SPIRV-Tools/test/ValidateID.cpp

1525 lines
38 KiB
C++
Raw Normal View History

2016-01-07 18:44:22 +00:00
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and/or associated documentation files (the
// "Materials"), to deal in the Materials without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Materials, and to
// permit persons to whom the Materials are furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Materials.
//
// MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS
// KHRONOS STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS
// SPECIFICATIONS AND HEADER INFORMATION ARE LOCATED AT
// https://www.khronos.org/registry/
//
// THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
// MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
#include "UnitSPIRV.h"
// NOTE: The tests in this file are ONLY testing ID usage, there for the input
// SPIR-V does not follow the logical layout rules from the spec in all cases in
// order to makes the tests smaller. Validation of the whole module is handled
// in stages, ID validation is only one of these stages. All validation stages
// are stand alone.
namespace {
class ValidateID : public ::testing::Test {
public:
virtual void TearDown() { spvBinaryDestroy(binary); }
spv_const_binary get_const_binary() { return spv_const_binary(binary); }
spv_binary binary;
};
#define CHECK(str, expected) \
spv_diagnostic diagnostic; \
spv_context context = spvContextCreate(); \
spv_result_t error = \
spvTextToBinary(context, str, strlen(str), &binary, &diagnostic); \
if (error) { \
spvDiagnosticPrint(diagnostic); \
spvDiagnosticDestroy(diagnostic); \
ASSERT_EQ(SPV_SUCCESS, error); \
} \
spv_result_t result = spvValidate(context, get_const_binary(), \
SPV_VALIDATE_ID_BIT, &diagnostic); \
if (SPV_SUCCESS != result) { \
spvDiagnosticPrint(diagnostic); \
spvDiagnosticDestroy(diagnostic); \
} \
ASSERT_EQ(expected, result); \
spvContextDestroy(context);
// TODO: OpUndef
TEST_F(ValidateID, OpName) {
const char* spirv = R"(
OpName %2 "name"
%1 = OpTypeInt 32 0
%2 = OpTypePointer UniformConstant %1
%3 = OpVariable %2 UniformConstant)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpMemberNameGood) {
const char* spirv = R"(
OpMemberName %2 0 "foo"
%1 = OpTypeInt 32 0
%2 = OpTypeStruct %1)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpMemberNameTypeBad) {
const char* spirv = R"(
OpMemberName %1 0 "foo"
%1 = OpTypeInt 32 0)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpMemberNameMemberBad) {
const char* spirv = R"(
OpMemberName %2 1 "foo"
%1 = OpTypeInt 32 0
%2 = OpTypeStruct %1)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpLineGood) {
const char* spirv = R"(
%1 = OpString "/path/to/source.file"
OpLine %1 0 0
%2 = OpTypeInt 32 0
%3 = OpTypePointer Generic %2
%4 = OpVariable %3 Generic)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpLineFileBad) {
const char* spirv = R"(
OpLine %2 0 0
%2 = OpTypeInt 32 0
%3 = OpTypePointer Generic %2
%4 = OpVariable %3 Generic)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpDecorateGood) {
const char* spirv = R"(
OpDecorate %2 GLSLShared
%1 = OpTypeInt 64 0
%2 = OpTypeStruct %1 %1)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpDecorateBad) {
const char* spirv = R"(
OpDecorate %1 GLSLShared)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpMemberDecorateGood) {
const char* spirv = R"(
OpMemberDecorate %2 0 Uniform
%1 = OpTypeInt 32 0
%2 = OpTypeStruct %1 %1)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpMemberDecorateBad) {
const char* spirv = R"(
OpMemberDecorate %1 0 Uniform
%1 = OpTypeInt 32 0)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpMemberDecorateMemberBad) {
const char* spirv = R"(
OpMemberDecorate %2 3 Uniform
%1 = OpTypeInt 32 0
%2 = OpTypeStruct %1 %1)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpGroupDecorateGood) {
const char* spirv = R"(
%1 = OpDecorationGroup
OpDecorate %1 Uniform
OpDecorate %1 GLSLShared
OpGroupDecorate %1 %3 %4
%2 = OpTypeInt 32 0
%3 = OpConstant %2 42
%4 = OpConstant %2 23)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpGroupDecorateDecorationGroupBad) {
const char* spirv = R"(
OpGroupDecorate %2 %3 %4
%2 = OpTypeInt 32 0
%3 = OpConstant %2 42
%4 = OpConstant %2 23)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpGroupDecorateTargetBad) {
const char* spirv = R"(
%1 = OpDecorationGroup
OpDecorate %1 Uniform
OpDecorate %1 GLSLShared
OpGroupDecorate %1 %3
%2 = OpTypeInt 32 0)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
// TODO: OpGroupMemberDecorate
// TODO: OpExtInst
TEST_F(ValidateID, OpEntryPointGood) {
const char* spirv = R"(
Use opcode operand definitions from SPIR-V specification generator. The assembler and disassembler now use a dynamically adjusted sequence of expected operand types. (Internally, it is a deque, for readability.) Both parsers repeatedly pull an expected operand type from the left of this pattern list, and try to match the next input token against it. The expected pattern is adjusted during the parse to accommodate: - an extended instruction's expected operands, depending on the extended instruction's index. - when an operand itself has operands - to handle sequences of zero or more operands, or pairs of operands. These are expanded lazily during the parse. Adds spv::OperandClass from the SPIR-V specification generator. Modifies spv_operand_desc_t: - adds hasResult, hasType, and operandClass array to the opcode description type. - "wordCount" is replaced with "numTypes", which counts the number of entries in operandTypes. And each of those describes a *logical* operand, including the type id for the instruction, and the result id for the instruction. A logical operand could be variable-width, such as a literal string. Adds opcode.inc, an automatically-generated table of operation descriptions, with one line to describe each core instruction. Externally, we have modified the SPIR-V spec doc generator to emit this file. (We have hacked this copy to use the old semantics for OpLine.) Inside the assembler, parsing an operand may fail with new error code SPV_FAIL_MATCH. For an optional operand, this is not fatal, but should trigger backtracking at a higher level. The spvTextIsStartOfNewInst checks the case of the third letter of what might be an opcode. So now, "OpenCL" does not look like an opcode name. In assembly, the EntryPoint name field is mandatory, but can be an empty string. Adjust tests for changes to: - OpSampedImage - OpTypeSampler
2015-08-27 17:03:52 +00:00
OpEntryPoint GLCompute %3 ""
%1 = OpTypeVoid
%2 = OpTypeFunction %1
%3 = OpFunction %1 None %2
%4 = OpLabel
OpReturn
OpFunctionEnd
)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpEntryPointFunctionBad) {
const char* spirv = R"(
Use opcode operand definitions from SPIR-V specification generator. The assembler and disassembler now use a dynamically adjusted sequence of expected operand types. (Internally, it is a deque, for readability.) Both parsers repeatedly pull an expected operand type from the left of this pattern list, and try to match the next input token against it. The expected pattern is adjusted during the parse to accommodate: - an extended instruction's expected operands, depending on the extended instruction's index. - when an operand itself has operands - to handle sequences of zero or more operands, or pairs of operands. These are expanded lazily during the parse. Adds spv::OperandClass from the SPIR-V specification generator. Modifies spv_operand_desc_t: - adds hasResult, hasType, and operandClass array to the opcode description type. - "wordCount" is replaced with "numTypes", which counts the number of entries in operandTypes. And each of those describes a *logical* operand, including the type id for the instruction, and the result id for the instruction. A logical operand could be variable-width, such as a literal string. Adds opcode.inc, an automatically-generated table of operation descriptions, with one line to describe each core instruction. Externally, we have modified the SPIR-V spec doc generator to emit this file. (We have hacked this copy to use the old semantics for OpLine.) Inside the assembler, parsing an operand may fail with new error code SPV_FAIL_MATCH. For an optional operand, this is not fatal, but should trigger backtracking at a higher level. The spvTextIsStartOfNewInst checks the case of the third letter of what might be an opcode. So now, "OpenCL" does not look like an opcode name. In assembly, the EntryPoint name field is mandatory, but can be an empty string. Adjust tests for changes to: - OpSampedImage - OpTypeSampler
2015-08-27 17:03:52 +00:00
OpEntryPoint GLCompute %1 ""
%1 = OpTypeVoid)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpEntryPointParameterCountBad) {
const char* spirv = R"(
Use opcode operand definitions from SPIR-V specification generator. The assembler and disassembler now use a dynamically adjusted sequence of expected operand types. (Internally, it is a deque, for readability.) Both parsers repeatedly pull an expected operand type from the left of this pattern list, and try to match the next input token against it. The expected pattern is adjusted during the parse to accommodate: - an extended instruction's expected operands, depending on the extended instruction's index. - when an operand itself has operands - to handle sequences of zero or more operands, or pairs of operands. These are expanded lazily during the parse. Adds spv::OperandClass from the SPIR-V specification generator. Modifies spv_operand_desc_t: - adds hasResult, hasType, and operandClass array to the opcode description type. - "wordCount" is replaced with "numTypes", which counts the number of entries in operandTypes. And each of those describes a *logical* operand, including the type id for the instruction, and the result id for the instruction. A logical operand could be variable-width, such as a literal string. Adds opcode.inc, an automatically-generated table of operation descriptions, with one line to describe each core instruction. Externally, we have modified the SPIR-V spec doc generator to emit this file. (We have hacked this copy to use the old semantics for OpLine.) Inside the assembler, parsing an operand may fail with new error code SPV_FAIL_MATCH. For an optional operand, this is not fatal, but should trigger backtracking at a higher level. The spvTextIsStartOfNewInst checks the case of the third letter of what might be an opcode. So now, "OpenCL" does not look like an opcode name. In assembly, the EntryPoint name field is mandatory, but can be an empty string. Adjust tests for changes to: - OpSampedImage - OpTypeSampler
2015-08-27 17:03:52 +00:00
OpEntryPoint GLCompute %3 ""
%1 = OpTypeVoid
%2 = OpTypeFunction %1 %1
%3 = OpFunction %1 None %2
%4 = OpLabel
OpReturn
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpEntryPointReturnTypeBad) {
const char* spirv = R"(
Use opcode operand definitions from SPIR-V specification generator. The assembler and disassembler now use a dynamically adjusted sequence of expected operand types. (Internally, it is a deque, for readability.) Both parsers repeatedly pull an expected operand type from the left of this pattern list, and try to match the next input token against it. The expected pattern is adjusted during the parse to accommodate: - an extended instruction's expected operands, depending on the extended instruction's index. - when an operand itself has operands - to handle sequences of zero or more operands, or pairs of operands. These are expanded lazily during the parse. Adds spv::OperandClass from the SPIR-V specification generator. Modifies spv_operand_desc_t: - adds hasResult, hasType, and operandClass array to the opcode description type. - "wordCount" is replaced with "numTypes", which counts the number of entries in operandTypes. And each of those describes a *logical* operand, including the type id for the instruction, and the result id for the instruction. A logical operand could be variable-width, such as a literal string. Adds opcode.inc, an automatically-generated table of operation descriptions, with one line to describe each core instruction. Externally, we have modified the SPIR-V spec doc generator to emit this file. (We have hacked this copy to use the old semantics for OpLine.) Inside the assembler, parsing an operand may fail with new error code SPV_FAIL_MATCH. For an optional operand, this is not fatal, but should trigger backtracking at a higher level. The spvTextIsStartOfNewInst checks the case of the third letter of what might be an opcode. So now, "OpenCL" does not look like an opcode name. In assembly, the EntryPoint name field is mandatory, but can be an empty string. Adjust tests for changes to: - OpSampedImage - OpTypeSampler
2015-08-27 17:03:52 +00:00
OpEntryPoint GLCompute %3 ""
%1 = OpTypeInt 32 0
%2 = OpTypeFunction %1
%3 = OpFunction %1 None %2
%4 = OpLabel
OpReturn
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpExecutionModeGood) {
const char* spirv = R"(
Use opcode operand definitions from SPIR-V specification generator. The assembler and disassembler now use a dynamically adjusted sequence of expected operand types. (Internally, it is a deque, for readability.) Both parsers repeatedly pull an expected operand type from the left of this pattern list, and try to match the next input token against it. The expected pattern is adjusted during the parse to accommodate: - an extended instruction's expected operands, depending on the extended instruction's index. - when an operand itself has operands - to handle sequences of zero or more operands, or pairs of operands. These are expanded lazily during the parse. Adds spv::OperandClass from the SPIR-V specification generator. Modifies spv_operand_desc_t: - adds hasResult, hasType, and operandClass array to the opcode description type. - "wordCount" is replaced with "numTypes", which counts the number of entries in operandTypes. And each of those describes a *logical* operand, including the type id for the instruction, and the result id for the instruction. A logical operand could be variable-width, such as a literal string. Adds opcode.inc, an automatically-generated table of operation descriptions, with one line to describe each core instruction. Externally, we have modified the SPIR-V spec doc generator to emit this file. (We have hacked this copy to use the old semantics for OpLine.) Inside the assembler, parsing an operand may fail with new error code SPV_FAIL_MATCH. For an optional operand, this is not fatal, but should trigger backtracking at a higher level. The spvTextIsStartOfNewInst checks the case of the third letter of what might be an opcode. So now, "OpenCL" does not look like an opcode name. In assembly, the EntryPoint name field is mandatory, but can be an empty string. Adjust tests for changes to: - OpSampedImage - OpTypeSampler
2015-08-27 17:03:52 +00:00
OpEntryPoint GLCompute %3 ""
OpExecutionMode %3 LocalSize 1 1 1
%1 = OpTypeVoid
%2 = OpTypeFunction %1
%3 = OpFunction %1 None %2
%4 = OpLabel
OpReturn
OpFunctionEnd)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpExecutionModeEntryPointMissing) {
const char* spirv = R"(
OpExecutionMode %3 LocalSize 1 1 1
%1 = OpTypeVoid
%2 = OpTypeFunction %1
%3 = OpFunction %1 None %2
%4 = OpLabel
OpReturn
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpExecutionModeEntryPointBad) {
const char* spirv = R"(
OpEntryPoint GLCompute %3 "" %a
OpExecutionMode %a LocalSize 1 1 1
%void = OpTypeVoid
%ptr = OpTypePointer Input %void
%a = OpVariable %ptr Input
%2 = OpTypeFunction %void
%3 = OpFunction %void None %2
%4 = OpLabel
OpReturn
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpTypeVectorFloat) {
const char* spirv = R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpTypeVectorInt) {
const char* spirv = R"(
%1 = OpTypeInt 32 1
%2 = OpTypeVector %1 4)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpTypeVectorUInt) {
const char* spirv = R"(
%1 = OpTypeInt 64 0
%2 = OpTypeVector %1 4)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpTypeVectorBool) {
const char* spirv = R"(
%1 = OpTypeBool
%2 = OpTypeVector %1 4)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpTypeVectorComponentTypeBad) {
const char* spirv = R"(
%1 = OpTypeFloat 32
%2 = OpTypePointer UniformConstant %1
%3 = OpTypeVector %2 4)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpTypeMatrixGood) {
const char* spirv = R"(
%1 = OpTypeInt 32 0
%2 = OpTypeVector %1 2
%3 = OpTypeMatrix %2 3)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpTypeMatrixColumnTypeBad) {
const char* spirv = R"(
%1 = OpTypeInt 32 0
%2 = OpTypeMatrix %1 3)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpTypeSamplerGood) {
Use opcode operand definitions from SPIR-V specification generator. The assembler and disassembler now use a dynamically adjusted sequence of expected operand types. (Internally, it is a deque, for readability.) Both parsers repeatedly pull an expected operand type from the left of this pattern list, and try to match the next input token against it. The expected pattern is adjusted during the parse to accommodate: - an extended instruction's expected operands, depending on the extended instruction's index. - when an operand itself has operands - to handle sequences of zero or more operands, or pairs of operands. These are expanded lazily during the parse. Adds spv::OperandClass from the SPIR-V specification generator. Modifies spv_operand_desc_t: - adds hasResult, hasType, and operandClass array to the opcode description type. - "wordCount" is replaced with "numTypes", which counts the number of entries in operandTypes. And each of those describes a *logical* operand, including the type id for the instruction, and the result id for the instruction. A logical operand could be variable-width, such as a literal string. Adds opcode.inc, an automatically-generated table of operation descriptions, with one line to describe each core instruction. Externally, we have modified the SPIR-V spec doc generator to emit this file. (We have hacked this copy to use the old semantics for OpLine.) Inside the assembler, parsing an operand may fail with new error code SPV_FAIL_MATCH. For an optional operand, this is not fatal, but should trigger backtracking at a higher level. The spvTextIsStartOfNewInst checks the case of the third letter of what might be an opcode. So now, "OpenCL" does not look like an opcode name. In assembly, the EntryPoint name field is mandatory, but can be an empty string. Adjust tests for changes to: - OpSampedImage - OpTypeSampler
2015-08-27 17:03:52 +00:00
// In Rev31, OpTypeSampler takes no arguments.
const char* spirv = R"(
Use opcode operand definitions from SPIR-V specification generator. The assembler and disassembler now use a dynamically adjusted sequence of expected operand types. (Internally, it is a deque, for readability.) Both parsers repeatedly pull an expected operand type from the left of this pattern list, and try to match the next input token against it. The expected pattern is adjusted during the parse to accommodate: - an extended instruction's expected operands, depending on the extended instruction's index. - when an operand itself has operands - to handle sequences of zero or more operands, or pairs of operands. These are expanded lazily during the parse. Adds spv::OperandClass from the SPIR-V specification generator. Modifies spv_operand_desc_t: - adds hasResult, hasType, and operandClass array to the opcode description type. - "wordCount" is replaced with "numTypes", which counts the number of entries in operandTypes. And each of those describes a *logical* operand, including the type id for the instruction, and the result id for the instruction. A logical operand could be variable-width, such as a literal string. Adds opcode.inc, an automatically-generated table of operation descriptions, with one line to describe each core instruction. Externally, we have modified the SPIR-V spec doc generator to emit this file. (We have hacked this copy to use the old semantics for OpLine.) Inside the assembler, parsing an operand may fail with new error code SPV_FAIL_MATCH. For an optional operand, this is not fatal, but should trigger backtracking at a higher level. The spvTextIsStartOfNewInst checks the case of the third letter of what might be an opcode. So now, "OpenCL" does not look like an opcode name. In assembly, the EntryPoint name field is mandatory, but can be an empty string. Adjust tests for changes to: - OpSampedImage - OpTypeSampler
2015-08-27 17:03:52 +00:00
%s = OpTypeSampler)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpTypeArrayGood) {
const char* spirv = R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 1
%3 = OpTypeArray %1 %2)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpTypeArrayElementTypeBad) {
const char* spirv = R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 1
%3 = OpTypeArray %2 %2)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpTypeArrayLengthBad) {
const char* spirv = R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 0
%3 = OpTypeArray %1 %2)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpTypeRuntimeArrayGood) {
const char* spirv = R"(
%1 = OpTypeInt 32 0
%2 = OpTypeRuntimeArray %1)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpTypeRuntimeArrayBad) {
const char* spirv = R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 0
%3 = OpTypeRuntimeArray %2)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
// TODO: Object of this type can only be created with OpVariable using the
// Unifrom Storage Class
TEST_F(ValidateID, OpTypeStructGood) {
const char* spirv = R"(
%1 = OpTypeInt 32 0
%2 = OpTypeFloat 64
%3 = OpTypePointer Generic %1
%4 = OpTypeStruct %1 %2 %3)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpTypeStructMemberTypeBad) {
const char* spirv = R"(
%1 = OpTypeInt 32 0
%2 = OpTypeFloat 64
%3 = OpConstant %2 0.0
%4 = OpTypeStruct %1 %2 %3)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpTypePointerGood) {
const char* spirv = R"(
%1 = OpTypeInt 32 0
%2 = OpTypePointer Generic %1)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpTypePointerBad) {
const char* spirv = R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 0
%3 = OpTypePointer Generic %2)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpTypeFunctionGood) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeFunction %1)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpTypeFunctionReturnTypeBad) {
const char* spirv = R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 0
%3 = OpTypeFunction %2)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpTypeFunctionParameterBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpConstant %2 0
%4 = OpTypeFunction %1 %2 %3)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpTypePipeGood) {
const char* spirv = R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 16
%3 = OpTypePipe ReadOnly)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpConstantTrueGood) {
const char* spirv = R"(
%1 = OpTypeBool
%2 = OpConstantTrue %1)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpConstantTrueBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpConstantTrue %1)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpConstantFalseGood) {
const char* spirv = R"(
%1 = OpTypeBool
%2 = OpConstantTrue %1)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpConstantFalseBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpConstantFalse %1)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpConstantGood) {
const char* spirv = R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 1)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpConstantBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpConstant !1 !0)";
// The expected failure code is implementation dependent (currently
// INVALID_BINARY because the binary parser catches these cases) and may
// change over time, but this must always fail.
CHECK(spirv, SPV_ERROR_INVALID_BINARY);
}
TEST_F(ValidateID, OpConstantCompositeVectorGood) {
const char* spirv = R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%3 = OpConstant %1 3.14
%4 = OpConstantComposite %2 %3 %3 %3 %3)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpConstantCompositeVectorResultTypeBad) {
const char* spirv = R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%3 = OpConstant %1 3.14
%4 = OpConstantComposite %1 %3 %3 %3 %3)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpConstantCompositeVectorConstituentBad) {
const char* spirv = R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%4 = OpTypeInt 32 0
%3 = OpConstant %1 3.14
%5 = OpConstant %4 42
%6 = OpConstantComposite %2 %3 %5 %3 %3)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpConstantCompositeMatrixGood) {
const char* spirv = R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%3 = OpTypeMatrix %2 4
%4 = OpConstant %1 1.0
2015-08-24 20:27:02 +00:00
%5 = OpConstant %1 0.0
%6 = OpConstantComposite %2 %4 %5 %5 %5
%7 = OpConstantComposite %2 %5 %4 %5 %5
%8 = OpConstantComposite %2 %5 %5 %4 %5
%9 = OpConstantComposite %2 %5 %5 %5 %4
%10 = OpConstantComposite %3 %6 %7 %8 %9)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpConstantCompositeMatrixConstituentBad) {
const char* spirv = R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%11 = OpTypeVector %1 3
%3 = OpTypeMatrix %2 4
%4 = OpConstant %1 1.0
%5 = OpConstant %1 0.0
%6 = OpConstantComposite %2 %4 %5 %5 %5
%7 = OpConstantComposite %2 %5 %4 %5 %5
%8 = OpConstantComposite %2 %5 %5 %4 %5
%9 = OpConstantComposite %11 %5 %5 %5
%10 = OpConstantComposite %3 %6 %7 %8 %9)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpConstantCompositeMatrixColumnTypeBad) {
const char* spirv = R"(
%1 = OpTypeInt 32 0
%2 = OpTypeFloat 32
%3 = OpTypeVector %1 2
%4 = OpTypeVector %3 2
%5 = OpTypeMatrix %2 2
%6 = OpConstant %1 42
%7 = OpConstant %2 3.14
%8 = OpConstantComposite %3 %6 %6
%9 = OpConstantComposite %4 %7 %7
%10 = OpConstantComposite %5 %8 %9)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpConstantCompositeArrayGood) {
const char* spirv = R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 4
%3 = OpTypeArray %1 %2
%4 = OpConstantComposite %3 %2 %2 %2 %2)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpConstantCompositeArrayConstConstituentBad) {
const char* spirv = R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 4
%3 = OpTypeArray %1 %2
%4 = OpConstantComposite %3 %2 %2 %2 %1)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpConstantCompositeArrayConstituentBad) {
const char* spirv = R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 4
%3 = OpTypeArray %1 %2
%5 = OpTypeFloat 32
%6 = OpConstant %5 3.14
%4 = OpConstantComposite %3 %2 %2 %2 %6)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpConstantCompositeStructGood) {
const char* spirv = R"(
%1 = OpTypeInt 32 0
%2 = OpTypeInt 64 1
%3 = OpTypeStruct %1 %1 %2
%4 = OpConstant %1 42
%5 = OpConstant %2 4300000000
%6 = OpConstantComposite %3 %4 %4 %5)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpConstantCompositeStructMemberBad) {
const char* spirv = R"(
%1 = OpTypeInt 32 0
%2 = OpTypeInt 64 1
%3 = OpTypeStruct %1 %1 %2
%4 = OpConstant %1 42
%5 = OpConstant %2 4300000000
%6 = OpConstantComposite %3 %4 %5 %4)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpConstantSamplerGood) {
const char* spirv = R"(
Use opcode operand definitions from SPIR-V specification generator. The assembler and disassembler now use a dynamically adjusted sequence of expected operand types. (Internally, it is a deque, for readability.) Both parsers repeatedly pull an expected operand type from the left of this pattern list, and try to match the next input token against it. The expected pattern is adjusted during the parse to accommodate: - an extended instruction's expected operands, depending on the extended instruction's index. - when an operand itself has operands - to handle sequences of zero or more operands, or pairs of operands. These are expanded lazily during the parse. Adds spv::OperandClass from the SPIR-V specification generator. Modifies spv_operand_desc_t: - adds hasResult, hasType, and operandClass array to the opcode description type. - "wordCount" is replaced with "numTypes", which counts the number of entries in operandTypes. And each of those describes a *logical* operand, including the type id for the instruction, and the result id for the instruction. A logical operand could be variable-width, such as a literal string. Adds opcode.inc, an automatically-generated table of operation descriptions, with one line to describe each core instruction. Externally, we have modified the SPIR-V spec doc generator to emit this file. (We have hacked this copy to use the old semantics for OpLine.) Inside the assembler, parsing an operand may fail with new error code SPV_FAIL_MATCH. For an optional operand, this is not fatal, but should trigger backtracking at a higher level. The spvTextIsStartOfNewInst checks the case of the third letter of what might be an opcode. So now, "OpenCL" does not look like an opcode name. In assembly, the EntryPoint name field is mandatory, but can be an empty string. Adjust tests for changes to: - OpSampedImage - OpTypeSampler
2015-08-27 17:03:52 +00:00
%float = OpTypeFloat 32
%samplerType = OpTypeSampler
%3 = OpConstantSampler %samplerType ClampToEdge 0 Nearest)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpConstantSamplerResultTypeBad) {
const char* spirv = R"(
%1 = OpTypeFloat 32
%2 = OpConstantSampler %1 Clamp 0 Nearest)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpConstantNullGood) {
const char* spirv = R"(
%1 = OpTypeBool
%2 = OpConstantNull %1
%3 = OpTypeInt 32 0
%4 = OpConstantNull %3
%5 = OpTypeFloat 32
%6 = OpConstantNull %5
%7 = OpTypePointer UniformConstant %3
%8 = OpConstantNull %7
%9 = OpTypeEvent
%10 = OpConstantNull %9
%11 = OpTypeDeviceEvent
%12 = OpConstantNull %11
%13 = OpTypeReserveId
%14 = OpConstantNull %13
%15 = OpTypeQueue
%16 = OpConstantNull %15
%17 = OpTypeVector %3 2
%18 = OpConstantNull %17
%19 = OpTypeMatrix %17 2
%20 = OpConstantNull %19
%25 = OpConstant %3 8
%21 = OpTypeArray %3 %25
%22 = OpConstantNull %21
%23 = OpTypeStruct %3 %5 %1
%24 = OpConstantNull %23
%26 = OpTypeArray %17 %25
%27 = OpConstantNull %26
%28 = OpTypeStruct %7 %26 %26 %1
%29 = OpConstantNull %28
)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpConstantNullBasicBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpConstantNull %1)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpConstantNullArrayBad) {
const char* spirv = R"(
%2 = OpTypeInt 32 0
Use opcode operand definitions from SPIR-V specification generator. The assembler and disassembler now use a dynamically adjusted sequence of expected operand types. (Internally, it is a deque, for readability.) Both parsers repeatedly pull an expected operand type from the left of this pattern list, and try to match the next input token against it. The expected pattern is adjusted during the parse to accommodate: - an extended instruction's expected operands, depending on the extended instruction's index. - when an operand itself has operands - to handle sequences of zero or more operands, or pairs of operands. These are expanded lazily during the parse. Adds spv::OperandClass from the SPIR-V specification generator. Modifies spv_operand_desc_t: - adds hasResult, hasType, and operandClass array to the opcode description type. - "wordCount" is replaced with "numTypes", which counts the number of entries in operandTypes. And each of those describes a *logical* operand, including the type id for the instruction, and the result id for the instruction. A logical operand could be variable-width, such as a literal string. Adds opcode.inc, an automatically-generated table of operation descriptions, with one line to describe each core instruction. Externally, we have modified the SPIR-V spec doc generator to emit this file. (We have hacked this copy to use the old semantics for OpLine.) Inside the assembler, parsing an operand may fail with new error code SPV_FAIL_MATCH. For an optional operand, this is not fatal, but should trigger backtracking at a higher level. The spvTextIsStartOfNewInst checks the case of the third letter of what might be an opcode. So now, "OpenCL" does not look like an opcode name. In assembly, the EntryPoint name field is mandatory, but can be an empty string. Adjust tests for changes to: - OpSampedImage - OpTypeSampler
2015-08-27 17:03:52 +00:00
%3 = OpTypeSampler
%4 = OpConstant %2 4
%5 = OpTypeArray %3 %4
%6 = OpConstantNull %5)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpConstantNullStructBad) {
const char* spirv = R"(
Use opcode operand definitions from SPIR-V specification generator. The assembler and disassembler now use a dynamically adjusted sequence of expected operand types. (Internally, it is a deque, for readability.) Both parsers repeatedly pull an expected operand type from the left of this pattern list, and try to match the next input token against it. The expected pattern is adjusted during the parse to accommodate: - an extended instruction's expected operands, depending on the extended instruction's index. - when an operand itself has operands - to handle sequences of zero or more operands, or pairs of operands. These are expanded lazily during the parse. Adds spv::OperandClass from the SPIR-V specification generator. Modifies spv_operand_desc_t: - adds hasResult, hasType, and operandClass array to the opcode description type. - "wordCount" is replaced with "numTypes", which counts the number of entries in operandTypes. And each of those describes a *logical* operand, including the type id for the instruction, and the result id for the instruction. A logical operand could be variable-width, such as a literal string. Adds opcode.inc, an automatically-generated table of operation descriptions, with one line to describe each core instruction. Externally, we have modified the SPIR-V spec doc generator to emit this file. (We have hacked this copy to use the old semantics for OpLine.) Inside the assembler, parsing an operand may fail with new error code SPV_FAIL_MATCH. For an optional operand, this is not fatal, but should trigger backtracking at a higher level. The spvTextIsStartOfNewInst checks the case of the third letter of what might be an opcode. So now, "OpenCL" does not look like an opcode name. In assembly, the EntryPoint name field is mandatory, but can be an empty string. Adjust tests for changes to: - OpSampedImage - OpTypeSampler
2015-08-27 17:03:52 +00:00
%2 = OpTypeSampler
%3 = OpTypeStruct %2 %2
%4 = OpConstantNull %3)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpConstantNullRuntimeArrayBad) {
const char* spirv = R"(
%bool = OpTypeBool
%array = OpTypeRuntimeArray %bool
%null = OpConstantNull %array)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpSpecConstantTrueGood) {
const char* spirv = R"(
%1 = OpTypeBool
%2 = OpSpecConstantTrue %1)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpSpecConstantTrueBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpSpecConstantTrue %1)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpSpecConstantFalseGood) {
const char* spirv = R"(
%1 = OpTypeBool
%2 = OpSpecConstantFalse %1)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpSpecConstantFalseBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpSpecConstantFalse %1)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpSpecConstantGood) {
const char* spirv = R"(
%1 = OpTypeFloat 32
%2 = OpSpecConstant %1 42)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpSpecConstantBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpSpecConstant !1 !4)";
// The expected failure code is implementation dependent (currently
// INVALID_BINARY because the binary parser catches these cases) and may
// change over time, but this must always fail.
CHECK(spirv, SPV_ERROR_INVALID_BINARY);
}
// TODO: OpSpecConstantComposite
// TODO: OpSpecConstantOp
TEST_F(ValidateID, OpVariableGood) {
const char* spirv = R"(
%1 = OpTypeInt 32 1
%2 = OpTypePointer Generic %1
%3 = OpVariable %2 Generic)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpVariableInitializerGood) {
const char* spirv = R"(
%1 = OpTypeInt 32 1
%2 = OpTypePointer Generic %1
%3 = OpConstant %1 42
%4 = OpVariable %2 Generic %3)";
CHECK(spirv, SPV_SUCCESS);
}
// TODO: Positive test OpVariable with OpConstantNull of OpTypePointer
TEST_F(ValidateID, OpVariableResultTypeBad) {
const char* spirv = R"(
%1 = OpTypeInt 32 1
%2 = OpVariable %1 Generic)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpVariableInitializerBad) {
const char* spirv = R"(
%1 = OpTypeInt 32 1
%2 = OpTypePointer Generic %1
%3 = OpVariable %2 Generic %2)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpLoadGood) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 1
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %1
%5 = OpVariable %3 UniformConstant
%6 = OpFunction %1 None %4
%7 = OpLabel
2016-01-21 14:00:15 +00:00
%8 = OpLoad %2 %5
%9 = OpReturn
%10 = OpFunctionEnd
)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpLoadResultTypeBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 1
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %1
%5 = OpVariable %3 UniformConstant
%6 = OpFunction %1 None %4
%7 = OpLabel
2016-01-21 14:00:15 +00:00
%8 = OpLoad %3 %5
OpReturn
OpFunctionEnd
)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpLoadPointerBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 1
%9 = OpTypeFloat 32
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %1
%6 = OpFunction %1 None %4
%7 = OpLabel
%8 = OpLoad %9 %3
OpReturn
OpFunctionEnd
)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpStoreGood) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 1
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %1
%5 = OpConstant %2 42
%6 = OpVariable %3 UniformConstant
%7 = OpFunction %1 None %4
%8 = OpLabel
OpStore %6 %5
OpReturn
OpFunctionEnd)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpStorePointerBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 1
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %1
%5 = OpConstant %2 42
%6 = OpVariable %3 UniformConstant
%7 = OpFunction %1 None %4
%8 = OpLabel
OpStore %3 %5
OpReturn
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpStoreObjectGood) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 1
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %1
%5 = OpConstant %2 42
%6 = OpVariable %3 UniformConstant
%7 = OpFunction %1 None %4
%8 = OpLabel
OpStore %6 %7
OpReturn
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpStoreTypeBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 1
%9 = OpTypeFloat 32
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %1
%5 = OpConstant %9 3.14
%6 = OpVariable %3 UniformConstant
%7 = OpFunction %1 None %4
%8 = OpLabel
OpStore %6 %5
OpReturn
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpStoreVoid) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 1
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %1
%6 = OpVariable %3 UniformConstant
%7 = OpFunction %1 None %4
%8 = OpLabel
%9 = OpFunctionCall %1 %7
OpStore %6 %9
OpReturn
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpStoreLabel) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 1
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %1
%6 = OpVariable %3 UniformConstant
%7 = OpFunction %1 None %4
%8 = OpLabel
OpStore %6 %8
OpReturn
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
// TODO: enable when this bug is fixed: https://cvs.khronos.org/bugzilla/show_bug.cgi?id=15404
TEST_F(ValidateID, DISABLED_OpStoreFunction) {
const char* spirv = R"(
%2 = OpTypeInt 32 1
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %2
%5 = OpConstant %2 123
%6 = OpVariable %3 UniformConstant
%7 = OpFunction %2 None %4
%8 = OpLabel
OpStore %6 %7
OpReturnValue %5
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpCopyMemoryGood) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpConstant %2 42
%5 = OpVariable %3 UniformConstant %4
%6 = OpTypePointer Function %2
%7 = OpTypeFunction %1
%8 = OpFunction %1 None %7
%9 = OpLabel
%10 = OpVariable %6 Function
OpCopyMemory %10 %5 None
OpReturn
OpFunctionEnd
)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpCopyMemoryBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpConstant %2 42
%5 = OpVariable %3 UniformConstant %4
%11 = OpTypeFloat 32
%6 = OpTypePointer Function %11
%7 = OpTypeFunction %1
%8 = OpFunction %1 None %7
%9 = OpLabel
%10 = OpVariable %6 Function
OpCopyMemory %10 %5 None
OpReturn
OpFunctionEnd
)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
// TODO: OpCopyMemorySized
TEST_F(ValidateID, OpCopyMemorySizedGood) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpTypePointer Function %2
%5 = OpConstant %2 4
%6 = OpVariable %3 UniformConstant %5
%7 = OpTypeFunction %1
%8 = OpFunction %1 None %7
%9 = OpLabel
%10 = OpVariable %4 Function
OpCopyMemorySized %10 %6 %5 None
OpReturn
OpFunctionEnd)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpCopyMemorySizedTargetBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpTypePointer Function %2
%5 = OpConstant %2 4
%6 = OpVariable %3 UniformConstant %5
%7 = OpTypeFunction %1
%8 = OpFunction %1 None %7
%9 = OpLabel
OpCopyMemorySized %9 %6 %5 None
OpReturn
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpCopyMemorySizedSourceBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpTypePointer Function %2
%5 = OpConstant %2 4
%6 = OpTypeFunction %1
%7 = OpFunction %1 None %6
%8 = OpLabel
%9 = OpVariable %4 Function
OpCopyMemorySized %9 %6 %5 None
OpReturn
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpCopyMemorySizedSizeBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpTypePointer Function %2
%5 = OpConstant %2 4
%6 = OpVariable %3 UniformConstant %5
%7 = OpTypeFunction %1
%8 = OpFunction %1 None %7
%9 = OpLabel
%10 = OpVariable %4 Function
OpCopyMemorySized %10 %6 %6 None
OpReturn
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpCopyMemorySizedSizeTypeBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpTypePointer Function %2
%5 = OpConstant %2 4
%6 = OpVariable %3 UniformConstant %5
%7 = OpTypeFunction %1
%11 = OpTypeFloat 32
%12 = OpConstant %11 1.0
%8 = OpFunction %1 None %7
%9 = OpLabel
%10 = OpVariable %4 Function
OpCopyMemorySized %10 %6 %12 None
OpReturn
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
// TODO: OpAccessChain
// TODO: OpInBoundsAccessChain
// TODO: OpArrayLength
// TODO: OpImagePointer
// TODO: OpGenericPtrMemSemantics
TEST_F(ValidateID, OpFunctionGood) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 1
%3 = OpTypeFunction %1 %2 %2
%4 = OpFunction %1 None %3
OpFunctionEnd)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpFunctionResultTypeBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 1
%5 = OpConstant %2 42
%3 = OpTypeFunction %1 %2 %2
%4 = OpFunction %2 None %3
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpFunctionFunctionTypeBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 1
%4 = OpFunction %1 None %2
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpFunctionParameterGood) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %1 %2
%4 = OpFunction %1 None %3
%5 = OpFunctionParameter %2
%6 = OpLabel
OpReturn
OpFunctionEnd)";
CHECK(spirv, SPV_SUCCESS);
}
Basic SSA Validation Most uses of an ID must occur after the definition of the ID. Forward references are allowed for things like OpName, OpDecorate, and various cases of control-flow instructions such as OpBranch, OpPhi, and OpFunctionCall. TODO: Use CFG analysis for SSA checks. In particular, an ID defined inside a function body is only usable inside that function body. Also, use dominator info to catch some failing cases. Also: * Validator test cases use (standard) assignment form. * Update style to more closely follow the Google C++ style guide * Remove color-diagnostics flag. This is enabled by default on terminals with color. Prints hidden ASCII for terminals that can't handle color(Emacs) * Pass functors to SSAPass to check if the operand can be forward referenced based on its index value * Return SPV_ERROR_INVALID_ID for ID related errors spvBinaryParse returned SPV_ERROR_INVALID_BINARY for all types of errors. Since spvBinaryParse does some ID validation, this was returning inappropriate error codes for some tests. * Common fixture for validation tests. It only runs certian validation passes. * Add a SPV_VALIDATE_SSA_BIT for testing purposes * Fixtures now return error codes * Add OpName support in diag message and unit tests * Binary parsing can fail with invalid ID or invalid binary error code Tests include: * OpDecorate * OpName * OpMemberName * OpBranchConditional * OpSelectionMerge * OpMemberDecorate * OpGroupDecorate * OpDeviceEnqueue * Enable several tests failing in ID validation.
2015-11-18 20:43:43 +00:00
TEST_F(ValidateID, OpFunctionParameterMultipleGood) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %1 %2 %2
%4 = OpFunction %1 None %3
%5 = OpFunctionParameter %2
%6 = OpFunctionParameter %2
%7 = OpLabel
OpReturn
OpFunctionEnd)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpFunctionParameterResultTypeBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %1 %2
%4 = OpFunction %1 None %3
%5 = OpFunctionParameter %1
%6 = OpLabel
OpReturn
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpFunctionCallGood) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %2 %2
%4 = OpTypeFunction %1
%5 = OpConstant %2 42 ;21
%6 = OpFunction %2 None %3
%7 = OpFunctionParameter %2
%8 = OpLabel
2016-01-21 14:00:15 +00:00
OpReturnValue %7
OpFunctionEnd
%10 = OpFunction %1 None %4
%11 = OpLabel
OpReturn
%12 = OpFunctionCall %2 %6 %5
OpFunctionEnd)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpFunctionCallResultTypeBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %2 %2
%4 = OpTypeFunction %1
%5 = OpConstant %2 42 ;21
%6 = OpFunction %2 None %3
%7 = OpFunctionParameter %2
%8 = OpLabel
%9 = OpLoad %2 %7
OpReturnValue %9
OpFunctionEnd
%10 = OpFunction %1 None %4
%11 = OpLabel
OpReturn
%12 = OpFunctionCall %1 %6 %5
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpFunctionCallFunctionBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %2 %2
%4 = OpTypeFunction %1
%5 = OpConstant %2 42 ;21
%10 = OpFunction %1 None %4
%11 = OpLabel
OpReturn
%12 = OpFunctionCall %2 %5 %5
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpFunctionCallArgumentTypeBad) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %2 %2
%4 = OpTypeFunction %1
%5 = OpConstant %2 42
%13 = OpTypeFloat 32
%14 = OpConstant %13 3.14
%6 = OpFunction %2 None %3
%7 = OpFunctionParameter %2
%8 = OpLabel
%9 = OpLoad %2 %7
OpReturnValue %9
OpFunctionEnd
%10 = OpFunction %1 None %4
%11 = OpLabel
OpReturn
%12 = OpFunctionCall %2 %6 %14
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
#if 0
TEST_F(ValidateID, OpFunctionCallArgumentCountBar) {
const char *spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %2 %2
%4 = OpTypeFunction %1
%5 = OpConstant %2 42 ;21
%6 = OpFunction %2 None %3
%7 = OpFunctionParameter %2
%8 = OpLabel
%9 = OpLoad %2 %7
OpReturnValue %9
OpFunctionEnd
%10 = OpFunction %1 None %4
%11 = OpLabel
OpReturn
%12 = OpFunctionCall %2 %6 %5
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
#endif
Use opcode operand definitions from SPIR-V specification generator. The assembler and disassembler now use a dynamically adjusted sequence of expected operand types. (Internally, it is a deque, for readability.) Both parsers repeatedly pull an expected operand type from the left of this pattern list, and try to match the next input token against it. The expected pattern is adjusted during the parse to accommodate: - an extended instruction's expected operands, depending on the extended instruction's index. - when an operand itself has operands - to handle sequences of zero or more operands, or pairs of operands. These are expanded lazily during the parse. Adds spv::OperandClass from the SPIR-V specification generator. Modifies spv_operand_desc_t: - adds hasResult, hasType, and operandClass array to the opcode description type. - "wordCount" is replaced with "numTypes", which counts the number of entries in operandTypes. And each of those describes a *logical* operand, including the type id for the instruction, and the result id for the instruction. A logical operand could be variable-width, such as a literal string. Adds opcode.inc, an automatically-generated table of operation descriptions, with one line to describe each core instruction. Externally, we have modified the SPIR-V spec doc generator to emit this file. (We have hacked this copy to use the old semantics for OpLine.) Inside the assembler, parsing an operand may fail with new error code SPV_FAIL_MATCH. For an optional operand, this is not fatal, but should trigger backtracking at a higher level. The spvTextIsStartOfNewInst checks the case of the third letter of what might be an opcode. So now, "OpenCL" does not look like an opcode name. In assembly, the EntryPoint name field is mandatory, but can be an empty string. Adjust tests for changes to: - OpSampedImage - OpTypeSampler
2015-08-27 17:03:52 +00:00
// TODO: OpSampledImage
// TODO: The many things that changed with how images are used.
// TODO: OpTextureSample
// TODO: OpTextureSampleDref
// TODO: OpTextureSampleLod
// TODO: OpTextureSampleProj
// TODO: OpTextureSampleGrad
// TODO: OpTextureSampleOffset
// TODO: OpTextureSampleProjLod
// TODO: OpTextureSampleProjGrad
// TODO: OpTextureSampleLodOffset
// TODO: OpTextureSampleProjOffset
// TODO: OpTextureSampleGradOffset
// TODO: OpTextureSampleProjLodOffset
// TODO: OpTextureSampleProjGradOffset
// TODO: OpTextureFetchTexelLod
// TODO: OpTextureFetchTexelOffset
// TODO: OpTextureFetchSample
// TODO: OpTextureFetchTexel
// TODO: OpTextureGather
// TODO: OpTextureGatherOffset
// TODO: OpTextureGatherOffsets
// TODO: OpTextureQuerySizeLod
// TODO: OpTextureQuerySize
// TODO: OpTextureQueryLevels
// TODO: OpTextureQuerySamples
// TODO: OpConvertUToF
// TODO: OpConvertFToS
// TODO: OpConvertSToF
// TODO: OpConvertUToF
// TODO: OpUConvert
// TODO: OpSConvert
// TODO: OpFConvert
// TODO: OpConvertPtrToU
// TODO: OpConvertUToPtr
// TODO: OpPtrCastToGeneric
// TODO: OpGenericCastToPtr
// TODO: OpBitcast
// TODO: OpGenericCastToPtrExplicit
// TODO: OpSatConvertSToU
// TODO: OpSatConvertUToS
// TODO: OpVectorExtractDynamic
// TODO: OpVectorInsertDynamic
// TODO: OpVectorShuffle
// TODO: OpCompositeConstruct
// TODO: OpCompositeExtract
// TODO: OpCompositeInsert
// TODO: OpCopyObject
// TODO: OpTranspose
// TODO: OpSNegate
// TODO: OpFNegate
// TODO: OpNot
// TODO: OpIAdd
// TODO: OpFAdd
// TODO: OpISub
// TODO: OpFSub
// TODO: OpIMul
// TODO: OpFMul
// TODO: OpUDiv
// TODO: OpSDiv
// TODO: OpFDiv
// TODO: OpUMod
// TODO: OpSRem
// TODO: OpSMod
// TODO: OpFRem
// TODO: OpFMod
// TODO: OpVectorTimesScalar
// TODO: OpMatrixTimesScalar
// TODO: OpVectorTimesMatrix
// TODO: OpMatrixTimesVector
// TODO: OpMatrixTimesMatrix
// TODO: OpOuterProduct
// TODO: OpDot
// TODO: OpShiftRightLogical
// TODO: OpShiftRightArithmetic
// TODO: OpShiftLeftLogical
// TODO: OpBitwiseOr
// TODO: OpBitwiseXor
// TODO: OpBitwiseAnd
// TODO: OpAny
// TODO: OpAll
// TODO: OpIsNan
// TODO: OpIsInf
// TODO: OpIsFinite
// TODO: OpIsNormal
// TODO: OpSignBitSet
// TODO: OpLessOrGreater
// TODO: OpOrdered
// TODO: OpUnordered
// TODO: OpLogicalOr
// TODO: OpLogicalXor
// TODO: OpLogicalAnd
// TODO: OpSelect
// TODO: OpIEqual
// TODO: OpFOrdEqual
// TODO: OpFUnordEqual
// TODO: OpINotEqual
// TODO: OpFOrdNotEqual
// TODO: OpFUnordNotEqual
// TODO: OpULessThan
// TODO: OpSLessThan
// TODO: OpFOrdLessThan
// TODO: OpFUnordLessThan
// TODO: OpUGreaterThan
// TODO: OpSGreaterThan
// TODO: OpFOrdGreaterThan
// TODO: OpFUnordGreaterThan
// TODO: OpULessThanEqual
// TODO: OpSLessThanEqual
// TODO: OpFOrdLessThanEqual
// TODO: OpFUnordLessThanEqual
// TODO: OpUGreaterThanEqual
// TODO: OpSGreaterThanEqual
// TODO: OpFOrdGreaterThanEqual
// TODO: OpFUnordGreaterThanEqual
// TODO: OpDPdx
// TODO: OpDPdy
// TODO: OpFWidth
// TODO: OpDPdxFine
// TODO: OpDPdyFine
// TODO: OpFwidthFine
// TODO: OpDPdxCoarse
// TODO: OpDPdyCoarse
// TODO: OpFwidthCoarse
// TODO: OpPhi
// TODO: OpLoopMerge
// TODO: OpSelectionMerge
// TODO: OpBranch
// TODO: OpBranchConditional
// TODO: OpSwitch
TEST_F(ValidateID, OpReturnValueConstantGood) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
2016-01-22 21:52:40 +00:00
%3 = OpTypeFunction %2
%4 = OpConstant %2 42
%5 = OpFunction %2 None %3
%6 = OpLabel
OpReturnValue %4
OpFunctionEnd)";
CHECK(spirv, SPV_SUCCESS);
}
2016-01-22 21:52:40 +00:00
TEST_F(ValidateID, OpReturnValueVariableGood) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0 ;10
2016-01-22 21:52:40 +00:00
%3 = OpTypeFunction %2
%8 = OpTypePointer Function %2 ;18
%4 = OpConstant %2 42 ;22
%5 = OpFunction %2 None %3 ;27
%6 = OpLabel ;29
%7 = OpVariable %8 Function %4 ;34
2016-01-22 21:52:40 +00:00
%9 = OpLoad %2 %7
OpReturnValue %9 ;36
OpFunctionEnd)";
CHECK(spirv, SPV_SUCCESS);
}
2016-01-22 21:52:40 +00:00
TEST_F(ValidateID, OpReturnValueExpressionGood) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
2016-01-22 21:52:40 +00:00
%3 = OpTypeFunction %2
%4 = OpConstant %2 42
%5 = OpFunction %2 None %3
2016-01-22 21:52:40 +00:00
%6 = OpLabel
%7 = OpIAdd %2 %4 %4
OpReturnValue %7
OpFunctionEnd)";
CHECK(spirv, SPV_SUCCESS);
}
TEST_F(ValidateID, OpReturnValueIsType) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %2
%5 = OpFunction %2 None %3
%6 = OpLabel
OpReturnValue %1
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
2016-01-22 21:52:40 +00:00
TEST_F(ValidateID, OpReturnValueIsLabel) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %2
%5 = OpFunction %2 None %3
%6 = OpLabel
OpReturnValue %6
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpReturnValueIsVoid) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %1
%5 = OpFunction %1 None %3
%6 = OpLabel
%7 = OpFunctionCall %1 %5
OpReturnValue %7
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, OpReturnValueIsVariable) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer Private %2
%4 = OpTypeFunction %3
%5 = OpFunction %3 None %4
%6 = OpLabel
%7 = OpVariable %3 Function
OpReturnValue %7
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
// TODO: enable when this bug is fixed: https://cvs.khronos.org/bugzilla/show_bug.cgi?id=15404
TEST_F(ValidateID, DISABLED_OpReturnValueIsFunction) {
const char* spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %2
%5 = OpFunction %2 None %3
%6 = OpLabel
OpReturnValue %5
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, UndefinedTypeId) {
const char* spirv = R"(
%f32 = OpTypeFloat 32
%atype = OpTypeRuntimeArray %f32
%stype = OpTypeStruct %atype
%ptrtype = OpTypePointer Input %stype
%svar = OpVariable %ptrtype Input
%s = OpLoad %stype %svar
%len = OpArrayLength %undef %s 0
)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, UndefinedIdScope) {
const char* spirv = R"(
%u32 = OpTypeInt 32 0
%memsem = OpConstant %u32 0
OpMemoryBarrier %undef %memsem
)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
TEST_F(ValidateID, UndefinedIdMemSem) {
const char* spirv = R"(
%u32 = OpTypeInt 32 0
%scope = OpConstant %u32 0
OpMemoryBarrier %scope %undef
)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
// TODO: OpLifetimeStart
// TODO: OpLifetimeStop
// TODO: OpAtomicInit
// TODO: OpAtomicLoad
// TODO: OpAtomicStore
// TODO: OpAtomicExchange
// TODO: OpAtomicCompareExchange
// TODO: OpAtomicCompareExchangeWeak
// TODO: OpAtomicIIncrement
// TODO: OpAtomicIDecrement
// TODO: OpAtomicIAdd
// TODO: OpAtomicISub
// TODO: OpAtomicUMin
// TODO: OpAtomicUMax
// TODO: OpAtomicAnd
// TODO: OpAtomicOr
// TODO: OpAtomicXor
// TODO: OpAtomicIMin
// TODO: OpAtomicIMax
// TODO: OpEmitStreamVertex
// TODO: OpEndStreamPrimitive
// TODO: OpAsyncGroupCopy
// TODO: OpWaitGroupEvents
// TODO: OpGroupAll
// TODO: OpGroupAny
// TODO: OpGroupBroadcast
// TODO: OpGroupIAdd
// TODO: OpGroupFAdd
// TODO: OpGroupFMin
// TODO: OpGroupUMin
// TODO: OpGroupSMin
// TODO: OpGroupFMax
// TODO: OpGroupUMax
// TODO: OpGroupSMax
// TODO: OpEnqueueMarker
// TODO: OpEnqueueKernel
// TODO: OpGetKernelNDrangeSubGroupCount
// TODO: OpGetKernelNDrangeMaxSubGroupSize
// TODO: OpGetKernelWorkGroupSize
// TODO: OpGetKernelPreferredWorkGroupSizeMultiple
// TODO: OpRetainEvent
// TODO: OpReleaseEvent
// TODO: OpCreateUserEvent
// TODO: OpIsValidEvent
// TODO: OpSetUserEventStatus
// TODO: OpCaptureEventProfilingInfo
// TODO: OpGetDefaultQueue
// TODO: OpBuildNDRange
// TODO: OpReadPipe
// TODO: OpWritePipe
// TODO: OpReservedReadPipe
// TODO: OpReservedWritePipe
// TODO: OpReserveReadPipePackets
// TODO: OpReserveWritePipePackets
// TODO: OpCommitReadPipe
// TODO: OpCommitWritePipe
// TODO: OpIsValidReserveId
// TODO: OpGetNumPipePackets
// TODO: OpGetMaxPipePackets
// TODO: OpGroupReserveReadPipePackets
// TODO: OpGroupReserveWritePipePackets
// TODO: OpGroupCommitReadPipe
// TODO: OpGroupCommitWritePipe
} // anonymous namespace