SPIRV-Tools/source/util/huffman_codec.h

386 lines
12 KiB
C
Raw Normal View History

// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Contains utils for reading, writing and debug printing bit streams.
#ifndef LIBSPIRV_UTIL_HUFFMAN_CODEC_H_
#define LIBSPIRV_UTIL_HUFFMAN_CODEC_H_
#include <algorithm>
#include <cassert>
#include <functional>
#include <iomanip>
#include <map>
#include <memory>
#include <ostream>
#include <queue>
#include <sstream>
#include <stack>
#include <tuple>
#include <unordered_map>
#include <vector>
namespace spvutils {
// Used to generate and apply a Huffman coding scheme.
// |Val| is the type of variable being encoded (for example a string or a
// literal).
template <class Val>
class HuffmanCodec {
public:
// Huffman tree node.
struct Node {
Node() {}
// Creates Node from serialization leaving weight and id undefined.
Node(const Val& in_value, uint32_t in_left, uint32_t in_right)
: value(in_value), left(in_left), right(in_right) {}
Val value = Val();
uint32_t weight = 0;
// Ids are issued sequentially starting from 1. Ids are used as an ordering
// tie-breaker, to make sure that the ordering (and resulting coding scheme)
// are consistent accross multiple platforms.
uint32_t id = 0;
// Handles of children.
uint32_t left = 0;
uint32_t right = 0;
};
// Creates Huffman codec from a histogramm.
// Histogramm counts must not be zero.
explicit HuffmanCodec(const std::map<Val, uint32_t>& hist) {
if (hist.empty()) return;
// Heuristic estimate.
nodes_.reserve(3 * hist.size());
// Create NIL.
CreateNode();
// The queue is sorted in ascending order by weight (or by node id if
// weights are equal).
std::vector<uint32_t> queue_vector;
queue_vector.reserve(hist.size());
std::priority_queue<uint32_t, std::vector<uint32_t>,
std::function<bool(uint32_t, uint32_t)>>
queue(std::bind(&HuffmanCodec::LeftIsBigger, this,
std::placeholders::_1, std::placeholders::_2),
std::move(queue_vector));
// Put all leaves in the queue.
for (const auto& pair : hist) {
const uint32_t node = CreateNode();
MutableValueOf(node) = pair.first;
MutableWeightOf(node) = pair.second;
assert(WeightOf(node));
queue.push(node);
}
// Form the tree by combining two subtrees with the least weight,
// and pushing the root of the new tree in the queue.
while (true) {
// We push a node at the end of each iteration, so the queue is never
// supposed to be empty at this point, unless there are no leaves, but
// that case was already handled.
assert(!queue.empty());
const uint32_t right = queue.top();
queue.pop();
// If the queue is empty at this point, then the last node is
// the root of the complete Huffman tree.
if (queue.empty()) {
root_ = right;
break;
}
const uint32_t left = queue.top();
queue.pop();
// Combine left and right into a new tree and push it into the queue.
const uint32_t parent = CreateNode();
MutableWeightOf(parent) = WeightOf(right) + WeightOf(left);
MutableLeftOf(parent) = left;
MutableRightOf(parent) = right;
queue.push(parent);
}
// Traverse the tree and form encoding table.
CreateEncodingTable();
}
// Creates Huffman codec from saved tree structure.
// |nodes| is the list of nodes of the tree, nodes[0] being NIL.
// |root_handle| is the index of the root node.
HuffmanCodec(uint32_t root_handle, std::vector<Node>&& nodes) {
nodes_ = std::move(nodes);
assert(!nodes_.empty());
assert(root_handle > 0 && root_handle < nodes_.size());
assert(!LeftOf(0) && !RightOf(0));
root_ = root_handle;
// Traverse the tree and form encoding table.
CreateEncodingTable();
}
// Serializes the codec in the following text format:
// (<root_handle>, {
// {0, 0, 0},
// {val1, left1, right1},
// {val2, left2, right2},
// ...
// })
std::string SerializeToText(int indent_num_whitespaces) const {
const bool value_is_text = std::is_same<Val, std::string>::value;
const std::string indent1 = std::string(indent_num_whitespaces, ' ');
const std::string indent2 = std::string(indent_num_whitespaces + 2, ' ');
std::stringstream code;
code << "(" << root_ << ", {\n";
for (const Node& node : nodes_) {
code << indent2 << "{";
if (value_is_text) code << "\"";
code << node.value;
if (value_is_text) code << "\"";
code << ", " << node.left << ", " << node.right << "},\n";
}
code << indent1 << "})";
return code.str();
}
// Prints the Huffman tree in the following format:
// w------w------'x'
// w------'y'
// Where w stands for the weight of the node.
// Right tree branches appear above left branches. Taking the right path
// adds 1 to the code, taking the left adds 0.
void PrintTree(std::ostream& out) const { PrintTreeInternal(out, root_, 0); }
// Traverses the tree and prints the Huffman table: value, code
// and optionally node weight for every leaf.
void PrintTable(std::ostream& out, bool print_weights = true) {
std::queue<std::pair<uint32_t, std::string>> queue;
queue.emplace(root_, "");
while (!queue.empty()) {
const uint32_t node = queue.front().first;
const std::string code = queue.front().second;
queue.pop();
if (!RightOf(node) && !LeftOf(node)) {
out << ValueOf(node);
if (print_weights) out << " " << WeightOf(node);
out << " " << code << std::endl;
} else {
if (LeftOf(node)) queue.emplace(LeftOf(node), code + "0");
if (RightOf(node)) queue.emplace(RightOf(node), code + "1");
}
}
}
// Returns the Huffman table. The table was built at at construction time,
// this function just returns a const reference.
const std::unordered_map<Val, std::pair<uint64_t, size_t>>& GetEncodingTable()
const {
return encoding_table_;
}
// Encodes |val| and stores its Huffman code in the lower |num_bits| of
// |bits|. Returns false of |val| is not in the Huffman table.
bool Encode(const Val& val, uint64_t* bits, size_t* num_bits) const {
auto it = encoding_table_.find(val);
if (it == encoding_table_.end()) return false;
*bits = it->second.first;
*num_bits = it->second.second;
return true;
}
// Reads bits one-by-one using callback |read_bit| until a match is found.
// Matching value is stored in |val|. Returns false if |read_bit| terminates
// before a code was mathced.
// |read_bit| has type bool func(bool* bit). When called, the next bit is
// stored in |bit|. |read_bit| returns false if the stream terminates
// prematurely.
bool DecodeFromStream(const std::function<bool(bool*)>& read_bit,
Val* val) const {
uint32_t node = root_;
while (true) {
assert(node);
if (!RightOf(node) && !LeftOf(node)) {
*val = ValueOf(node);
return true;
}
bool go_right;
if (!read_bit(&go_right)) return false;
if (go_right)
node = RightOf(node);
else
node = LeftOf(node);
}
assert(0);
return false;
}
private:
// Returns value of the node referenced by |handle|.
Val ValueOf(uint32_t node) const { return nodes_.at(node).value; }
// Returns left child of |node|.
uint32_t LeftOf(uint32_t node) const { return nodes_.at(node).left; }
// Returns right child of |node|.
uint32_t RightOf(uint32_t node) const { return nodes_.at(node).right; }
// Returns weight of |node|.
uint32_t WeightOf(uint32_t node) const { return nodes_.at(node).weight; }
// Returns id of |node|.
uint32_t IdOf(uint32_t node) const { return nodes_.at(node).id; }
// Returns mutable reference to value of |node|.
Val& MutableValueOf(uint32_t node) {
assert(node);
return nodes_.at(node).value;
}
// Returns mutable reference to handle of left child of |node|.
uint32_t& MutableLeftOf(uint32_t node) {
assert(node);
return nodes_.at(node).left;
}
// Returns mutable reference to handle of right child of |node|.
uint32_t& MutableRightOf(uint32_t node) {
assert(node);
return nodes_.at(node).right;
}
// Returns mutable reference to weight of |node|.
uint32_t& MutableWeightOf(uint32_t node) { return nodes_.at(node).weight; }
// Returns mutable reference to id of |node|.
uint32_t& MutableIdOf(uint32_t node) { return nodes_.at(node).id; }
// Returns true if |left| has bigger weight than |right|. Node ids are
// used as tie-breaker.
bool LeftIsBigger(uint32_t left, uint32_t right) const {
if (WeightOf(left) == WeightOf(right)) {
assert(IdOf(left) != IdOf(right));
return IdOf(left) > IdOf(right);
}
return WeightOf(left) > WeightOf(right);
}
// Prints subtree (helper function used by PrintTree).
void PrintTreeInternal(std::ostream& out, uint32_t node, size_t depth) const {
if (!node) return;
const size_t kTextFieldWidth = 7;
if (!RightOf(node) && !LeftOf(node)) {
out << ValueOf(node) << std::endl;
} else {
if (RightOf(node)) {
std::stringstream label;
label << std::setfill('-') << std::left << std::setw(kTextFieldWidth)
<< WeightOf(RightOf(node));
out << label.str();
PrintTreeInternal(out, RightOf(node), depth + 1);
}
if (LeftOf(node)) {
out << std::string(depth * kTextFieldWidth, ' ');
std::stringstream label;
label << std::setfill('-') << std::left << std::setw(kTextFieldWidth)
<< WeightOf(LeftOf(node));
out << label.str();
PrintTreeInternal(out, LeftOf(node), depth + 1);
}
}
}
// Traverses the Huffman tree and saves paths to the leaves as bit
// sequences to encoding_table_.
void CreateEncodingTable() {
struct Context {
Context(uint32_t in_node, uint64_t in_bits, size_t in_depth)
: node(in_node), bits(in_bits), depth(in_depth) {}
uint32_t node;
// Huffman tree depth cannot exceed 64 as histogramm counts are expected
// to be positive and limited by numeric_limits<uint32_t>::max().
// For practical applications tree depth would be much smaller than 64.
uint64_t bits;
size_t depth;
};
std::queue<Context> queue;
queue.emplace(root_, 0, 0);
while (!queue.empty()) {
const Context& context = queue.front();
const uint32_t node = context.node;
const uint64_t bits = context.bits;
const size_t depth = context.depth;
queue.pop();
if (!RightOf(node) && !LeftOf(node)) {
auto insertion_result = encoding_table_.emplace(
ValueOf(node), std::pair<uint64_t, size_t>(bits, depth));
assert(insertion_result.second);
(void)insertion_result;
} else {
if (LeftOf(node)) queue.emplace(LeftOf(node), bits, depth + 1);
if (RightOf(node))
queue.emplace(RightOf(node), bits | (1ULL << depth), depth + 1);
}
}
}
// Creates new Huffman tree node and stores it in the deleter array.
uint32_t CreateNode() {
const uint32_t handle = static_cast<uint32_t>(nodes_.size());
nodes_.emplace_back(Node());
nodes_.back().id = next_node_id_++;
return handle;
}
// Huffman tree root handle.
uint32_t root_ = 0;
// Huffman tree deleter.
std::vector<Node> nodes_;
// Encoding table value -> {bits, num_bits}.
// Huffman codes are expected to never exceed 64 bit length (this is in fact
// impossible if frequencies are stored as uint32_t).
std::unordered_map<Val, std::pair<uint64_t, size_t>> encoding_table_;
// Next node id issued by CreateNode();
uint32_t next_node_id_ = 1;
};
} // namespace spvutils
#endif // LIBSPIRV_UTIL_HUFFMAN_CODEC_H_