SPIRV-Tools/test/ValidateFixtures.cpp

89 lines
3.3 KiB
C++
Raw Normal View History

Basic SSA Validation Most uses of an ID must occur after the definition of the ID. Forward references are allowed for things like OpName, OpDecorate, and various cases of control-flow instructions such as OpBranch, OpPhi, and OpFunctionCall. TODO: Use CFG analysis for SSA checks. In particular, an ID defined inside a function body is only usable inside that function body. Also, use dominator info to catch some failing cases. Also: * Validator test cases use (standard) assignment form. * Update style to more closely follow the Google C++ style guide * Remove color-diagnostics flag. This is enabled by default on terminals with color. Prints hidden ASCII for terminals that can't handle color(Emacs) * Pass functors to SSAPass to check if the operand can be forward referenced based on its index value * Return SPV_ERROR_INVALID_ID for ID related errors spvBinaryParse returned SPV_ERROR_INVALID_BINARY for all types of errors. Since spvBinaryParse does some ID validation, this was returning inappropriate error codes for some tests. * Common fixture for validation tests. It only runs certian validation passes. * Add a SPV_VALIDATE_SSA_BIT for testing purposes * Fixtures now return error codes * Add OpName support in diag message and unit tests * Binary parsing can fail with invalid ID or invalid binary error code Tests include: * OpDecorate * OpName * OpMemberName * OpBranchConditional * OpSelectionMerge * OpMemberDecorate * OpGroupDecorate * OpDeviceEnqueue * Enable several tests failing in ID validation.
2015-11-18 20:43:43 +00:00
// Copyright (c) 2015 The Khronos Group Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and/or associated documentation files (the
// "Materials"), to deal in the Materials without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Materials, and to
// permit persons to whom the Materials are furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Materials.
//
// MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS
// KHRONOS STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS
// SPECIFICATIONS AND HEADER INFORMATION ARE LOCATED AT
// https://www.khronos.org/registry/
//
// THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
// MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
// Common validation fixtures for unit tests
#include "UnitSPIRV.h"
#include "ValidateFixtures.h"
#include <functional>
#include <utility>
#include <tuple>
Basic SSA Validation Most uses of an ID must occur after the definition of the ID. Forward references are allowed for things like OpName, OpDecorate, and various cases of control-flow instructions such as OpBranch, OpPhi, and OpFunctionCall. TODO: Use CFG analysis for SSA checks. In particular, an ID defined inside a function body is only usable inside that function body. Also, use dominator info to catch some failing cases. Also: * Validator test cases use (standard) assignment form. * Update style to more closely follow the Google C++ style guide * Remove color-diagnostics flag. This is enabled by default on terminals with color. Prints hidden ASCII for terminals that can't handle color(Emacs) * Pass functors to SSAPass to check if the operand can be forward referenced based on its index value * Return SPV_ERROR_INVALID_ID for ID related errors spvBinaryParse returned SPV_ERROR_INVALID_BINARY for all types of errors. Since spvBinaryParse does some ID validation, this was returning inappropriate error codes for some tests. * Common fixture for validation tests. It only runs certian validation passes. * Add a SPV_VALIDATE_SSA_BIT for testing purposes * Fixtures now return error codes * Add OpName support in diag message and unit tests * Binary parsing can fail with invalid ID or invalid binary error code Tests include: * OpDecorate * OpName * OpMemberName * OpBranchConditional * OpSelectionMerge * OpMemberDecorate * OpGroupDecorate * OpDeviceEnqueue * Enable several tests failing in ID validation.
2015-11-18 20:43:43 +00:00
namespace spvtest {
template <typename T, uint32_t OPTIONS>
ValidateBase<T, OPTIONS>::ValidateBase()
: context_(spvContextCreate()), binary_(), diagnostic_() {}
template <typename T, uint32_t OPTIONS>
ValidateBase<T, OPTIONS>::~ValidateBase() {
spvContextDestroy(context_);
}
template <typename T, uint32_t OPTIONS>
spv_const_binary ValidateBase<T, OPTIONS>::get_const_binary() {
return spv_const_binary(binary_);
}
template <typename T, uint32_t OPTIONS>
void ValidateBase<T, OPTIONS>::TearDown() {
if (diagnostic_) {
spvDiagnosticPrint(diagnostic_);
}
spvDiagnosticDestroy(diagnostic_);
spvBinaryDestroy(binary_);
}
template <typename T, uint32_t OPTIONS>
void ValidateBase<T, OPTIONS>::CompileSuccessfully(std::string code) {
spv_diagnostic diagnostic = nullptr;
EXPECT_EQ(SPV_SUCCESS, spvTextToBinary(context_, code.c_str(), code.size(),
&binary_, &diagnostic))
<< "SPIR-V could not be compiled into binary:" << code;
}
template <typename T, uint32_t OPTIONS>
spv_result_t ValidateBase<T, OPTIONS>::ValidateInstructions() {
return spvValidate(context_, get_const_binary(), validation_options_,
&diagnostic_);
}
template <typename T, uint32_t OPTIONS>
std::string ValidateBase<T, OPTIONS>::getDiagnosticString() {
return std::string(diagnostic_->error);
}
template class spvtest::ValidateBase<std::pair<std::string, bool>,
SPV_VALIDATE_SSA_BIT |
SPV_VALIDATE_LAYOUT_BIT>;
template class spvtest::ValidateBase<bool, SPV_VALIDATE_SSA_BIT>;
template class spvtest::ValidateBase<
std::tuple<int, std::tuple<std::string, std::function<bool(int)>,
std::function<bool(int)>>>,
SPV_VALIDATE_LAYOUT_BIT>;
Basic SSA Validation Most uses of an ID must occur after the definition of the ID. Forward references are allowed for things like OpName, OpDecorate, and various cases of control-flow instructions such as OpBranch, OpPhi, and OpFunctionCall. TODO: Use CFG analysis for SSA checks. In particular, an ID defined inside a function body is only usable inside that function body. Also, use dominator info to catch some failing cases. Also: * Validator test cases use (standard) assignment form. * Update style to more closely follow the Google C++ style guide * Remove color-diagnostics flag. This is enabled by default on terminals with color. Prints hidden ASCII for terminals that can't handle color(Emacs) * Pass functors to SSAPass to check if the operand can be forward referenced based on its index value * Return SPV_ERROR_INVALID_ID for ID related errors spvBinaryParse returned SPV_ERROR_INVALID_BINARY for all types of errors. Since spvBinaryParse does some ID validation, this was returning inappropriate error codes for some tests. * Common fixture for validation tests. It only runs certian validation passes. * Add a SPV_VALIDATE_SSA_BIT for testing purposes * Fixtures now return error codes * Add OpName support in diag message and unit tests * Binary parsing can fail with invalid ID or invalid binary error code Tests include: * OpDecorate * OpName * OpMemberName * OpBranchConditional * OpSelectionMerge * OpMemberDecorate * OpGroupDecorate * OpDeviceEnqueue * Enable several tests failing in ID validation.
2015-11-18 20:43:43 +00:00
}