\w+]] = OpLabel
; CHECK: OpStore %f1 %float_0
; CHECK-NEXT: = OpExtInst %void [[ext:%\w+]] DebugValue [[dbg_f1:%\w+]] %float_0
; CHECK: OpStore %f2 %float_1
; CHECK-NEXT: = OpExtInst %void [[ext]] DebugValue [[dbg_f2:%\w+]] %float_1
; CHECK: OpStore %i %int_0
; CHECK-NEXT: = OpExtInst %void [[ext]] DebugValue [[dbg_i:%\w+]] %int_0
; CHECK: [[phi_f2:%\w+]] = OpPhi %float %float_1 [[entry]] [[phi_f1:%\w+]]
; CHECK: [[phi_f1]] = OpPhi %float %float_0 [[entry]] [[phi_f2]]
; CHECK: [[phi_i:%\w+]] = OpPhi %int %int_0 [[entry]]
; CHECK-NEXT: = OpExtInst %void [[ext]] DebugValue [[dbg_f2]] [[phi_f2]]
; CHECK-NEXT: = OpExtInst %void [[ext]] DebugValue [[dbg_f1]] [[phi_f1]]
; CHECK-NEXT: = OpExtInst %void [[ext]] DebugValue [[dbg_i]] [[phi_i]]
OpBranch %26
%26 = OpLabel
%s1 = OpExtInst %void %ext DebugScope %dbg_main
OpLoopMerge %27 %28 None
OpBranch %29
%29 = OpLabel
%s2 = OpExtInst %void %ext DebugScope %dbg_main
%30 = OpLoad %int %i
%31 = OpLoad %int %ie
%32 = OpSLessThan %bool %30 %31
OpBranchConditional %32 %33 %27
%33 = OpLabel
%s3 = OpExtInst %void %ext DebugScope %dbg_main
%34 = OpLoad %float %f1
OpStore %t %34
%35 = OpLoad %float %f2
OpStore %f1 %35
%36 = OpLoad %float %t
OpStore %f2 %36
OpBranch %28
%28 = OpLabel
%s4 = OpExtInst %void %ext DebugScope %dbg_main
%37 = OpLoad %int %i
%38 = OpIAdd %int %37 %int_1
OpStore %i %38
OpBranch %26
%27 = OpLabel
%s5 = OpExtInst %void %ext DebugScope %dbg_main
%39 = OpLoad %float %f1
OpStore %fo %39
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(text, true);
}
TEST_F(LocalSSAElimTest, RemoveDebugDeclareWithoutLoads) {
// Check that the DebugDeclare for c is removed even though its loads
// had been removed previously by single block store/load optimization.
// In the presence of DebugDeclare, single-block can and does remove loads,
// but cannot change the stores into DebugValues and remove the DebugDeclare
// because it is only a per block optimization, not a function optimization.
// So SSA-rewrite must perform this role.
//
// Texture2D g_tColor;
// SamplerState g_sAniso;
//
// struct PS_INPUT
// {
// float2 vTextureCoords2 : TEXCOORD2;
// float2 vTextureCoords3 : TEXCOORD3;
// };
//
// struct PS_OUTPUT
// {
// float4 vColor : SV_Target0;
// };
//
// PS_OUTPUT MainPs(PS_INPUT i)
// {
// PS_OUTPUT ps_output;
// float4 c;
// c = g_tColor.Sample(g_sAniso, i.vTextureCoords2.xy);
// c += g_tColor.Sample(g_sAniso, i.vTextureCoords3.xy);
// ps_output.vColor = c;
// return ps_output;
// }
const std::string text = R"(
OpCapability Shader
%1 = OpExtInstImport "OpenCL.DebugInfo.100"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %MainPs "MainPs" %g_tColor %g_sAniso %in_var_TEXCOORD2 %in_var_TEXCOORD3 %out_var_SV_Target0
OpExecutionMode %MainPs OriginUpperLeft
%22 = OpString "foo.frag"
%26 = OpString "PS_OUTPUT"
%30 = OpString "float"
%33 = OpString "vColor"
%35 = OpString "PS_INPUT"
%40 = OpString "vTextureCoords3"
%42 = OpString "vTextureCoords2"
%44 = OpString "@type.2d.image"
%45 = OpString "type.2d.image"
%47 = OpString "Texture2D.TemplateParam"
%51 = OpString "src.MainPs"
%55 = OpString "c"
%57 = OpString "ps_output"
%60 = OpString "i"
%62 = OpString "@type.sampler"
%63 = OpString "type.sampler"
%65 = OpString "g_sAniso"
%67 = OpString "g_tColor"
OpName %type_2d_image "type.2d.image"
OpName %g_tColor "g_tColor"
OpName %type_sampler "type.sampler"
OpName %g_sAniso "g_sAniso"
OpName %in_var_TEXCOORD2 "in.var.TEXCOORD2"
OpName %in_var_TEXCOORD3 "in.var.TEXCOORD3"
OpName %out_var_SV_Target0 "out.var.SV_Target0"
OpName %MainPs "MainPs"
OpName %PS_INPUT "PS_INPUT"
OpMemberName %PS_INPUT 0 "vTextureCoords2"
OpMemberName %PS_INPUT 1 "vTextureCoords3"
OpName %param_var_i "param.var.i"
OpName %PS_OUTPUT "PS_OUTPUT"
OpMemberName %PS_OUTPUT 0 "vColor"
OpName %type_sampled_image "type.sampled.image"
OpDecorate %in_var_TEXCOORD2 Location 0
OpDecorate %in_var_TEXCOORD3 Location 1
OpDecorate %out_var_SV_Target0 Location 0
OpDecorate %g_tColor DescriptorSet 0
OpDecorate %g_tColor Binding 0
OpDecorate %g_sAniso DescriptorSet 0
OpDecorate %g_sAniso Binding 1
%int = OpTypeInt 32 1
%int_0 = OpConstant %int 0
%int_1 = OpConstant %int 1
%uint = OpTypeInt 32 0
%uint_32 = OpConstant %uint 32
%float = OpTypeFloat 32
%type_2d_image = OpTypeImage %float 2D 2 0 0 1 Unknown
%_ptr_UniformConstant_type_2d_image = OpTypePointer UniformConstant %type_2d_image
%type_sampler = OpTypeSampler
%_ptr_UniformConstant_type_sampler = OpTypePointer UniformConstant %type_sampler
%v2float = OpTypeVector %float 2
%_ptr_Input_v2float = OpTypePointer Input %v2float
%v4float = OpTypeVector %float 4
%_ptr_Output_v4float = OpTypePointer Output %v4float
%void = OpTypeVoid
%uint_128 = OpConstant %uint 128
%uint_0 = OpConstant %uint 0
%uint_64 = OpConstant %uint 64
%69 = OpTypeFunction %void
%PS_INPUT = OpTypeStruct %v2float %v2float
%_ptr_Function_PS_INPUT = OpTypePointer Function %PS_INPUT
%PS_OUTPUT = OpTypeStruct %v4float
%_ptr_Function_PS_OUTPUT = OpTypePointer Function %PS_OUTPUT
%_ptr_Function_v4float = OpTypePointer Function %v4float
%_ptr_Function_v2float = OpTypePointer Function %v2float
%type_sampled_image = OpTypeSampledImage %type_2d_image
%g_tColor = OpVariable %_ptr_UniformConstant_type_2d_image UniformConstant
%g_sAniso = OpVariable %_ptr_UniformConstant_type_sampler UniformConstant
%in_var_TEXCOORD2 = OpVariable %_ptr_Input_v2float Input
%in_var_TEXCOORD3 = OpVariable %_ptr_Input_v2float Input
%out_var_SV_Target0 = OpVariable %_ptr_Output_v4float Output
%43 = OpExtInst %void %1 DebugInfoNone
%59 = OpExtInst %void %1 DebugExpression
%24 = OpExtInst %void %1 DebugSource %22
%25 = OpExtInst %void %1 DebugCompilationUnit 1 4 %24 HLSL
%28 = OpExtInst %void %1 DebugTypeComposite %26 Structure %24 11 1 %25 %26 %uint_128 FlagIsProtected|FlagIsPrivate %29
%31 = OpExtInst %void %1 DebugTypeBasic %30 %uint_32 Float
%32 = OpExtInst %void %1 DebugTypeVector %31 4
%29 = OpExtInst %void %1 DebugTypeMember %33 %32 %24 13 5 %28 %uint_0 %uint_128 FlagIsProtected|FlagIsPrivate
%36 = OpExtInst %void %1 DebugTypeComposite %35 Structure %24 5 1 %25 %35 %uint_128 FlagIsProtected|FlagIsPrivate %37 %38
%39 = OpExtInst %void %1 DebugTypeVector %31 2
%38 = OpExtInst %void %1 DebugTypeMember %40 %39 %24 8 5 %36 %uint_64 %uint_64 FlagIsProtected|FlagIsPrivate
%37 = OpExtInst %void %1 DebugTypeMember %42 %39 %24 7 5 %36 %uint_0 %uint_64 FlagIsProtected|FlagIsPrivate
%46 = OpExtInst %void %1 DebugTypeComposite %44 Class %24 0 0 %25 %45 %43 FlagIsProtected|FlagIsPrivate
%50 = OpExtInst %void %1 DebugTypeFunction FlagIsProtected|FlagIsPrivate %28 %36
%52 = OpExtInst %void %1 DebugFunction %51 %50 %24 16 1 %25 %51 FlagIsProtected|FlagIsPrivate 17 %43
%54 = OpExtInst %void %1 DebugLexicalBlock %24 17 1 %52
%56 = OpExtInst %void %1 DebugLocalVariable %55 %32 %24 20 12 %54 FlagIsLocal
%58 = OpExtInst %void %1 DebugLocalVariable %57 %28 %24 18 15 %54 FlagIsLocal
%61 = OpExtInst %void %1 DebugLocalVariable %60 %36 %24 16 29 %52 FlagIsLocal 1
%64 = OpExtInst %void %1 DebugTypeComposite %62 Structure %24 0 0 %25 %63 %43 FlagIsProtected|FlagIsPrivate
%66 = OpExtInst %void %1 DebugGlobalVariable %65 %64 %24 3 14 %25 %65 %g_sAniso FlagIsDefinition
%68 = OpExtInst %void %1 DebugGlobalVariable %67 %46 %24 1 11 %25 %67 %g_tColor FlagIsDefinition
%MainPs = OpFunction %void None %69
%70 = OpLabel
%135 = OpExtInst %void %1 DebugScope %54
%111 = OpVariable %_ptr_Function_PS_OUTPUT Function
%112 = OpVariable %_ptr_Function_v4float Function
%136 = OpExtInst %void %1 DebugNoScope
%param_var_i = OpVariable %_ptr_Function_PS_INPUT Function
%74 = OpLoad %v2float %in_var_TEXCOORD2
%75 = OpLoad %v2float %in_var_TEXCOORD3
%76 = OpCompositeConstruct %PS_INPUT %74 %75
OpStore %param_var_i %76
%137 = OpExtInst %void %1 DebugScope %52
%115 = OpExtInst %void %1 DebugDeclare %61 %param_var_i %59
%138 = OpExtInst %void %1 DebugScope %54
%116 = OpExtInst %void %1 DebugDeclare %58 %111 %59
%117 = OpExtInst %void %1 DebugDeclare %56 %112 %59
;CHECK-NOT: %117 = OpExtInst %void %1 DebugDeclare %56 %112 %59
OpLine %22 21 9
%118 = OpLoad %type_2d_image %g_tColor
OpLine %22 21 29
%119 = OpLoad %type_sampler %g_sAniso
OpLine %22 21 40
%120 = OpAccessChain %_ptr_Function_v2float %param_var_i %int_0
%121 = OpLoad %v2float %120
OpLine %22 21 9
%122 = OpSampledImage %type_sampled_image %118 %119
%123 = OpImageSampleImplicitLod %v4float %122 %121 None
OpLine %22 21 5
OpStore %112 %123
;CHECK: %140 = OpExtInst %void %1 DebugValue %56 %123 %59
OpLine %22 22 10
%124 = OpLoad %type_2d_image %g_tColor
OpLine %22 22 30
%125 = OpLoad %type_sampler %g_sAniso
OpLine %22 22 41
%126 = OpAccessChain %_ptr_Function_v2float %param_var_i %int_1
%127 = OpLoad %v2float %126
OpLine %22 22 10
%128 = OpSampledImage %type_sampled_image %124 %125
%129 = OpImageSampleImplicitLod %v4float %128 %127 None
OpLine %22 22 7
%131 = OpFAdd %v4float %123 %129
OpLine %22 22 5
OpStore %112 %131
;CHECK: %141 = OpExtInst %void %1 DebugValue %56 %131 %59
OpLine %22 23 5
%133 = OpAccessChain %_ptr_Function_v4float %111 %int_0
OpStore %133 %131
OpLine %22 24 12
%134 = OpLoad %PS_OUTPUT %111
%139 = OpExtInst %void %1 DebugNoScope
%79 = OpCompositeExtract %v4float %134 0
OpStore %out_var_SV_Target0 %79
OpReturn
OpFunctionEnd
)";
SetTargetEnv(SPV_ENV_VULKAN_1_2);
SetAssembleOptions(SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS);
SinglePassRunAndMatch<SSARewritePass>(text, true);
}
// Check support for pointer variables. When pointer variables are used, the
// computation of reaching definitions may need to follow pointer chains.
// See https://github.com/KhronosGroup/SPIRV-Tools/issues/3873 for details.
TEST_F(LocalSSAElimTest, PointerVariables) {
const std::string text = R"(
OpCapability Shader
OpCapability VariablePointers
OpExtension "SPV_KHR_variable_pointers"
OpMemoryModel Logical Simple
OpEntryPoint Fragment %1 "main" %2 %3
OpExecutionMode %1 OriginUpperLeft
%float = OpTypeFloat 32
%void = OpTypeVoid
%6 = OpTypeFunction %void
%_ptr_Input_float = OpTypePointer Input %float
%_ptr_Output_float = OpTypePointer Output %float
%_ptr_Function__ptr_Input_float = OpTypePointer Function %_ptr_Input_float
%2 = OpVariable %_ptr_Input_float Input
%3 = OpVariable %_ptr_Output_float Output
%1 = OpFunction %void None %6
%10 = OpLabel
%11 = OpVariable %_ptr_Function__ptr_Input_float Function
OpStore %11 %2
; CHECK-NOT: %12 = OpLoad %_ptr_Input_float %11
%12 = OpLoad %_ptr_Input_float %11
; CHECK: %13 = OpLoad %float %2
%13 = OpLoad %float %12
OpStore %3 %13
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<SSARewritePass>(text, true);
}
TEST_F(LocalSSAElimTest, FunctionDeclaration) {
// Make sure the pass works with a function declaration that is called.
const std::string text = R"(OpCapability Addresses
OpCapability Linkage
OpCapability Kernel
OpCapability Int8
%1 = OpExtInstImport "OpenCL.std"
OpMemoryModel Physical64 OpenCL
OpEntryPoint Kernel %2 "_Z23julia__1166_kernel_77094Bool"
OpExecutionMode %2 ContractionOff
OpSource Unknown 0
OpDecorate %3 LinkageAttributes "julia_error_7712" Import
%void = OpTypeVoid
%5 = OpTypeFunction %void
%3 = OpFunction %void None %5
OpFunctionEnd
%2 = OpFunction %void None %5
%6 = OpLabel
%7 = OpFunctionCall %void %3
OpReturn
OpFunctionEnd
)";
SinglePassRunAndCheck<SSARewritePass>(text, text, false);
}
// TODO(greg-lunarg): Add tests to verify handling of these cases:
//
// No optimization in the presence of
// access chains
// function calls
// OpCopyMemory?
// unsupported extensions
// Others?
} // namespace
} // namespace opt
} // namespace spvtools