SPIRV-Tools/source/val/validate_function.cpp

360 lines
14 KiB
C++
Raw Normal View History

// Copyright (c) 2018 Google LLC.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include "source/opcode.h"
#include "source/val/instruction.h"
#include "source/val/validate.h"
#include "source/val/validation_state.h"
namespace spvtools {
namespace val {
namespace {
// Returns true if |a| and |b| are instructions defining pointers that point to
// types logically match and the decorations that apply to |b| are a subset
// of the decorations that apply to |a|.
bool DoPointeesLogicallyMatch(val::Instruction* a, val::Instruction* b,
ValidationState_t& _) {
if (a->opcode() != spv::Op::OpTypePointer ||
b->opcode() != spv::Op::OpTypePointer) {
return false;
}
const auto& dec_a = _.id_decorations(a->id());
const auto& dec_b = _.id_decorations(b->id());
for (const auto& dec : dec_b) {
if (std::find(dec_a.begin(), dec_a.end(), dec) == dec_a.end()) {
return false;
}
}
uint32_t a_type = a->GetOperandAs<uint32_t>(2);
uint32_t b_type = b->GetOperandAs<uint32_t>(2);
if (a_type == b_type) {
return true;
}
Instruction* a_type_inst = _.FindDef(a_type);
Instruction* b_type_inst = _.FindDef(b_type);
return _.LogicallyMatch(a_type_inst, b_type_inst, true);
}
spv_result_t ValidateFunction(ValidationState_t& _, const Instruction* inst) {
const auto function_type_id = inst->GetOperandAs<uint32_t>(3);
const auto function_type = _.FindDef(function_type_id);
if (!function_type || spv::Op::OpTypeFunction != function_type->opcode()) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpFunction Function Type <id> " << _.getIdName(function_type_id)
<< " is not a function type.";
}
const auto return_id = function_type->GetOperandAs<uint32_t>(1);
if (return_id != inst->type_id()) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpFunction Result Type <id> " << _.getIdName(inst->type_id())
<< " does not match the Function Type's return type <id> "
<< _.getIdName(return_id) << ".";
}
const std::vector<spv::Op> acceptable = {
spv::Op::OpGroupDecorate,
spv::Op::OpDecorate,
spv::Op::OpEnqueueKernel,
spv::Op::OpEntryPoint,
spv::Op::OpExecutionMode,
spv::Op::OpExecutionModeId,
spv::Op::OpFunctionCall,
spv::Op::OpGetKernelNDrangeSubGroupCount,
spv::Op::OpGetKernelNDrangeMaxSubGroupSize,
spv::Op::OpGetKernelWorkGroupSize,
spv::Op::OpGetKernelPreferredWorkGroupSizeMultiple,
spv::Op::OpGetKernelLocalSizeForSubgroupCount,
spv::Op::OpGetKernelMaxNumSubgroups,
spv::Op::OpName};
for (auto& pair : inst->uses()) {
const auto* use = pair.first;
if (std::find(acceptable.begin(), acceptable.end(), use->opcode()) ==
2019-12-18 23:10:29 +00:00
acceptable.end() &&
!use->IsNonSemantic() && !use->IsDebugInfo()) {
return _.diag(SPV_ERROR_INVALID_ID, use)
<< "Invalid use of function result id " << _.getIdName(inst->id())
<< ".";
}
}
return SPV_SUCCESS;
}
spv_result_t ValidateFunctionParameter(ValidationState_t& _,
const Instruction* inst) {
// NOTE: Find OpFunction & ensure OpFunctionParameter is not out of place.
size_t param_index = 0;
size_t inst_num = inst->LineNum() - 1;
if (inst_num == 0) {
return _.diag(SPV_ERROR_INVALID_LAYOUT, inst)
<< "Function parameter cannot be the first instruction.";
}
auto func_inst = &_.ordered_instructions()[inst_num];
while (--inst_num) {
func_inst = &_.ordered_instructions()[inst_num];
if (func_inst->opcode() == spv::Op::OpFunction) {
break;
} else if (func_inst->opcode() == spv::Op::OpFunctionParameter) {
++param_index;
}
}
if (func_inst->opcode() != spv::Op::OpFunction) {
return _.diag(SPV_ERROR_INVALID_LAYOUT, inst)
<< "Function parameter must be preceded by a function.";
}
const auto function_type_id = func_inst->GetOperandAs<uint32_t>(3);
const auto function_type = _.FindDef(function_type_id);
if (!function_type) {
return _.diag(SPV_ERROR_INVALID_ID, func_inst)
<< "Missing function type definition.";
}
if (param_index >= function_type->words().size() - 3) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Too many OpFunctionParameters for " << func_inst->id()
<< ": expected " << function_type->words().size() - 3
<< " based on the function's type";
}
const auto param_type =
_.FindDef(function_type->GetOperandAs<uint32_t>(param_index + 2));
if (!param_type || inst->type_id() != param_type->id()) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpFunctionParameter Result Type <id> "
<< _.getIdName(inst->type_id())
<< " does not match the OpTypeFunction parameter "
"type of the same index.";
}
// Validate that PhysicalStorageBuffer have one of Restrict, Aliased,
// RestrictPointer, or AliasedPointer.
auto param_nonarray_type_id = param_type->id();
while (_.GetIdOpcode(param_nonarray_type_id) == spv::Op::OpTypeArray) {
param_nonarray_type_id =
_.FindDef(param_nonarray_type_id)->GetOperandAs<uint32_t>(1u);
}
if (_.GetIdOpcode(param_nonarray_type_id) == spv::Op::OpTypePointer) {
auto param_nonarray_type = _.FindDef(param_nonarray_type_id);
if (param_nonarray_type->GetOperandAs<spv::StorageClass>(1u) ==
spv::StorageClass::PhysicalStorageBuffer) {
// check for Aliased or Restrict
const auto& decorations = _.id_decorations(inst->id());
bool foundAliased = std::any_of(
decorations.begin(), decorations.end(), [](const Decoration& d) {
return spv::Decoration::Aliased == d.dec_type();
});
bool foundRestrict = std::any_of(
decorations.begin(), decorations.end(), [](const Decoration& d) {
return spv::Decoration::Restrict == d.dec_type();
});
if (!foundAliased && !foundRestrict) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpFunctionParameter " << inst->id()
<< ": expected Aliased or Restrict for PhysicalStorageBuffer "
"pointer.";
}
if (foundAliased && foundRestrict) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpFunctionParameter " << inst->id()
<< ": can't specify both Aliased and Restrict for "
"PhysicalStorageBuffer pointer.";
}
} else {
const auto pointee_type_id =
param_nonarray_type->GetOperandAs<uint32_t>(2);
const auto pointee_type = _.FindDef(pointee_type_id);
if (spv::Op::OpTypePointer == pointee_type->opcode() &&
pointee_type->GetOperandAs<spv::StorageClass>(1u) ==
spv::StorageClass::PhysicalStorageBuffer) {
// check for AliasedPointer/RestrictPointer
const auto& decorations = _.id_decorations(inst->id());
bool foundAliased = std::any_of(
decorations.begin(), decorations.end(), [](const Decoration& d) {
return spv::Decoration::AliasedPointer == d.dec_type();
});
bool foundRestrict = std::any_of(
decorations.begin(), decorations.end(), [](const Decoration& d) {
return spv::Decoration::RestrictPointer == d.dec_type();
});
if (!foundAliased && !foundRestrict) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpFunctionParameter " << inst->id()
<< ": expected AliasedPointer or RestrictPointer for "
"PhysicalStorageBuffer pointer.";
}
if (foundAliased && foundRestrict) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpFunctionParameter " << inst->id()
<< ": can't specify both AliasedPointer and "
"RestrictPointer for PhysicalStorageBuffer pointer.";
}
}
}
}
return SPV_SUCCESS;
}
spv_result_t ValidateFunctionCall(ValidationState_t& _,
const Instruction* inst) {
const auto function_id = inst->GetOperandAs<uint32_t>(2);
const auto function = _.FindDef(function_id);
if (!function || spv::Op::OpFunction != function->opcode()) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpFunctionCall Function <id> " << _.getIdName(function_id)
<< " is not a function.";
}
auto return_type = _.FindDef(function->type_id());
if (!return_type || return_type->id() != inst->type_id()) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpFunctionCall Result Type <id> " << _.getIdName(inst->type_id())
<< "s type does not match Function <id> "
<< _.getIdName(return_type->id()) << "s return type.";
}
const auto function_type_id = function->GetOperandAs<uint32_t>(3);
const auto function_type = _.FindDef(function_type_id);
if (!function_type || function_type->opcode() != spv::Op::OpTypeFunction) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Missing function type definition.";
}
const auto function_call_arg_count = inst->words().size() - 4;
const auto function_param_count = function_type->words().size() - 3;
if (function_param_count != function_call_arg_count) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpFunctionCall Function <id>'s parameter count does not match "
"the argument count.";
}
for (size_t argument_index = 3, param_index = 2;
argument_index < inst->operands().size();
argument_index++, param_index++) {
const auto argument_id = inst->GetOperandAs<uint32_t>(argument_index);
const auto argument = _.FindDef(argument_id);
if (!argument) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Missing argument " << argument_index - 3 << " definition.";
}
const auto argument_type = _.FindDef(argument->type_id());
if (!argument_type) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Missing argument " << argument_index - 3
<< " type definition.";
}
const auto parameter_type_id =
function_type->GetOperandAs<uint32_t>(param_index);
const auto parameter_type = _.FindDef(parameter_type_id);
if (!parameter_type || argument_type->id() != parameter_type->id()) {
if (!_.options()->before_hlsl_legalization ||
!DoPointeesLogicallyMatch(argument_type, parameter_type, _)) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpFunctionCall Argument <id> " << _.getIdName(argument_id)
<< "s type does not match Function <id> "
<< _.getIdName(parameter_type_id) << "s parameter type.";
}
}
if (_.addressing_model() == spv::AddressingModel::Logical) {
if (parameter_type->opcode() == spv::Op::OpTypePointer &&
!_.options()->relax_logical_pointer) {
spv::StorageClass sc =
parameter_type->GetOperandAs<spv::StorageClass>(1u);
// Validate which storage classes can be pointer operands.
switch (sc) {
case spv::StorageClass::UniformConstant:
case spv::StorageClass::Function:
case spv::StorageClass::Private:
case spv::StorageClass::Workgroup:
case spv::StorageClass::AtomicCounter:
// These are always allowed.
break;
case spv::StorageClass::StorageBuffer:
if (!_.features().variable_pointers) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "StorageBuffer pointer operand "
<< _.getIdName(argument_id)
<< " requires a variable pointers capability";
}
break;
default:
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Invalid storage class for pointer operand "
<< _.getIdName(argument_id);
}
// Validate memory object declaration requirements.
if (argument->opcode() != spv::Op::OpVariable &&
argument->opcode() != spv::Op::OpFunctionParameter) {
const bool ssbo_vptr = _.features().variable_pointers &&
sc == spv::StorageClass::StorageBuffer;
const bool wg_vptr =
_.HasCapability(spv::Capability::VariablePointers) &&
sc == spv::StorageClass::Workgroup;
const bool uc_ptr = sc == spv::StorageClass::UniformConstant;
if (!ssbo_vptr && !wg_vptr && !uc_ptr) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Pointer operand " << _.getIdName(argument_id)
<< " must be a memory object declaration";
}
}
}
}
}
return SPV_SUCCESS;
}
} // namespace
spv_result_t FunctionPass(ValidationState_t& _, const Instruction* inst) {
switch (inst->opcode()) {
case spv::Op::OpFunction:
if (auto error = ValidateFunction(_, inst)) return error;
break;
case spv::Op::OpFunctionParameter:
if (auto error = ValidateFunctionParameter(_, inst)) return error;
break;
case spv::Op::OpFunctionCall:
if (auto error = ValidateFunctionCall(_, inst)) return error;
break;
default:
break;
}
return SPV_SUCCESS;
}
} // namespace val
} // namespace spvtools