SPIRV-Tools/source/fuzz/call_graph.cpp

184 lines
6.6 KiB
C++
Raw Normal View History

// Copyright (c) 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/call_graph.h"
#include <queue>
namespace spvtools {
namespace fuzz {
CallGraph::CallGraph(opt::IRContext* context) {
// Initialize function in-degree, call graph edges and corresponding maximum
// loop nesting depth to 0, empty and 0 respectively.
for (auto& function : *context->module()) {
function_in_degree_[function.result_id()] = 0;
call_graph_edges_[function.result_id()] = std::set<uint32_t>();
function_max_loop_nesting_depth_[function.result_id()] = 0;
}
// Record the maximum loop nesting depth for each edge, by keeping a map from
// pairs of function ids, where (A, B) represents a function call from A to B,
// to the corresponding maximum depth.
std::map<std::pair<uint32_t, uint32_t>, uint32_t> call_to_max_depth;
// Compute |function_in_degree_|, |call_graph_edges_| and |call_to_max_depth|.
BuildGraphAndGetDepthOfFunctionCalls(context, &call_to_max_depth);
// Compute |functions_in_topological_order_|.
ComputeTopologicalOrderOfFunctions();
// Compute |function_max_loop_nesting_depth_|.
ComputeInterproceduralFunctionCallDepths(call_to_max_depth);
}
void CallGraph::BuildGraphAndGetDepthOfFunctionCalls(
opt::IRContext* context,
std::map<std::pair<uint32_t, uint32_t>, uint32_t>* call_to_max_depth) {
// Consider every function.
for (auto& function : *context->module()) {
// Avoid considering the same callee of this function multiple times by
// recording known callees.
std::set<uint32_t> known_callees;
// Consider every function call instruction in every block.
for (auto& block : function) {
for (auto& instruction : block) {
if (instruction.opcode() != spv::Op::OpFunctionCall) {
continue;
}
// Get the id of the function being called.
uint32_t callee = instruction.GetSingleWordInOperand(0);
// Get the loop nesting depth of this function call.
uint32_t loop_nesting_depth =
context->GetStructuredCFGAnalysis()->LoopNestingDepth(block.id());
// If inside a loop header, consider the function call nested inside the
// loop headed by the block.
if (block.IsLoopHeader()) {
loop_nesting_depth++;
}
// Update the map if we have not seen this pair (caller, callee)
// before or if this function call is from a greater depth.
if (!known_callees.count(callee) ||
call_to_max_depth->at({function.result_id(), callee}) <
loop_nesting_depth) {
call_to_max_depth->insert(
{{function.result_id(), callee}, loop_nesting_depth});
}
if (known_callees.count(callee)) {
// We have already considered a call to this function - ignore it.
continue;
}
// Increase the callee's in-degree and add an edge to the call graph.
function_in_degree_[callee]++;
call_graph_edges_[function.result_id()].insert(callee);
// Mark the callee as 'known'.
known_callees.insert(callee);
}
}
}
}
void CallGraph::ComputeTopologicalOrderOfFunctions() {
// This is an implementation of Kahns algorithm for topological sorting.
// Initialise |functions_in_topological_order_|.
functions_in_topological_order_.clear();
// Get a copy of the initial in-degrees of all functions. The algorithm
// involves decrementing these values, hence why we work on a copy.
std::map<uint32_t, uint32_t> function_in_degree = GetFunctionInDegree();
// Populate a queue with all those function ids with in-degree zero.
std::queue<uint32_t> queue;
for (auto& entry : function_in_degree) {
if (entry.second == 0) {
queue.push(entry.first);
}
}
// Pop ids from the queue, adding them to the sorted order and decreasing the
// in-degrees of their successors. A successor who's in-degree becomes zero
// gets added to the queue.
while (!queue.empty()) {
auto next = queue.front();
queue.pop();
functions_in_topological_order_.push_back(next);
for (auto successor : GetDirectCallees(next)) {
assert(function_in_degree.at(successor) > 0 &&
"The in-degree cannot be zero if the function is a successor.");
function_in_degree[successor] = function_in_degree.at(successor) - 1;
if (function_in_degree.at(successor) == 0) {
queue.push(successor);
}
}
}
assert(functions_in_topological_order_.size() == function_in_degree.size() &&
"Every function should appear in the sort.");
return;
}
void CallGraph::ComputeInterproceduralFunctionCallDepths(
const std::map<std::pair<uint32_t, uint32_t>, uint32_t>&
call_to_max_depth) {
// Find the maximum loop nesting depth that each function can be
// called from, by considering them in topological order.
for (uint32_t function_id : functions_in_topological_order_) {
const auto& callees = call_graph_edges_[function_id];
// For each callee, update its maximum loop nesting depth, if a call from
// |function_id| increases it.
for (uint32_t callee : callees) {
uint32_t max_depth_from_this_function =
function_max_loop_nesting_depth_[function_id] +
call_to_max_depth.at({function_id, callee});
if (function_max_loop_nesting_depth_[callee] <
max_depth_from_this_function) {
function_max_loop_nesting_depth_[callee] = max_depth_from_this_function;
}
}
}
}
void CallGraph::PushDirectCallees(uint32_t function_id,
std::queue<uint32_t>* queue) const {
for (auto callee : GetDirectCallees(function_id)) {
queue->push(callee);
}
}
std::set<uint32_t> CallGraph::GetIndirectCallees(uint32_t function_id) const {
std::set<uint32_t> result;
std::queue<uint32_t> queue;
PushDirectCallees(function_id, &queue);
while (!queue.empty()) {
auto next = queue.front();
queue.pop();
if (result.count(next)) {
continue;
}
result.insert(next);
PushDirectCallees(next, &queue);
}
return result;
}
} // namespace fuzz
} // namespace spvtools