SPIRV-Tools/source/val/validate_composites.cpp

636 lines
24 KiB
C++
Raw Normal View History

// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Validates correctness of composite SPIR-V instructions.
#include "source/opcode.h"
#include "source/spirv_target_env.h"
#include "source/val/instruction.h"
#include "source/val/validate.h"
#include "source/val/validation_state.h"
namespace spvtools {
namespace val {
namespace {
// Returns the type of the value accessed by OpCompositeExtract or
// OpCompositeInsert instruction. The function traverses the hierarchy of
// nested data structures (structs, arrays, vectors, matrices) as directed by
// the sequence of indices in the instruction. May return error if traversal
// fails (encountered non-composite, out of bounds, no indices, nesting too
// deep).
spv_result_t GetExtractInsertValueType(ValidationState_t& _,
const Instruction* inst,
uint32_t* member_type) {
const spv::Op opcode = inst->opcode();
assert(opcode == spv::Op::OpCompositeExtract ||
opcode == spv::Op::OpCompositeInsert);
uint32_t word_index = opcode == spv::Op::OpCompositeExtract ? 4 : 5;
const uint32_t num_words = static_cast<uint32_t>(inst->words().size());
const uint32_t composite_id_index = word_index - 1;
const uint32_t num_indices = num_words - word_index;
const uint32_t kCompositeExtractInsertMaxNumIndices = 255;
if (num_indices == 0) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected at least one index to Op"
<< spvOpcodeString(inst->opcode()) << ", zero found";
} else if (num_indices > kCompositeExtractInsertMaxNumIndices) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "The number of indexes in Op" << spvOpcodeString(opcode)
<< " may not exceed " << kCompositeExtractInsertMaxNumIndices
<< ". Found " << num_indices << " indexes.";
}
*member_type = _.GetTypeId(inst->word(composite_id_index));
if (*member_type == 0) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Composite to be an object of composite type";
}
for (; word_index < num_words; ++word_index) {
const uint32_t component_index = inst->word(word_index);
const Instruction* const type_inst = _.FindDef(*member_type);
assert(type_inst);
switch (type_inst->opcode()) {
case spv::Op::OpTypeVector: {
*member_type = type_inst->word(2);
const uint32_t vector_size = type_inst->word(3);
if (component_index >= vector_size) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Vector access is out of bounds, vector size is "
<< vector_size << ", but access index is " << component_index;
}
break;
}
case spv::Op::OpTypeMatrix: {
*member_type = type_inst->word(2);
const uint32_t num_cols = type_inst->word(3);
if (component_index >= num_cols) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Matrix access is out of bounds, matrix has " << num_cols
<< " columns, but access index is " << component_index;
}
break;
}
case spv::Op::OpTypeArray: {
uint64_t array_size = 0;
auto size = _.FindDef(type_inst->word(3));
*member_type = type_inst->word(2);
if (spvOpcodeIsSpecConstant(size->opcode())) {
// Cannot verify against the size of this array.
break;
}
if (!_.EvalConstantValUint64(type_inst->word(3), &array_size)) {
assert(0 && "Array type definition is corrupt");
}
if (component_index >= array_size) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Array access is out of bounds, array size is "
<< array_size << ", but access index is " << component_index;
}
break;
}
case spv::Op::OpTypeRuntimeArray: {
*member_type = type_inst->word(2);
// Array size is unknown.
break;
}
case spv::Op::OpTypeStruct: {
const size_t num_struct_members = type_inst->words().size() - 2;
if (component_index >= num_struct_members) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Index is out of bounds, can not find index "
<< component_index << " in the structure <id> '"
<< type_inst->id() << "'. This structure has "
<< num_struct_members << " members. Largest valid index is "
<< num_struct_members - 1 << ".";
}
*member_type = type_inst->word(component_index + 2);
break;
}
case spv::Op::OpTypeCooperativeMatrixKHR:
case spv::Op::OpTypeCooperativeMatrixNV: {
*member_type = type_inst->word(2);
break;
}
default:
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Reached non-composite type while indexes still remain to "
"be traversed.";
}
}
return SPV_SUCCESS;
}
spv_result_t ValidateVectorExtractDynamic(ValidationState_t& _,
const Instruction* inst) {
const uint32_t result_type = inst->type_id();
const spv::Op result_opcode = _.GetIdOpcode(result_type);
if (!spvOpcodeIsScalarType(result_opcode)) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Result Type to be a scalar type";
}
const uint32_t vector_type = _.GetOperandTypeId(inst, 2);
const spv::Op vector_opcode = _.GetIdOpcode(vector_type);
if (vector_opcode != spv::Op::OpTypeVector) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Vector type to be OpTypeVector";
}
if (_.GetComponentType(vector_type) != result_type) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Vector component type to be equal to Result Type";
}
const auto index = _.FindDef(inst->GetOperandAs<uint32_t>(3));
if (!index || index->type_id() == 0 || !_.IsIntScalarType(index->type_id())) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Index to be int scalar";
}
if (_.HasCapability(spv::Capability::Shader) &&
_.ContainsLimitedUseIntOrFloatType(inst->type_id())) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Cannot extract from a vector of 8- or 16-bit types";
}
return SPV_SUCCESS;
}
spv_result_t ValidateVectorInsertDyanmic(ValidationState_t& _,
const Instruction* inst) {
const uint32_t result_type = inst->type_id();
const spv::Op result_opcode = _.GetIdOpcode(result_type);
if (result_opcode != spv::Op::OpTypeVector) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Result Type to be OpTypeVector";
}
const uint32_t vector_type = _.GetOperandTypeId(inst, 2);
if (vector_type != result_type) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Vector type to be equal to Result Type";
}
const uint32_t component_type = _.GetOperandTypeId(inst, 3);
if (_.GetComponentType(result_type) != component_type) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Component type to be equal to Result Type "
<< "component type";
}
const uint32_t index_type = _.GetOperandTypeId(inst, 4);
if (!_.IsIntScalarType(index_type)) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Index to be int scalar";
}
if (_.HasCapability(spv::Capability::Shader) &&
_.ContainsLimitedUseIntOrFloatType(inst->type_id())) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Cannot insert into a vector of 8- or 16-bit types";
}
return SPV_SUCCESS;
}
spv_result_t ValidateCompositeConstruct(ValidationState_t& _,
const Instruction* inst) {
const uint32_t num_operands = static_cast<uint32_t>(inst->operands().size());
const uint32_t result_type = inst->type_id();
const spv::Op result_opcode = _.GetIdOpcode(result_type);
switch (result_opcode) {
case spv::Op::OpTypeVector: {
const uint32_t num_result_components = _.GetDimension(result_type);
const uint32_t result_component_type = _.GetComponentType(result_type);
uint32_t given_component_count = 0;
if (num_operands <= 3) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected number of constituents to be at least 2";
}
for (uint32_t operand_index = 2; operand_index < num_operands;
++operand_index) {
const uint32_t operand_type = _.GetOperandTypeId(inst, operand_index);
if (operand_type == result_component_type) {
++given_component_count;
} else {
if (_.GetIdOpcode(operand_type) != spv::Op::OpTypeVector ||
_.GetComponentType(operand_type) != result_component_type) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Constituents to be scalars or vectors of"
<< " the same type as Result Type components";
}
given_component_count += _.GetDimension(operand_type);
}
}
if (num_result_components != given_component_count) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected total number of given components to be equal "
<< "to the size of Result Type vector";
}
break;
}
case spv::Op::OpTypeMatrix: {
uint32_t result_num_rows = 0;
uint32_t result_num_cols = 0;
uint32_t result_col_type = 0;
uint32_t result_component_type = 0;
if (!_.GetMatrixTypeInfo(result_type, &result_num_rows, &result_num_cols,
&result_col_type, &result_component_type)) {
assert(0);
}
if (result_num_cols + 2 != num_operands) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected total number of Constituents to be equal "
<< "to the number of columns of Result Type matrix";
}
for (uint32_t operand_index = 2; operand_index < num_operands;
++operand_index) {
const uint32_t operand_type = _.GetOperandTypeId(inst, operand_index);
if (operand_type != result_col_type) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Constituent type to be equal to the column "
<< "type Result Type matrix";
}
}
break;
}
case spv::Op::OpTypeArray: {
const Instruction* const array_inst = _.FindDef(result_type);
assert(array_inst);
assert(array_inst->opcode() == spv::Op::OpTypeArray);
auto size = _.FindDef(array_inst->word(3));
if (spvOpcodeIsSpecConstant(size->opcode())) {
// Cannot verify against the size of this array.
break;
}
uint64_t array_size = 0;
if (!_.EvalConstantValUint64(array_inst->word(3), &array_size)) {
assert(0 && "Array type definition is corrupt");
}
if (array_size + 2 != num_operands) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected total number of Constituents to be equal "
<< "to the number of elements of Result Type array";
}
const uint32_t result_component_type = array_inst->word(2);
for (uint32_t operand_index = 2; operand_index < num_operands;
++operand_index) {
const uint32_t operand_type = _.GetOperandTypeId(inst, operand_index);
if (operand_type != result_component_type) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Constituent type to be equal to the column "
<< "type Result Type array";
}
}
break;
}
case spv::Op::OpTypeStruct: {
const Instruction* const struct_inst = _.FindDef(result_type);
assert(struct_inst);
assert(struct_inst->opcode() == spv::Op::OpTypeStruct);
if (struct_inst->operands().size() + 1 != num_operands) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected total number of Constituents to be equal "
<< "to the number of members of Result Type struct";
}
for (uint32_t operand_index = 2; operand_index < num_operands;
++operand_index) {
const uint32_t operand_type = _.GetOperandTypeId(inst, operand_index);
const uint32_t member_type = struct_inst->word(operand_index);
if (operand_type != member_type) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Constituent type to be equal to the "
<< "corresponding member type of Result Type struct";
}
}
break;
}
case spv::Op::OpTypeCooperativeMatrixKHR: {
const auto result_type_inst = _.FindDef(result_type);
assert(result_type_inst);
const auto component_type_id =
result_type_inst->GetOperandAs<uint32_t>(1);
if (3 != num_operands) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Must be only one constituent";
}
const uint32_t operand_type_id = _.GetOperandTypeId(inst, 2);
if (operand_type_id != component_type_id) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Constituent type to be equal to the component type";
}
break;
}
case spv::Op::OpTypeCooperativeMatrixNV: {
const auto result_type_inst = _.FindDef(result_type);
assert(result_type_inst);
const auto component_type_id =
result_type_inst->GetOperandAs<uint32_t>(1);
if (3 != num_operands) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected single constituent";
}
const uint32_t operand_type_id = _.GetOperandTypeId(inst, 2);
if (operand_type_id != component_type_id) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Constituent type to be equal to the component type";
}
break;
}
default: {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Result Type to be a composite type";
}
}
if (_.HasCapability(spv::Capability::Shader) &&
_.ContainsLimitedUseIntOrFloatType(inst->type_id())) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Cannot create a composite containing 8- or 16-bit types";
}
return SPV_SUCCESS;
}
spv_result_t ValidateCompositeExtract(ValidationState_t& _,
const Instruction* inst) {
uint32_t member_type = 0;
if (spv_result_t error = GetExtractInsertValueType(_, inst, &member_type)) {
return error;
}
const uint32_t result_type = inst->type_id();
if (result_type != member_type) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Result type (Op" << spvOpcodeString(_.GetIdOpcode(result_type))
<< ") does not match the type that results from indexing into "
"the composite (Op"
<< spvOpcodeString(_.GetIdOpcode(member_type)) << ").";
}
if (_.HasCapability(spv::Capability::Shader) &&
_.ContainsLimitedUseIntOrFloatType(inst->type_id())) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Cannot extract from a composite of 8- or 16-bit types";
}
return SPV_SUCCESS;
}
spv_result_t ValidateCompositeInsert(ValidationState_t& _,
const Instruction* inst) {
const uint32_t object_type = _.GetOperandTypeId(inst, 2);
const uint32_t composite_type = _.GetOperandTypeId(inst, 3);
const uint32_t result_type = inst->type_id();
if (result_type != composite_type) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "The Result Type must be the same as Composite type in Op"
<< spvOpcodeString(inst->opcode()) << " yielding Result Id "
<< result_type << ".";
}
uint32_t member_type = 0;
if (spv_result_t error = GetExtractInsertValueType(_, inst, &member_type)) {
return error;
}
if (object_type != member_type) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "The Object type (Op"
<< spvOpcodeString(_.GetIdOpcode(object_type))
<< ") does not match the type that results from indexing into the "
"Composite (Op"
<< spvOpcodeString(_.GetIdOpcode(member_type)) << ").";
}
if (_.HasCapability(spv::Capability::Shader) &&
_.ContainsLimitedUseIntOrFloatType(inst->type_id())) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Cannot insert into a composite of 8- or 16-bit types";
}
return SPV_SUCCESS;
}
spv_result_t ValidateCopyObject(ValidationState_t& _, const Instruction* inst) {
const uint32_t result_type = inst->type_id();
const uint32_t operand_type = _.GetOperandTypeId(inst, 2);
if (operand_type != result_type) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Result Type and Operand type to be the same";
}
if (_.IsVoidType(result_type)) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "OpCopyObject cannot have void result type";
}
return SPV_SUCCESS;
}
spv_result_t ValidateTranspose(ValidationState_t& _, const Instruction* inst) {
uint32_t result_num_rows = 0;
uint32_t result_num_cols = 0;
uint32_t result_col_type = 0;
uint32_t result_component_type = 0;
const uint32_t result_type = inst->type_id();
if (!_.GetMatrixTypeInfo(result_type, &result_num_rows, &result_num_cols,
&result_col_type, &result_component_type)) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Result Type to be a matrix type";
}
const uint32_t matrix_type = _.GetOperandTypeId(inst, 2);
uint32_t matrix_num_rows = 0;
uint32_t matrix_num_cols = 0;
uint32_t matrix_col_type = 0;
uint32_t matrix_component_type = 0;
if (!_.GetMatrixTypeInfo(matrix_type, &matrix_num_rows, &matrix_num_cols,
&matrix_col_type, &matrix_component_type)) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Matrix to be of type OpTypeMatrix";
}
if (result_component_type != matrix_component_type) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected component types of Matrix and Result Type to be "
<< "identical";
}
if (result_num_rows != matrix_num_cols ||
result_num_cols != matrix_num_rows) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected number of columns and the column size of Matrix "
<< "to be the reverse of those of Result Type";
}
if (_.HasCapability(spv::Capability::Shader) &&
_.ContainsLimitedUseIntOrFloatType(inst->type_id())) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Cannot transpose matrices of 16-bit floats";
}
return SPV_SUCCESS;
}
spv_result_t ValidateVectorShuffle(ValidationState_t& _,
const Instruction* inst) {
auto resultType = _.FindDef(inst->type_id());
if (!resultType || resultType->opcode() != spv::Op::OpTypeVector) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "The Result Type of OpVectorShuffle must be"
<< " OpTypeVector. Found Op"
<< spvOpcodeString(static_cast<spv::Op>(resultType->opcode()))
<< ".";
}
// The number of components in Result Type must be the same as the number of
// Component operands.
auto componentCount = inst->operands().size() - 4;
auto resultVectorDimension = resultType->GetOperandAs<uint32_t>(2);
if (componentCount != resultVectorDimension) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "OpVectorShuffle component literals count does not match "
"Result Type <id> "
<< _.getIdName(resultType->id()) << "s vector component count.";
}
// Vector 1 and Vector 2 must both have vector types, with the same Component
// Type as Result Type.
auto vector1Object = _.FindDef(inst->GetOperandAs<uint32_t>(2));
auto vector1Type = _.FindDef(vector1Object->type_id());
auto vector2Object = _.FindDef(inst->GetOperandAs<uint32_t>(3));
auto vector2Type = _.FindDef(vector2Object->type_id());
if (!vector1Type || vector1Type->opcode() != spv::Op::OpTypeVector) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "The type of Vector 1 must be OpTypeVector.";
}
if (!vector2Type || vector2Type->opcode() != spv::Op::OpTypeVector) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "The type of Vector 2 must be OpTypeVector.";
}
auto resultComponentType = resultType->GetOperandAs<uint32_t>(1);
if (vector1Type->GetOperandAs<uint32_t>(1) != resultComponentType) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "The Component Type of Vector 1 must be the same as ResultType.";
}
if (vector2Type->GetOperandAs<uint32_t>(1) != resultComponentType) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "The Component Type of Vector 2 must be the same as ResultType.";
}
// All Component literals must either be FFFFFFFF or in [0, N - 1].
auto vector1ComponentCount = vector1Type->GetOperandAs<uint32_t>(2);
auto vector2ComponentCount = vector2Type->GetOperandAs<uint32_t>(2);
auto N = vector1ComponentCount + vector2ComponentCount;
auto firstLiteralIndex = 4;
for (size_t i = firstLiteralIndex; i < inst->operands().size(); ++i) {
auto literal = inst->GetOperandAs<uint32_t>(i);
if (literal != 0xFFFFFFFF && literal >= N) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Component index " << literal << " is out of bounds for "
<< "combined (Vector1 + Vector2) size of " << N << ".";
}
}
if (_.HasCapability(spv::Capability::Shader) &&
_.ContainsLimitedUseIntOrFloatType(inst->type_id())) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Cannot shuffle a vector of 8- or 16-bit types";
}
return SPV_SUCCESS;
}
Support SPIR-V 1.4 (#2550) * SPIR-V 1.4 headers, add SPV_ENV_UNIVERSAL_1_4 * Support --target-env spv1.4 in help for command line tools * Support asm/dis of UniformId decoration * Validate UniformId decoration * Fix version check on instructions and operands Also register decorations used with OpDecorateId * Extension lists can differ between enums that match Example: SubgroupMaskEq vs SubgroupMaskEqKHR * Validate scope value for Uniform decoration, for SPIR-V 1.4 * More unioning of exts * Preserve grammar order within an enum value * 1.4: Validate OpSelect over composites * Tools default to 1.4 * Add asm/dis test for OpCopyLogical * 1.4: asm/dis tests for PtrEqual, PtrNotEqual, PtrDiff * Basic asm/Dis test for OpCopyMemory * Test asm/dis OpCopyMemory with 2-memory access Add asm/dis tests for OpCopyMemorySized Requires grammar update to add second optional memory access operand to OpCopyMemory and OpCopyMemorySized * Validate one or two memory accesses on OpCopyMemory* * Check av/vis on CopyMemory source and target memory access This is a proposed rule. See https://gitlab.khronos.org/spirv/SPIR-V/issues/413 * Validate operation for OpSpecConstantOp * Validate NonWritable decoration Also permit NonWritable on members of UBO and SSBO. * SPIR-V 1.4: NonWrtiable can decorate Function and Private vars * Update optimizer CLI tests for SPIR-V 1.4 * Testing tools: Give expected SPIR-V version in message * SPIR-V 1.4 validation for entry point interfaces * Allow only unique interfaces * Allow all global variables * Check that all statically used global variables are listed * new tests * Add validation fixture CompileFailure * Add 1.4 validation for pointer comparisons * New tests * Validate with image operands SignExtend, ZeroExtend Since we don't actually know the image texel format, we can't fully validate. We need more context. But we can make sure we allow the new image operands in known-good cases. * Validate OpCopyLogical * Recursively checks subtypes * new tests * Add SPIR-V 1.4 tests for NoSignedWrap, NoUnsignedWrap * Allow scalar conditions in 1.4 with OpSelect * Allows scalar conditions with vector operands * new tests * Validate uniform id scope as an execution scope * Validate the values of memory and execution scopes are valid scope values * new test * Remove SPIR-V 1.4 Vulkan 1.0 environment * SPIR-V 1.4 requires Vulkan 1.1 * FIX: include string for spvLog * FIX: validate nonwritable * FIX: test case suite for member decorate string * FIX: test case for hlsl functionality1 * Validation test fixture: ease debugging * Use binary version for SPIR-V 1.4 specific features * Switch checks based on the SPIR-V version from the target environment to instead use the version from the binary * Moved header parsing into the ValidationState_t constructor (where version based features are set) * Added new versions of tests that assemble a 1.3 binary and validate a 1.4 environment * Fix test for update to SPIR-V 1.4 headers * Fix formatting * Ext inst lookup: Add Vulkan 1.1 env with SPIR-V 1.4 * Update spirv-val help * Operand version checks should use module version Use the module version instead of the target environment version. * Fix comment about two-access form of OpCopyMemory
2019-05-07 16:27:18 +00:00
spv_result_t ValidateCopyLogical(ValidationState_t& _,
const Instruction* inst) {
const auto result_type = _.FindDef(inst->type_id());
const auto source = _.FindDef(inst->GetOperandAs<uint32_t>(2u));
const auto source_type = _.FindDef(source->type_id());
if (!source_type || !result_type || source_type == result_type) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Result Type must not equal the Operand type";
}
if (!_.LogicallyMatch(source_type, result_type, false)) {
Support SPIR-V 1.4 (#2550) * SPIR-V 1.4 headers, add SPV_ENV_UNIVERSAL_1_4 * Support --target-env spv1.4 in help for command line tools * Support asm/dis of UniformId decoration * Validate UniformId decoration * Fix version check on instructions and operands Also register decorations used with OpDecorateId * Extension lists can differ between enums that match Example: SubgroupMaskEq vs SubgroupMaskEqKHR * Validate scope value for Uniform decoration, for SPIR-V 1.4 * More unioning of exts * Preserve grammar order within an enum value * 1.4: Validate OpSelect over composites * Tools default to 1.4 * Add asm/dis test for OpCopyLogical * 1.4: asm/dis tests for PtrEqual, PtrNotEqual, PtrDiff * Basic asm/Dis test for OpCopyMemory * Test asm/dis OpCopyMemory with 2-memory access Add asm/dis tests for OpCopyMemorySized Requires grammar update to add second optional memory access operand to OpCopyMemory and OpCopyMemorySized * Validate one or two memory accesses on OpCopyMemory* * Check av/vis on CopyMemory source and target memory access This is a proposed rule. See https://gitlab.khronos.org/spirv/SPIR-V/issues/413 * Validate operation for OpSpecConstantOp * Validate NonWritable decoration Also permit NonWritable on members of UBO and SSBO. * SPIR-V 1.4: NonWrtiable can decorate Function and Private vars * Update optimizer CLI tests for SPIR-V 1.4 * Testing tools: Give expected SPIR-V version in message * SPIR-V 1.4 validation for entry point interfaces * Allow only unique interfaces * Allow all global variables * Check that all statically used global variables are listed * new tests * Add validation fixture CompileFailure * Add 1.4 validation for pointer comparisons * New tests * Validate with image operands SignExtend, ZeroExtend Since we don't actually know the image texel format, we can't fully validate. We need more context. But we can make sure we allow the new image operands in known-good cases. * Validate OpCopyLogical * Recursively checks subtypes * new tests * Add SPIR-V 1.4 tests for NoSignedWrap, NoUnsignedWrap * Allow scalar conditions in 1.4 with OpSelect * Allows scalar conditions with vector operands * new tests * Validate uniform id scope as an execution scope * Validate the values of memory and execution scopes are valid scope values * new test * Remove SPIR-V 1.4 Vulkan 1.0 environment * SPIR-V 1.4 requires Vulkan 1.1 * FIX: include string for spvLog * FIX: validate nonwritable * FIX: test case suite for member decorate string * FIX: test case for hlsl functionality1 * Validation test fixture: ease debugging * Use binary version for SPIR-V 1.4 specific features * Switch checks based on the SPIR-V version from the target environment to instead use the version from the binary * Moved header parsing into the ValidationState_t constructor (where version based features are set) * Added new versions of tests that assemble a 1.3 binary and validate a 1.4 environment * Fix test for update to SPIR-V 1.4 headers * Fix formatting * Ext inst lookup: Add Vulkan 1.1 env with SPIR-V 1.4 * Update spirv-val help * Operand version checks should use module version Use the module version instead of the target environment version. * Fix comment about two-access form of OpCopyMemory
2019-05-07 16:27:18 +00:00
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Result Type does not logically match the Operand type";
}
if (_.HasCapability(spv::Capability::Shader) &&
_.ContainsLimitedUseIntOrFloatType(inst->type_id())) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Cannot copy composites of 8- or 16-bit types";
}
Support SPIR-V 1.4 (#2550) * SPIR-V 1.4 headers, add SPV_ENV_UNIVERSAL_1_4 * Support --target-env spv1.4 in help for command line tools * Support asm/dis of UniformId decoration * Validate UniformId decoration * Fix version check on instructions and operands Also register decorations used with OpDecorateId * Extension lists can differ between enums that match Example: SubgroupMaskEq vs SubgroupMaskEqKHR * Validate scope value for Uniform decoration, for SPIR-V 1.4 * More unioning of exts * Preserve grammar order within an enum value * 1.4: Validate OpSelect over composites * Tools default to 1.4 * Add asm/dis test for OpCopyLogical * 1.4: asm/dis tests for PtrEqual, PtrNotEqual, PtrDiff * Basic asm/Dis test for OpCopyMemory * Test asm/dis OpCopyMemory with 2-memory access Add asm/dis tests for OpCopyMemorySized Requires grammar update to add second optional memory access operand to OpCopyMemory and OpCopyMemorySized * Validate one or two memory accesses on OpCopyMemory* * Check av/vis on CopyMemory source and target memory access This is a proposed rule. See https://gitlab.khronos.org/spirv/SPIR-V/issues/413 * Validate operation for OpSpecConstantOp * Validate NonWritable decoration Also permit NonWritable on members of UBO and SSBO. * SPIR-V 1.4: NonWrtiable can decorate Function and Private vars * Update optimizer CLI tests for SPIR-V 1.4 * Testing tools: Give expected SPIR-V version in message * SPIR-V 1.4 validation for entry point interfaces * Allow only unique interfaces * Allow all global variables * Check that all statically used global variables are listed * new tests * Add validation fixture CompileFailure * Add 1.4 validation for pointer comparisons * New tests * Validate with image operands SignExtend, ZeroExtend Since we don't actually know the image texel format, we can't fully validate. We need more context. But we can make sure we allow the new image operands in known-good cases. * Validate OpCopyLogical * Recursively checks subtypes * new tests * Add SPIR-V 1.4 tests for NoSignedWrap, NoUnsignedWrap * Allow scalar conditions in 1.4 with OpSelect * Allows scalar conditions with vector operands * new tests * Validate uniform id scope as an execution scope * Validate the values of memory and execution scopes are valid scope values * new test * Remove SPIR-V 1.4 Vulkan 1.0 environment * SPIR-V 1.4 requires Vulkan 1.1 * FIX: include string for spvLog * FIX: validate nonwritable * FIX: test case suite for member decorate string * FIX: test case for hlsl functionality1 * Validation test fixture: ease debugging * Use binary version for SPIR-V 1.4 specific features * Switch checks based on the SPIR-V version from the target environment to instead use the version from the binary * Moved header parsing into the ValidationState_t constructor (where version based features are set) * Added new versions of tests that assemble a 1.3 binary and validate a 1.4 environment * Fix test for update to SPIR-V 1.4 headers * Fix formatting * Ext inst lookup: Add Vulkan 1.1 env with SPIR-V 1.4 * Update spirv-val help * Operand version checks should use module version Use the module version instead of the target environment version. * Fix comment about two-access form of OpCopyMemory
2019-05-07 16:27:18 +00:00
return SPV_SUCCESS;
}
} // anonymous namespace
// Validates correctness of composite instructions.
spv_result_t CompositesPass(ValidationState_t& _, const Instruction* inst) {
switch (inst->opcode()) {
case spv::Op::OpVectorExtractDynamic:
return ValidateVectorExtractDynamic(_, inst);
case spv::Op::OpVectorInsertDynamic:
return ValidateVectorInsertDyanmic(_, inst);
case spv::Op::OpVectorShuffle:
return ValidateVectorShuffle(_, inst);
case spv::Op::OpCompositeConstruct:
return ValidateCompositeConstruct(_, inst);
case spv::Op::OpCompositeExtract:
return ValidateCompositeExtract(_, inst);
case spv::Op::OpCompositeInsert:
return ValidateCompositeInsert(_, inst);
case spv::Op::OpCopyObject:
return ValidateCopyObject(_, inst);
case spv::Op::OpTranspose:
return ValidateTranspose(_, inst);
case spv::Op::OpCopyLogical:
Support SPIR-V 1.4 (#2550) * SPIR-V 1.4 headers, add SPV_ENV_UNIVERSAL_1_4 * Support --target-env spv1.4 in help for command line tools * Support asm/dis of UniformId decoration * Validate UniformId decoration * Fix version check on instructions and operands Also register decorations used with OpDecorateId * Extension lists can differ between enums that match Example: SubgroupMaskEq vs SubgroupMaskEqKHR * Validate scope value for Uniform decoration, for SPIR-V 1.4 * More unioning of exts * Preserve grammar order within an enum value * 1.4: Validate OpSelect over composites * Tools default to 1.4 * Add asm/dis test for OpCopyLogical * 1.4: asm/dis tests for PtrEqual, PtrNotEqual, PtrDiff * Basic asm/Dis test for OpCopyMemory * Test asm/dis OpCopyMemory with 2-memory access Add asm/dis tests for OpCopyMemorySized Requires grammar update to add second optional memory access operand to OpCopyMemory and OpCopyMemorySized * Validate one or two memory accesses on OpCopyMemory* * Check av/vis on CopyMemory source and target memory access This is a proposed rule. See https://gitlab.khronos.org/spirv/SPIR-V/issues/413 * Validate operation for OpSpecConstantOp * Validate NonWritable decoration Also permit NonWritable on members of UBO and SSBO. * SPIR-V 1.4: NonWrtiable can decorate Function and Private vars * Update optimizer CLI tests for SPIR-V 1.4 * Testing tools: Give expected SPIR-V version in message * SPIR-V 1.4 validation for entry point interfaces * Allow only unique interfaces * Allow all global variables * Check that all statically used global variables are listed * new tests * Add validation fixture CompileFailure * Add 1.4 validation for pointer comparisons * New tests * Validate with image operands SignExtend, ZeroExtend Since we don't actually know the image texel format, we can't fully validate. We need more context. But we can make sure we allow the new image operands in known-good cases. * Validate OpCopyLogical * Recursively checks subtypes * new tests * Add SPIR-V 1.4 tests for NoSignedWrap, NoUnsignedWrap * Allow scalar conditions in 1.4 with OpSelect * Allows scalar conditions with vector operands * new tests * Validate uniform id scope as an execution scope * Validate the values of memory and execution scopes are valid scope values * new test * Remove SPIR-V 1.4 Vulkan 1.0 environment * SPIR-V 1.4 requires Vulkan 1.1 * FIX: include string for spvLog * FIX: validate nonwritable * FIX: test case suite for member decorate string * FIX: test case for hlsl functionality1 * Validation test fixture: ease debugging * Use binary version for SPIR-V 1.4 specific features * Switch checks based on the SPIR-V version from the target environment to instead use the version from the binary * Moved header parsing into the ValidationState_t constructor (where version based features are set) * Added new versions of tests that assemble a 1.3 binary and validate a 1.4 environment * Fix test for update to SPIR-V 1.4 headers * Fix formatting * Ext inst lookup: Add Vulkan 1.1 env with SPIR-V 1.4 * Update spirv-val help * Operand version checks should use module version Use the module version instead of the target environment version. * Fix comment about two-access form of OpCopyMemory
2019-05-07 16:27:18 +00:00
return ValidateCopyLogical(_, inst);
default:
break;
}
return SPV_SUCCESS;
}
} // namespace val
} // namespace spvtools