SPIRV-Tools/include/spirv-tools/libspirv.h

899 lines
40 KiB
C
Raw Normal View History

// Copyright (c) 2015-2020 The Khronos Group Inc.
// Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights
// reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef INCLUDE_SPIRV_TOOLS_LIBSPIRV_H_
#define INCLUDE_SPIRV_TOOLS_LIBSPIRV_H_
#ifdef __cplusplus
extern "C" {
#else
#include <stdbool.h>
#endif
#include <stddef.h>
#include <stdint.h>
#if defined(SPIRV_TOOLS_SHAREDLIB)
#if defined(_WIN32)
#if defined(SPIRV_TOOLS_IMPLEMENTATION)
#define SPIRV_TOOLS_EXPORT __declspec(dllexport)
#else
#define SPIRV_TOOLS_EXPORT __declspec(dllimport)
#endif
#else
#if defined(SPIRV_TOOLS_IMPLEMENTATION)
#define SPIRV_TOOLS_EXPORT __attribute__((visibility("default")))
#else
#define SPIRV_TOOLS_EXPORT
#endif
#endif
#else
#define SPIRV_TOOLS_EXPORT
#endif
// Helpers
#define SPV_BIT(shift) (1 << (shift))
#define SPV_FORCE_16_BIT_ENUM(name) SPV_FORCE_16BIT_##name = 0x7fff
#define SPV_FORCE_32_BIT_ENUM(name) SPV_FORCE_32BIT_##name = 0x7fffffff
// Enumerations
typedef enum spv_result_t {
SPV_SUCCESS = 0,
SPV_UNSUPPORTED = 1,
SPV_END_OF_STREAM = 2,
SPV_WARNING = 3,
SPV_FAILED_MATCH = 4,
SPV_REQUESTED_TERMINATION = 5, // Success, but signals early termination.
SPV_ERROR_INTERNAL = -1,
SPV_ERROR_OUT_OF_MEMORY = -2,
SPV_ERROR_INVALID_POINTER = -3,
SPV_ERROR_INVALID_BINARY = -4,
SPV_ERROR_INVALID_TEXT = -5,
SPV_ERROR_INVALID_TABLE = -6,
SPV_ERROR_INVALID_VALUE = -7,
SPV_ERROR_INVALID_DIAGNOSTIC = -8,
SPV_ERROR_INVALID_LOOKUP = -9,
SPV_ERROR_INVALID_ID = -10,
SPV_ERROR_INVALID_CFG = -11,
SPV_ERROR_INVALID_LAYOUT = -12,
SPV_ERROR_INVALID_CAPABILITY = -13,
SPV_ERROR_INVALID_DATA = -14, // Indicates data rules validation failure.
SPV_ERROR_MISSING_EXTENSION = -15,
SPV_ERROR_WRONG_VERSION = -16, // Indicates wrong SPIR-V version
SPV_FORCE_32_BIT_ENUM(spv_result_t)
} spv_result_t;
2016-09-16 20:12:04 +00:00
// Severity levels of messages communicated to the consumer.
typedef enum spv_message_level_t {
SPV_MSG_FATAL, // Unrecoverable error due to environment.
// Will exit the program immediately. E.g.,
// out of memory.
SPV_MSG_INTERNAL_ERROR, // Unrecoverable error due to SPIRV-Tools
// internals.
// Will exit the program immediately. E.g.,
// unimplemented feature.
SPV_MSG_ERROR, // Normal error due to user input.
SPV_MSG_WARNING, // Warning information.
2016-09-16 20:12:04 +00:00
SPV_MSG_INFO, // General information.
SPV_MSG_DEBUG, // Debug information.
} spv_message_level_t;
typedef enum spv_endianness_t {
SPV_ENDIANNESS_LITTLE,
SPV_ENDIANNESS_BIG,
SPV_FORCE_32_BIT_ENUM(spv_endianness_t)
} spv_endianness_t;
Use opcode operand definitions from SPIR-V specification generator. The assembler and disassembler now use a dynamically adjusted sequence of expected operand types. (Internally, it is a deque, for readability.) Both parsers repeatedly pull an expected operand type from the left of this pattern list, and try to match the next input token against it. The expected pattern is adjusted during the parse to accommodate: - an extended instruction's expected operands, depending on the extended instruction's index. - when an operand itself has operands - to handle sequences of zero or more operands, or pairs of operands. These are expanded lazily during the parse. Adds spv::OperandClass from the SPIR-V specification generator. Modifies spv_operand_desc_t: - adds hasResult, hasType, and operandClass array to the opcode description type. - "wordCount" is replaced with "numTypes", which counts the number of entries in operandTypes. And each of those describes a *logical* operand, including the type id for the instruction, and the result id for the instruction. A logical operand could be variable-width, such as a literal string. Adds opcode.inc, an automatically-generated table of operation descriptions, with one line to describe each core instruction. Externally, we have modified the SPIR-V spec doc generator to emit this file. (We have hacked this copy to use the old semantics for OpLine.) Inside the assembler, parsing an operand may fail with new error code SPV_FAIL_MATCH. For an optional operand, this is not fatal, but should trigger backtracking at a higher level. The spvTextIsStartOfNewInst checks the case of the third letter of what might be an opcode. So now, "OpenCL" does not look like an opcode name. In assembly, the EntryPoint name field is mandatory, but can be an empty string. Adjust tests for changes to: - OpSampedImage - OpTypeSampler
2015-08-27 17:03:52 +00:00
// The kinds of operands that an instruction may have.
//
// Some operand types are "concrete". The binary parser uses a concrete
// operand type to describe an operand of a parsed instruction.
//
// The assembler uses all operand types. In addition to determining what
// kind of value an operand may be, non-concrete operand types capture the
// fact that an operand might be optional (may be absent, or present exactly
2015-11-13 16:00:10 +00:00
// once), or might occur zero or more times.
Use opcode operand definitions from SPIR-V specification generator. The assembler and disassembler now use a dynamically adjusted sequence of expected operand types. (Internally, it is a deque, for readability.) Both parsers repeatedly pull an expected operand type from the left of this pattern list, and try to match the next input token against it. The expected pattern is adjusted during the parse to accommodate: - an extended instruction's expected operands, depending on the extended instruction's index. - when an operand itself has operands - to handle sequences of zero or more operands, or pairs of operands. These are expanded lazily during the parse. Adds spv::OperandClass from the SPIR-V specification generator. Modifies spv_operand_desc_t: - adds hasResult, hasType, and operandClass array to the opcode description type. - "wordCount" is replaced with "numTypes", which counts the number of entries in operandTypes. And each of those describes a *logical* operand, including the type id for the instruction, and the result id for the instruction. A logical operand could be variable-width, such as a literal string. Adds opcode.inc, an automatically-generated table of operation descriptions, with one line to describe each core instruction. Externally, we have modified the SPIR-V spec doc generator to emit this file. (We have hacked this copy to use the old semantics for OpLine.) Inside the assembler, parsing an operand may fail with new error code SPV_FAIL_MATCH. For an optional operand, this is not fatal, but should trigger backtracking at a higher level. The spvTextIsStartOfNewInst checks the case of the third letter of what might be an opcode. So now, "OpenCL" does not look like an opcode name. In assembly, the EntryPoint name field is mandatory, but can be an empty string. Adjust tests for changes to: - OpSampedImage - OpTypeSampler
2015-08-27 17:03:52 +00:00
//
// Sometimes we also need to be able to express the fact that an operand
// is a member of an optional tuple of values. In that case the first member
// would be optional, and the subsequent members would be required.
//
// NOTE: Although we don't promise binary compatibility, as a courtesy, please
// add new enum values at the end.
typedef enum spv_operand_type_t {
// A sentinel value.
Use opcode operand definitions from SPIR-V specification generator. The assembler and disassembler now use a dynamically adjusted sequence of expected operand types. (Internally, it is a deque, for readability.) Both parsers repeatedly pull an expected operand type from the left of this pattern list, and try to match the next input token against it. The expected pattern is adjusted during the parse to accommodate: - an extended instruction's expected operands, depending on the extended instruction's index. - when an operand itself has operands - to handle sequences of zero or more operands, or pairs of operands. These are expanded lazily during the parse. Adds spv::OperandClass from the SPIR-V specification generator. Modifies spv_operand_desc_t: - adds hasResult, hasType, and operandClass array to the opcode description type. - "wordCount" is replaced with "numTypes", which counts the number of entries in operandTypes. And each of those describes a *logical* operand, including the type id for the instruction, and the result id for the instruction. A logical operand could be variable-width, such as a literal string. Adds opcode.inc, an automatically-generated table of operation descriptions, with one line to describe each core instruction. Externally, we have modified the SPIR-V spec doc generator to emit this file. (We have hacked this copy to use the old semantics for OpLine.) Inside the assembler, parsing an operand may fail with new error code SPV_FAIL_MATCH. For an optional operand, this is not fatal, but should trigger backtracking at a higher level. The spvTextIsStartOfNewInst checks the case of the third letter of what might be an opcode. So now, "OpenCL" does not look like an opcode name. In assembly, the EntryPoint name field is mandatory, but can be an empty string. Adjust tests for changes to: - OpSampedImage - OpTypeSampler
2015-08-27 17:03:52 +00:00
SPV_OPERAND_TYPE_NONE = 0,
// Set 1: Operands that are IDs.
SPV_OPERAND_TYPE_ID,
SPV_OPERAND_TYPE_TYPE_ID,
SPV_OPERAND_TYPE_RESULT_ID,
SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, // SPIR-V Sec 3.25
SPV_OPERAND_TYPE_SCOPE_ID, // SPIR-V Sec 3.27
// Set 2: Operands that are literal numbers.
SPV_OPERAND_TYPE_LITERAL_INTEGER, // Always unsigned 32-bits.
// The Instruction argument to OpExtInst. It's an unsigned 32-bit literal
// number indicating which instruction to use from an extended instruction
// set.
SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER,
// The Opcode argument to OpSpecConstantOp. It determines the operation
// to be performed on constant operands to compute a specialization constant
// result.
SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER,
// A literal number whose format and size are determined by a previous operand
// in the same instruction. It's a signed integer, an unsigned integer, or a
// floating point number. It also has a specified bit width. The width
// may be larger than 32, which would require such a typed literal value to
// occupy multiple SPIR-V words.
SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER,
// Set 3: The literal string operand type.
SPV_OPERAND_TYPE_LITERAL_STRING,
// Set 4: Operands that are a single word enumerated value.
SPV_OPERAND_TYPE_SOURCE_LANGUAGE, // SPIR-V Sec 3.2
SPV_OPERAND_TYPE_EXECUTION_MODEL, // SPIR-V Sec 3.3
SPV_OPERAND_TYPE_ADDRESSING_MODEL, // SPIR-V Sec 3.4
SPV_OPERAND_TYPE_MEMORY_MODEL, // SPIR-V Sec 3.5
SPV_OPERAND_TYPE_EXECUTION_MODE, // SPIR-V Sec 3.6
SPV_OPERAND_TYPE_STORAGE_CLASS, // SPIR-V Sec 3.7
SPV_OPERAND_TYPE_DIMENSIONALITY, // SPIR-V Sec 3.8
SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE, // SPIR-V Sec 3.9
SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE, // SPIR-V Sec 3.10
SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT, // SPIR-V Sec 3.11
SPV_OPERAND_TYPE_IMAGE_CHANNEL_ORDER, // SPIR-V Sec 3.12
SPV_OPERAND_TYPE_IMAGE_CHANNEL_DATA_TYPE, // SPIR-V Sec 3.13
SPV_OPERAND_TYPE_FP_ROUNDING_MODE, // SPIR-V Sec 3.16
SPV_OPERAND_TYPE_LINKAGE_TYPE, // SPIR-V Sec 3.17
SPV_OPERAND_TYPE_ACCESS_QUALIFIER, // SPIR-V Sec 3.18
SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE, // SPIR-V Sec 3.19
SPV_OPERAND_TYPE_DECORATION, // SPIR-V Sec 3.20
SPV_OPERAND_TYPE_BUILT_IN, // SPIR-V Sec 3.21
SPV_OPERAND_TYPE_GROUP_OPERATION, // SPIR-V Sec 3.28
SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS, // SPIR-V Sec 3.29
SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO, // SPIR-V Sec 3.30
SPV_OPERAND_TYPE_CAPABILITY, // SPIR-V Sec 3.31
// NOTE: New concrete enum values should be added at the end.
// Set 5: Operands that are a single word bitmask.
// Sometimes a set bit indicates the instruction requires still more operands.
SPV_OPERAND_TYPE_IMAGE, // SPIR-V Sec 3.14
SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, // SPIR-V Sec 3.15
SPV_OPERAND_TYPE_SELECTION_CONTROL, // SPIR-V Sec 3.22
SPV_OPERAND_TYPE_LOOP_CONTROL, // SPIR-V Sec 3.23
SPV_OPERAND_TYPE_FUNCTION_CONTROL, // SPIR-V Sec 3.24
SPV_OPERAND_TYPE_MEMORY_ACCESS, // SPIR-V Sec 3.26
SPV_OPERAND_TYPE_FRAGMENT_SHADING_RATE, // SPIR-V Sec 3.FSR
// NOTE: New concrete enum values should be added at the end.
// The "optional" and "variable" operand types are only used internally by
// the assembler and the binary parser.
// There are two categories:
// Optional : expands to 0 or 1 operand, like ? in regular expressions.
// Variable : expands to 0, 1 or many operands or pairs of operands.
// This is similar to * in regular expressions.
// NOTE: These FIRST_* and LAST_* enum values are DEPRECATED.
// The concept of "optional" and "variable" operand types are only intended
// for use as an implementation detail of parsing SPIR-V, either in text or
// binary form. Instead of using enum ranges, use characteristic function
// spvOperandIsConcrete.
// The use of enum value ranges in a public API makes it difficult to insert
// new values into a range without also breaking binary compatibility.
//
// Macros for defining bounds on optional and variable operand types.
// Any variable operand type is also optional.
// TODO(dneto): Remove SPV_OPERAND_TYPE_FIRST_* and SPV_OPERAND_TYPE_LAST_*
#define FIRST_OPTIONAL(ENUM) ENUM, SPV_OPERAND_TYPE_FIRST_OPTIONAL_TYPE = ENUM
#define FIRST_VARIABLE(ENUM) ENUM, SPV_OPERAND_TYPE_FIRST_VARIABLE_TYPE = ENUM
#define LAST_VARIABLE(ENUM) \
ENUM, SPV_OPERAND_TYPE_LAST_VARIABLE_TYPE = ENUM, \
SPV_OPERAND_TYPE_LAST_OPTIONAL_TYPE = ENUM
Use opcode operand definitions from SPIR-V specification generator. The assembler and disassembler now use a dynamically adjusted sequence of expected operand types. (Internally, it is a deque, for readability.) Both parsers repeatedly pull an expected operand type from the left of this pattern list, and try to match the next input token against it. The expected pattern is adjusted during the parse to accommodate: - an extended instruction's expected operands, depending on the extended instruction's index. - when an operand itself has operands - to handle sequences of zero or more operands, or pairs of operands. These are expanded lazily during the parse. Adds spv::OperandClass from the SPIR-V specification generator. Modifies spv_operand_desc_t: - adds hasResult, hasType, and operandClass array to the opcode description type. - "wordCount" is replaced with "numTypes", which counts the number of entries in operandTypes. And each of those describes a *logical* operand, including the type id for the instruction, and the result id for the instruction. A logical operand could be variable-width, such as a literal string. Adds opcode.inc, an automatically-generated table of operation descriptions, with one line to describe each core instruction. Externally, we have modified the SPIR-V spec doc generator to emit this file. (We have hacked this copy to use the old semantics for OpLine.) Inside the assembler, parsing an operand may fail with new error code SPV_FAIL_MATCH. For an optional operand, this is not fatal, but should trigger backtracking at a higher level. The spvTextIsStartOfNewInst checks the case of the third letter of what might be an opcode. So now, "OpenCL" does not look like an opcode name. In assembly, the EntryPoint name field is mandatory, but can be an empty string. Adjust tests for changes to: - OpSampedImage - OpTypeSampler
2015-08-27 17:03:52 +00:00
// An optional operand represents zero or one logical operands.
// In an instruction definition, this may only appear at the end of the
// operand types.
FIRST_OPTIONAL(SPV_OPERAND_TYPE_OPTIONAL_ID),
// An optional image operand type.
SPV_OPERAND_TYPE_OPTIONAL_IMAGE,
// An optional memory access type.
SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS,
// An optional literal integer.
SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER,
// An optional literal number, which may be either integer or floating point.
SPV_OPERAND_TYPE_OPTIONAL_LITERAL_NUMBER,
// Like SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER, but optional, and integral.
SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER,
Use opcode operand definitions from SPIR-V specification generator. The assembler and disassembler now use a dynamically adjusted sequence of expected operand types. (Internally, it is a deque, for readability.) Both parsers repeatedly pull an expected operand type from the left of this pattern list, and try to match the next input token against it. The expected pattern is adjusted during the parse to accommodate: - an extended instruction's expected operands, depending on the extended instruction's index. - when an operand itself has operands - to handle sequences of zero or more operands, or pairs of operands. These are expanded lazily during the parse. Adds spv::OperandClass from the SPIR-V specification generator. Modifies spv_operand_desc_t: - adds hasResult, hasType, and operandClass array to the opcode description type. - "wordCount" is replaced with "numTypes", which counts the number of entries in operandTypes. And each of those describes a *logical* operand, including the type id for the instruction, and the result id for the instruction. A logical operand could be variable-width, such as a literal string. Adds opcode.inc, an automatically-generated table of operation descriptions, with one line to describe each core instruction. Externally, we have modified the SPIR-V spec doc generator to emit this file. (We have hacked this copy to use the old semantics for OpLine.) Inside the assembler, parsing an operand may fail with new error code SPV_FAIL_MATCH. For an optional operand, this is not fatal, but should trigger backtracking at a higher level. The spvTextIsStartOfNewInst checks the case of the third letter of what might be an opcode. So now, "OpenCL" does not look like an opcode name. In assembly, the EntryPoint name field is mandatory, but can be an empty string. Adjust tests for changes to: - OpSampedImage - OpTypeSampler
2015-08-27 17:03:52 +00:00
// An optional literal string.
SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING,
// An optional access qualifier
SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER,
// An optional context-independent value, or CIV. CIVs are tokens that we can
// assemble regardless of where they occur -- literals, IDs, immediate
// integers, etc.
SPV_OPERAND_TYPE_OPTIONAL_CIV,
Use opcode operand definitions from SPIR-V specification generator. The assembler and disassembler now use a dynamically adjusted sequence of expected operand types. (Internally, it is a deque, for readability.) Both parsers repeatedly pull an expected operand type from the left of this pattern list, and try to match the next input token against it. The expected pattern is adjusted during the parse to accommodate: - an extended instruction's expected operands, depending on the extended instruction's index. - when an operand itself has operands - to handle sequences of zero or more operands, or pairs of operands. These are expanded lazily during the parse. Adds spv::OperandClass from the SPIR-V specification generator. Modifies spv_operand_desc_t: - adds hasResult, hasType, and operandClass array to the opcode description type. - "wordCount" is replaced with "numTypes", which counts the number of entries in operandTypes. And each of those describes a *logical* operand, including the type id for the instruction, and the result id for the instruction. A logical operand could be variable-width, such as a literal string. Adds opcode.inc, an automatically-generated table of operation descriptions, with one line to describe each core instruction. Externally, we have modified the SPIR-V spec doc generator to emit this file. (We have hacked this copy to use the old semantics for OpLine.) Inside the assembler, parsing an operand may fail with new error code SPV_FAIL_MATCH. For an optional operand, this is not fatal, but should trigger backtracking at a higher level. The spvTextIsStartOfNewInst checks the case of the third letter of what might be an opcode. So now, "OpenCL" does not look like an opcode name. In assembly, the EntryPoint name field is mandatory, but can be an empty string. Adjust tests for changes to: - OpSampedImage - OpTypeSampler
2015-08-27 17:03:52 +00:00
// A variable operand represents zero or more logical operands.
// In an instruction definition, this may only appear at the end of the
// operand types.
FIRST_VARIABLE(SPV_OPERAND_TYPE_VARIABLE_ID),
SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER,
// A sequence of zero or more pairs of (typed literal integer, Id).
// Expands to zero or more:
// (SPV_OPERAND_TYPE_TYPED_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID)
// where the literal number must always be an integer of some sort.
SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER_ID,
// A sequence of zero or more pairs of (Id, Literal integer)
LAST_VARIABLE(SPV_OPERAND_TYPE_VARIABLE_ID_LITERAL_INTEGER),
// The following are concrete enum types from the DebugInfo extended
// instruction set.
SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS, // DebugInfo Sec 3.2. A mask.
SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING, // DebugInfo Sec 3.3
SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE, // DebugInfo Sec 3.4
SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER, // DebugInfo Sec 3.5
SPV_OPERAND_TYPE_DEBUG_OPERATION, // DebugInfo Sec 3.6
// The following are concrete enum types from the OpenCL.DebugInfo.100
// extended instruction set.
SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_INFO_FLAGS, // Sec 3.2. A Mask
SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING, // Sec 3.3
SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_COMPOSITE_TYPE, // Sec 3.4
SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_TYPE_QUALIFIER, // Sec 3.5
SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_OPERATION, // Sec 3.6
SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_IMPORTED_ENTITY, // Sec 3.7
// The following are concrete enum types from SPV_INTEL_float_controls2
// https://github.com/intel/llvm/blob/39fa9b0cbfbae88327118990a05c5b387b56d2ef/sycl/doc/extensions/SPIRV/SPV_INTEL_float_controls2.asciidoc
SPV_OPERAND_TYPE_FPDENORM_MODE, // Sec 3.17 FP Denorm Mode
SPV_OPERAND_TYPE_FPOPERATION_MODE, // Sec 3.18 FP Operation Mode
// A value enum from https://github.com/KhronosGroup/SPIRV-Headers/pull/177
SPV_OPERAND_TYPE_QUANTIZATION_MODES,
// A value enum from https://github.com/KhronosGroup/SPIRV-Headers/pull/177
SPV_OPERAND_TYPE_OVERFLOW_MODES,
// Concrete operand types for the provisional Vulkan ray tracing feature.
SPV_OPERAND_TYPE_RAY_FLAGS, // SPIR-V Sec 3.RF
SPV_OPERAND_TYPE_RAY_QUERY_INTERSECTION, // SPIR-V Sec 3.RQIntersection
SPV_OPERAND_TYPE_RAY_QUERY_COMMITTED_INTERSECTION_TYPE, // SPIR-V Sec
// 3.RQCommitted
SPV_OPERAND_TYPE_RAY_QUERY_CANDIDATE_INTERSECTION_TYPE, // SPIR-V Sec
// 3.RQCandidate
// Concrete operand types for integer dot product.
// Packed vector format
SPV_OPERAND_TYPE_PACKED_VECTOR_FORMAT, // SPIR-V Sec 3.x
// An optional packed vector format
SPV_OPERAND_TYPE_OPTIONAL_PACKED_VECTOR_FORMAT,
Use opcode operand definitions from SPIR-V specification generator. The assembler and disassembler now use a dynamically adjusted sequence of expected operand types. (Internally, it is a deque, for readability.) Both parsers repeatedly pull an expected operand type from the left of this pattern list, and try to match the next input token against it. The expected pattern is adjusted during the parse to accommodate: - an extended instruction's expected operands, depending on the extended instruction's index. - when an operand itself has operands - to handle sequences of zero or more operands, or pairs of operands. These are expanded lazily during the parse. Adds spv::OperandClass from the SPIR-V specification generator. Modifies spv_operand_desc_t: - adds hasResult, hasType, and operandClass array to the opcode description type. - "wordCount" is replaced with "numTypes", which counts the number of entries in operandTypes. And each of those describes a *logical* operand, including the type id for the instruction, and the result id for the instruction. A logical operand could be variable-width, such as a literal string. Adds opcode.inc, an automatically-generated table of operation descriptions, with one line to describe each core instruction. Externally, we have modified the SPIR-V spec doc generator to emit this file. (We have hacked this copy to use the old semantics for OpLine.) Inside the assembler, parsing an operand may fail with new error code SPV_FAIL_MATCH. For an optional operand, this is not fatal, but should trigger backtracking at a higher level. The spvTextIsStartOfNewInst checks the case of the third letter of what might be an opcode. So now, "OpenCL" does not look like an opcode name. In assembly, the EntryPoint name field is mandatory, but can be an empty string. Adjust tests for changes to: - OpSampedImage - OpTypeSampler
2015-08-27 17:03:52 +00:00
// This is a sentinel value, and does not represent an operand type.
// It should come last.
SPV_OPERAND_TYPE_NUM_OPERAND_TYPES,
SPV_FORCE_32_BIT_ENUM(spv_operand_type_t)
} spv_operand_type_t;
// Returns true if the given type is concrete.
bool spvOperandIsConcrete(spv_operand_type_t type);
// Returns true if the given type is concrete and also a mask.
bool spvOperandIsConcreteMask(spv_operand_type_t type);
typedef enum spv_ext_inst_type_t {
SPV_EXT_INST_TYPE_NONE = 0,
SPV_EXT_INST_TYPE_GLSL_STD_450,
SPV_EXT_INST_TYPE_OPENCL_STD,
2017-06-21 07:58:00 +00:00
SPV_EXT_INST_TYPE_SPV_AMD_SHADER_EXPLICIT_VERTEX_PARAMETER,
SPV_EXT_INST_TYPE_SPV_AMD_SHADER_TRINARY_MINMAX,
SPV_EXT_INST_TYPE_SPV_AMD_GCN_SHADER,
2017-06-21 07:58:00 +00:00
SPV_EXT_INST_TYPE_SPV_AMD_SHADER_BALLOT,
SPV_EXT_INST_TYPE_DEBUGINFO,
SPV_EXT_INST_TYPE_OPENCL_DEBUGINFO_100,
SPV_EXT_INST_TYPE_NONSEMANTIC_CLSPVREFLECTION,
SPV_EXT_INST_TYPE_NONSEMANTIC_SHADER_DEBUGINFO_100,
2019-12-18 23:10:29 +00:00
// Multiple distinct extended instruction set types could return this
// value, if they are prefixed with NonSemantic. and are otherwise
// unrecognised
SPV_EXT_INST_TYPE_NONSEMANTIC_UNKNOWN,
SPV_FORCE_32_BIT_ENUM(spv_ext_inst_type_t)
} spv_ext_inst_type_t;
2015-11-11 21:59:31 +00:00
// This determines at a high level the kind of a binary-encoded literal
// number, but not the bit width.
// In principle, these could probably be folded into new entries in
// spv_operand_type_t. But then we'd have some special case differences
// between the assembler and disassembler.
typedef enum spv_number_kind_t {
SPV_NUMBER_NONE = 0, // The default for value initialization.
SPV_NUMBER_UNSIGNED_INT,
SPV_NUMBER_SIGNED_INT,
SPV_NUMBER_FLOATING,
} spv_number_kind_t;
typedef enum spv_text_to_binary_options_t {
SPV_TEXT_TO_BINARY_OPTION_NONE = SPV_BIT(0),
// Numeric IDs in the binary will have the same values as in the source.
// Non-numeric IDs are allocated by filling in the gaps, starting with 1
// and going up.
SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS = SPV_BIT(1),
SPV_FORCE_32_BIT_ENUM(spv_text_to_binary_options_t)
} spv_text_to_binary_options_t;
typedef enum spv_binary_to_text_options_t {
SPV_BINARY_TO_TEXT_OPTION_NONE = SPV_BIT(0),
SPV_BINARY_TO_TEXT_OPTION_PRINT = SPV_BIT(1),
SPV_BINARY_TO_TEXT_OPTION_COLOR = SPV_BIT(2),
SPV_BINARY_TO_TEXT_OPTION_INDENT = SPV_BIT(3),
SPV_BINARY_TO_TEXT_OPTION_SHOW_BYTE_OFFSET = SPV_BIT(4),
// Do not output the module header as leading comments in the assembly.
SPV_BINARY_TO_TEXT_OPTION_NO_HEADER = SPV_BIT(5),
// Use friendly names where possible. The heuristic may expand over
// time, but will use common names for scalar types, and debug names from
// OpName instructions.
SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES = SPV_BIT(6),
// Add some comments to the generated assembly
SPV_BINARY_TO_TEXT_OPTION_COMMENT = SPV_BIT(7),
SPV_FORCE_32_BIT_ENUM(spv_binary_to_text_options_t)
} spv_binary_to_text_options_t;
// Constants
// The default id bound is to the minimum value for the id limit
// in the spir-v specification under the section "Universal Limits".
const uint32_t kDefaultMaxIdBound = 0x3FFFFF;
// Structures
2015-11-11 21:59:31 +00:00
// Information about an operand parsed from a binary SPIR-V module.
// Note that the values are not included. You still need access to the binary
// to extract the values.
typedef struct spv_parsed_operand_t {
// Location of the operand, in words from the start of the instruction.
uint16_t offset;
// Number of words occupied by this operand.
uint16_t num_words;
// The "concrete" operand type. See the definition of spv_operand_type_t
// for details.
spv_operand_type_t type;
// If type is a literal number type, then number_kind says whether it's
// a signed integer, an unsigned integer, or a floating point number.
spv_number_kind_t number_kind;
// The number of bits for a literal number type.
uint32_t number_bit_width;
} spv_parsed_operand_t;
// An instruction parsed from a binary SPIR-V module.
typedef struct spv_parsed_instruction_t {
// An array of words for this instruction, in native endianness.
const uint32_t* words;
// The number of words in this instruction.
uint16_t num_words;
uint16_t opcode;
2015-11-11 21:59:31 +00:00
// The extended instruction type, if opcode is OpExtInst. Otherwise
// this is the "none" value.
spv_ext_inst_type_t ext_inst_type;
// The type id, or 0 if this instruction doesn't have one.
uint32_t type_id;
// The result id, or 0 if this instruction doesn't have one.
uint32_t result_id;
// The array of parsed operands.
const spv_parsed_operand_t* operands;
uint16_t num_operands;
} spv_parsed_instruction_t;
typedef struct spv_const_binary_t {
const uint32_t* code;
const size_t wordCount;
} spv_const_binary_t;
typedef struct spv_binary_t {
uint32_t* code;
size_t wordCount;
} spv_binary_t;
typedef struct spv_text_t {
const char* str;
size_t length;
} spv_text_t;
typedef struct spv_position_t {
size_t line;
size_t column;
size_t index;
} spv_position_t;
typedef struct spv_diagnostic_t {
spv_position_t position;
char* error;
bool isTextSource;
} spv_diagnostic_t;
// Opaque struct containing the context used to operate on a SPIR-V module.
2015-11-13 16:00:10 +00:00
// Its object is used by various translation API functions.
typedef struct spv_context_t spv_context_t;
typedef struct spv_validator_options_t spv_validator_options_t;
typedef struct spv_optimizer_options_t spv_optimizer_options_t;
typedef struct spv_reducer_options_t spv_reducer_options_t;
typedef struct spv_fuzzer_options_t spv_fuzzer_options_t;
// Type Definitions
typedef spv_const_binary_t* spv_const_binary;
typedef spv_binary_t* spv_binary;
typedef spv_text_t* spv_text;
typedef spv_position_t* spv_position;
typedef spv_diagnostic_t* spv_diagnostic;
typedef const spv_context_t* spv_const_context;
typedef spv_context_t* spv_context;
typedef spv_validator_options_t* spv_validator_options;
typedef const spv_validator_options_t* spv_const_validator_options;
typedef spv_optimizer_options_t* spv_optimizer_options;
typedef const spv_optimizer_options_t* spv_const_optimizer_options;
typedef spv_reducer_options_t* spv_reducer_options;
typedef const spv_reducer_options_t* spv_const_reducer_options;
typedef spv_fuzzer_options_t* spv_fuzzer_options;
typedef const spv_fuzzer_options_t* spv_const_fuzzer_options;
// Platform API
// Returns the SPIRV-Tools software version as a null-terminated string.
// The contents of the underlying storage is valid for the remainder of
// the process.
SPIRV_TOOLS_EXPORT const char* spvSoftwareVersionString(void);
// Returns a null-terminated string containing the name of the project,
// the software version string, and commit details.
// The contents of the underlying storage is valid for the remainder of
// the process.
SPIRV_TOOLS_EXPORT const char* spvSoftwareVersionDetailsString(void);
// Certain target environments impose additional restrictions on SPIR-V, so it's
// often necessary to specify which one applies. SPV_ENV_UNIVERSAL_* implies an
// environment-agnostic SPIR-V.
//
// When an API method needs to derive a SPIR-V version from a target environment
// (from the spv_context object), the method will choose the highest version of
// SPIR-V supported by the target environment. Examples:
// SPV_ENV_VULKAN_1_0 -> SPIR-V 1.0
// SPV_ENV_VULKAN_1_1 -> SPIR-V 1.3
// SPV_ENV_VULKAN_1_1_SPIRV_1_4 -> SPIR-V 1.4
// SPV_ENV_VULKAN_1_2 -> SPIR-V 1.5
// Consult the description of API entry points for specific rules.
typedef enum {
SPV_ENV_UNIVERSAL_1_0, // SPIR-V 1.0 latest revision, no other restrictions.
SPV_ENV_VULKAN_1_0, // Vulkan 1.0 latest revision.
SPV_ENV_UNIVERSAL_1_1, // SPIR-V 1.1 latest revision, no other restrictions.
SPV_ENV_OPENCL_2_1, // OpenCL Full Profile 2.1 latest revision.
SPV_ENV_OPENCL_2_2, // OpenCL Full Profile 2.2 latest revision.
SPV_ENV_OPENGL_4_0, // OpenGL 4.0 plus GL_ARB_gl_spirv, latest revisions.
SPV_ENV_OPENGL_4_1, // OpenGL 4.1 plus GL_ARB_gl_spirv, latest revisions.
SPV_ENV_OPENGL_4_2, // OpenGL 4.2 plus GL_ARB_gl_spirv, latest revisions.
SPV_ENV_OPENGL_4_3, // OpenGL 4.3 plus GL_ARB_gl_spirv, latest revisions.
// There is no variant for OpenGL 4.4.
2017-03-14 16:43:41 +00:00
SPV_ENV_OPENGL_4_5, // OpenGL 4.5 plus GL_ARB_gl_spirv, latest revisions.
SPV_ENV_UNIVERSAL_1_2, // SPIR-V 1.2, latest revision, no other restrictions.
SPV_ENV_OPENCL_1_2, // OpenCL Full Profile 1.2 plus cl_khr_il_program,
// latest revision.
SPV_ENV_OPENCL_EMBEDDED_1_2, // OpenCL Embedded Profile 1.2 plus
// cl_khr_il_program, latest revision.
SPV_ENV_OPENCL_2_0, // OpenCL Full Profile 2.0 plus cl_khr_il_program,
// latest revision.
SPV_ENV_OPENCL_EMBEDDED_2_0, // OpenCL Embedded Profile 2.0 plus
// cl_khr_il_program, latest revision.
SPV_ENV_OPENCL_EMBEDDED_2_1, // OpenCL Embedded Profile 2.1 latest revision.
SPV_ENV_OPENCL_EMBEDDED_2_2, // OpenCL Embedded Profile 2.2 latest revision.
SPV_ENV_UNIVERSAL_1_3, // SPIR-V 1.3 latest revision, no other restrictions.
SPV_ENV_VULKAN_1_1, // Vulkan 1.1 latest revision.
SPV_ENV_WEBGPU_0, // DEPRECATED, may be removed in the future.
Support SPIR-V 1.4 (#2550) * SPIR-V 1.4 headers, add SPV_ENV_UNIVERSAL_1_4 * Support --target-env spv1.4 in help for command line tools * Support asm/dis of UniformId decoration * Validate UniformId decoration * Fix version check on instructions and operands Also register decorations used with OpDecorateId * Extension lists can differ between enums that match Example: SubgroupMaskEq vs SubgroupMaskEqKHR * Validate scope value for Uniform decoration, for SPIR-V 1.4 * More unioning of exts * Preserve grammar order within an enum value * 1.4: Validate OpSelect over composites * Tools default to 1.4 * Add asm/dis test for OpCopyLogical * 1.4: asm/dis tests for PtrEqual, PtrNotEqual, PtrDiff * Basic asm/Dis test for OpCopyMemory * Test asm/dis OpCopyMemory with 2-memory access Add asm/dis tests for OpCopyMemorySized Requires grammar update to add second optional memory access operand to OpCopyMemory and OpCopyMemorySized * Validate one or two memory accesses on OpCopyMemory* * Check av/vis on CopyMemory source and target memory access This is a proposed rule. See https://gitlab.khronos.org/spirv/SPIR-V/issues/413 * Validate operation for OpSpecConstantOp * Validate NonWritable decoration Also permit NonWritable on members of UBO and SSBO. * SPIR-V 1.4: NonWrtiable can decorate Function and Private vars * Update optimizer CLI tests for SPIR-V 1.4 * Testing tools: Give expected SPIR-V version in message * SPIR-V 1.4 validation for entry point interfaces * Allow only unique interfaces * Allow all global variables * Check that all statically used global variables are listed * new tests * Add validation fixture CompileFailure * Add 1.4 validation for pointer comparisons * New tests * Validate with image operands SignExtend, ZeroExtend Since we don't actually know the image texel format, we can't fully validate. We need more context. But we can make sure we allow the new image operands in known-good cases. * Validate OpCopyLogical * Recursively checks subtypes * new tests * Add SPIR-V 1.4 tests for NoSignedWrap, NoUnsignedWrap * Allow scalar conditions in 1.4 with OpSelect * Allows scalar conditions with vector operands * new tests * Validate uniform id scope as an execution scope * Validate the values of memory and execution scopes are valid scope values * new test * Remove SPIR-V 1.4 Vulkan 1.0 environment * SPIR-V 1.4 requires Vulkan 1.1 * FIX: include string for spvLog * FIX: validate nonwritable * FIX: test case suite for member decorate string * FIX: test case for hlsl functionality1 * Validation test fixture: ease debugging * Use binary version for SPIR-V 1.4 specific features * Switch checks based on the SPIR-V version from the target environment to instead use the version from the binary * Moved header parsing into the ValidationState_t constructor (where version based features are set) * Added new versions of tests that assemble a 1.3 binary and validate a 1.4 environment * Fix test for update to SPIR-V 1.4 headers * Fix formatting * Ext inst lookup: Add Vulkan 1.1 env with SPIR-V 1.4 * Update spirv-val help * Operand version checks should use module version Use the module version instead of the target environment version. * Fix comment about two-access form of OpCopyMemory
2019-05-07 16:27:18 +00:00
SPV_ENV_UNIVERSAL_1_4, // SPIR-V 1.4 latest revision, no other restrictions.
// Vulkan 1.1 with VK_KHR_spirv_1_4, i.e. SPIR-V 1.4 binary.
SPV_ENV_VULKAN_1_1_SPIRV_1_4,
SPV_ENV_UNIVERSAL_1_5, // SPIR-V 1.5 latest revision, no other restrictions.
SPV_ENV_VULKAN_1_2, // Vulkan 1.2 latest revision.
SPV_ENV_MAX // Keep this as the last enum value.
} spv_target_env;
// SPIR-V Validator can be parameterized with the following Universal Limits.
typedef enum {
spv_validator_limit_max_struct_members,
spv_validator_limit_max_struct_depth,
spv_validator_limit_max_local_variables,
spv_validator_limit_max_global_variables,
spv_validator_limit_max_switch_branches,
spv_validator_limit_max_function_args,
spv_validator_limit_max_control_flow_nesting_depth,
spv_validator_limit_max_access_chain_indexes,
spv_validator_limit_max_id_bound,
} spv_validator_limit;
// Returns a string describing the given SPIR-V target environment.
SPIRV_TOOLS_EXPORT const char* spvTargetEnvDescription(spv_target_env env);
// Parses s into *env and returns true if successful. If unparsable, returns
// false and sets *env to SPV_ENV_UNIVERSAL_1_0.
SPIRV_TOOLS_EXPORT bool spvParseTargetEnv(const char* s, spv_target_env* env);
// Determines the target env value with the least features but which enables
// the given Vulkan and SPIR-V versions. If such a target is supported, returns
// true and writes the value to |env|, otherwise returns false.
//
// The Vulkan version is given as an unsigned 32-bit number as specified in
// Vulkan section "29.2.1 Version Numbers": the major version number appears
// in bits 22 to 21, and the minor version is in bits 12 to 21. The SPIR-V
// version is given in the SPIR-V version header word: major version in bits
// 16 to 23, and minor version in bits 8 to 15.
SPIRV_TOOLS_EXPORT bool spvParseVulkanEnv(uint32_t vulkan_ver,
uint32_t spirv_ver,
spv_target_env* env);
// Creates a context object for most of the SPIRV-Tools API.
// Returns null if env is invalid.
//
// See specific API calls for how the target environment is interpeted
// (particularly assembly and validation).
SPIRV_TOOLS_EXPORT spv_context spvContextCreate(spv_target_env env);
// Destroys the given context object.
SPIRV_TOOLS_EXPORT void spvContextDestroy(spv_context context);
// Creates a Validator options object with default options. Returns a valid
// options object. The object remains valid until it is passed into
// spvValidatorOptionsDestroy.
SPIRV_TOOLS_EXPORT spv_validator_options spvValidatorOptionsCreate(void);
// Destroys the given Validator options object.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsDestroy(
spv_validator_options options);
// Records the maximum Universal Limit that is considered valid in the given
// Validator options object. <options> argument must be a valid options object.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetUniversalLimit(
spv_validator_options options, spv_validator_limit limit_type,
uint32_t limit);
// Record whether or not the validator should relax the rules on types for
// stores to structs. When relaxed, it will allow a type mismatch as long as
// the types are structs with the same layout. Two structs have the same layout
// if
//
// 1) the members of the structs are either the same type or are structs with
// same layout, and
//
// 2) the decorations that affect the memory layout are identical for both
// types. Other decorations are not relevant.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetRelaxStoreStruct(
spv_validator_options options, bool val);
// Records whether or not the validator should relax the rules on pointer usage
// in logical addressing mode.
//
// When relaxed, it will allow the following usage cases of pointers:
// 1) OpVariable allocating an object whose type is a pointer type
// 2) OpReturnValue returning a pointer value
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetRelaxLogicalPointer(
spv_validator_options options, bool val);
// Records whether or not the validator should relax the rules because it is
// expected that the optimizations will make the code legal.
//
// When relaxed, it will allow the following:
// 1) It will allow relaxed logical pointers. Setting this option will also
// set that option.
// 2) Pointers that are pass as parameters to function calls do not have to
// match the storage class of the formal parameter.
// 3) Pointers that are actaul parameters on function calls do not have to point
// to the same type pointed as the formal parameter. The types just need to
// logically match.
// 4) GLSLstd450 Interpolate* instructions can have a load of an interpolant
// for a first argument.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetBeforeHlslLegalization(
spv_validator_options options, bool val);
// Records whether the validator should use "relaxed" block layout rules.
// Relaxed layout rules are described by Vulkan extension
// VK_KHR_relaxed_block_layout, and they affect uniform blocks, storage blocks,
// and push constants.
//
// This is enabled by default when targeting Vulkan 1.1 or later.
// Relaxed layout is more permissive than the default rules in Vulkan 1.0.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetRelaxBlockLayout(
spv_validator_options options, bool val);
// Records whether the validator should use standard block layout rules for
// uniform blocks.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetUniformBufferStandardLayout(
spv_validator_options options, bool val);
// Records whether the validator should use "scalar" block layout rules.
// Scalar layout rules are more permissive than relaxed block layout.
//
// See Vulkan extnesion VK_EXT_scalar_block_layout. The scalar alignment is
// defined as follows:
// - scalar alignment of a scalar is the scalar size
// - scalar alignment of a vector is the scalar alignment of its component
// - scalar alignment of a matrix is the scalar alignment of its component
// - scalar alignment of an array is the scalar alignment of its element
// - scalar alignment of a struct is the max scalar alignment among its
// members
//
// For a struct in Uniform, StorageClass, or PushConstant:
// - a member Offset must be a multiple of the member's scalar alignment
// - ArrayStride or MatrixStride must be a multiple of the array or matrix
// scalar alignment
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetScalarBlockLayout(
spv_validator_options options, bool val);
// Records whether the validator should use "scalar" block layout
// rules (as defined above) for Workgroup blocks. See Vulkan
// extension VK_KHR_workgroup_memory_explicit_layout.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetWorkgroupScalarBlockLayout(
spv_validator_options options, bool val);
// Records whether or not the validator should skip validating standard
// uniform/storage block layout.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetSkipBlockLayout(
spv_validator_options options, bool val);
// Records whether or not the validator should allow the LocalSizeId
// decoration where the environment otherwise would not allow it.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetAllowLocalSizeId(
spv_validator_options options, bool val);
// Creates an optimizer options object with default options. Returns a valid
// options object. The object remains valid until it is passed into
// |spvOptimizerOptionsDestroy|.
SPIRV_TOOLS_EXPORT spv_optimizer_options spvOptimizerOptionsCreate(void);
// Destroys the given optimizer options object.
SPIRV_TOOLS_EXPORT void spvOptimizerOptionsDestroy(
spv_optimizer_options options);
// Records whether or not the optimizer should run the validator before
// optimizing. If |val| is true, the validator will be run.
SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetRunValidator(
spv_optimizer_options options, bool val);
// Records the validator options that should be passed to the validator if it is
// run.
SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetValidatorOptions(
spv_optimizer_options options, spv_validator_options val);
// Records the maximum possible value for the id bound.
SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetMaxIdBound(
spv_optimizer_options options, uint32_t val);
// Records whether all bindings within the module should be preserved.
SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetPreserveBindings(
spv_optimizer_options options, bool val);
// Records whether all specialization constants within the module
// should be preserved.
SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetPreserveSpecConstants(
spv_optimizer_options options, bool val);
// Creates a reducer options object with default options. Returns a valid
// options object. The object remains valid until it is passed into
// |spvReducerOptionsDestroy|.
SPIRV_TOOLS_EXPORT spv_reducer_options spvReducerOptionsCreate(void);
// Destroys the given reducer options object.
SPIRV_TOOLS_EXPORT void spvReducerOptionsDestroy(spv_reducer_options options);
// Sets the maximum number of reduction steps that should run before the reducer
// gives up.
SPIRV_TOOLS_EXPORT void spvReducerOptionsSetStepLimit(
spv_reducer_options options, uint32_t step_limit);
// Sets the fail-on-validation-error option; if true, the reducer will return
// kStateInvalid if a reduction step yields a state that fails SPIR-V
// validation. Otherwise, an invalid state is treated as uninteresting and the
// reduction backtracks and continues.
SPIRV_TOOLS_EXPORT void spvReducerOptionsSetFailOnValidationError(
spv_reducer_options options, bool fail_on_validation_error);
// Sets the function that the reducer should target. If set to zero the reducer
// will target all functions as well as parts of the module that lie outside
// functions. Otherwise the reducer will restrict reduction to the function
// with result id |target_function|, which is required to exist.
SPIRV_TOOLS_EXPORT void spvReducerOptionsSetTargetFunction(
spv_reducer_options options, uint32_t target_function);
// Creates a fuzzer options object with default options. Returns a valid
// options object. The object remains valid until it is passed into
// |spvFuzzerOptionsDestroy|.
SPIRV_TOOLS_EXPORT spv_fuzzer_options spvFuzzerOptionsCreate(void);
// Destroys the given fuzzer options object.
SPIRV_TOOLS_EXPORT void spvFuzzerOptionsDestroy(spv_fuzzer_options options);
// Enables running the validator after every transformation is applied during
// a replay.
SPIRV_TOOLS_EXPORT void spvFuzzerOptionsEnableReplayValidation(
spv_fuzzer_options options);
// Sets the seed with which the random number generator used by the fuzzer
// should be initialized.
SPIRV_TOOLS_EXPORT void spvFuzzerOptionsSetRandomSeed(
spv_fuzzer_options options, uint32_t seed);
// Sets the range of transformations that should be applied during replay: 0
// means all transformations, +N means the first N transformations, -N means all
// except the final N transformations.
SPIRV_TOOLS_EXPORT void spvFuzzerOptionsSetReplayRange(
spv_fuzzer_options options, int32_t replay_range);
// Sets the maximum number of steps that the shrinker should take before giving
// up.
SPIRV_TOOLS_EXPORT void spvFuzzerOptionsSetShrinkerStepLimit(
spv_fuzzer_options options, uint32_t shrinker_step_limit);
// Enables running the validator after every pass is applied during a fuzzing
// run.
SPIRV_TOOLS_EXPORT void spvFuzzerOptionsEnableFuzzerPassValidation(
spv_fuzzer_options options);
// Enables all fuzzer passes during a fuzzing run (instead of a random subset
// of passes).
SPIRV_TOOLS_EXPORT void spvFuzzerOptionsEnableAllPasses(
spv_fuzzer_options options);
// Encodes the given SPIR-V assembly text to its binary representation. The
// length parameter specifies the number of bytes for text. Encoded binary will
// be stored into *binary. Any error will be written into *diagnostic if
// diagnostic is non-null, otherwise the context's message consumer will be
// used. The generated binary is independent of the context and may outlive it.
// The SPIR-V binary version is set to the highest version of SPIR-V supported
// by the context's target environment.
SPIRV_TOOLS_EXPORT spv_result_t spvTextToBinary(const spv_const_context context,
const char* text,
const size_t length,
spv_binary* binary,
spv_diagnostic* diagnostic);
// Encodes the given SPIR-V assembly text to its binary representation. Same as
// spvTextToBinary but with options. The options parameter is a bit field of
// spv_text_to_binary_options_t.
SPIRV_TOOLS_EXPORT spv_result_t spvTextToBinaryWithOptions(
const spv_const_context context, const char* text, const size_t length,
const uint32_t options, spv_binary* binary, spv_diagnostic* diagnostic);
2015-11-13 16:00:10 +00:00
// Frees an allocated text stream. This is a no-op if the text parameter
// is a null pointer.
SPIRV_TOOLS_EXPORT void spvTextDestroy(spv_text text);
// Decodes the given SPIR-V binary representation to its assembly text. The
// word_count parameter specifies the number of words for binary. The options
// parameter is a bit field of spv_binary_to_text_options_t. Decoded text will
// be stored into *text. Any error will be written into *diagnostic if
// diagnostic is non-null, otherwise the context's message consumer will be
// used.
SPIRV_TOOLS_EXPORT spv_result_t spvBinaryToText(const spv_const_context context,
const uint32_t* binary,
const size_t word_count,
const uint32_t options,
spv_text* text,
spv_diagnostic* diagnostic);
// Frees a binary stream from memory. This is a no-op if binary is a null
// pointer.
SPIRV_TOOLS_EXPORT void spvBinaryDestroy(spv_binary binary);
2016-04-04 19:55:05 +00:00
// Validates a SPIR-V binary for correctness. Any errors will be written into
// *diagnostic if diagnostic is non-null, otherwise the context's message
// consumer will be used.
//
// Validate for SPIR-V spec rules for the SPIR-V version named in the
// binary's header (at word offset 1). Additionally, if the context target
// environment is a client API (such as Vulkan 1.1), then validate for that
// client API version, to the extent that it is verifiable from data in the
// binary itself.
SPIRV_TOOLS_EXPORT spv_result_t spvValidate(const spv_const_context context,
const spv_const_binary binary,
spv_diagnostic* diagnostic);
// Validates a SPIR-V binary for correctness. Uses the provided Validator
// options. Any errors will be written into *diagnostic if diagnostic is
// non-null, otherwise the context's message consumer will be used.
//
// Validate for SPIR-V spec rules for the SPIR-V version named in the
// binary's header (at word offset 1). Additionally, if the context target
// environment is a client API (such as Vulkan 1.1), then validate for that
// client API version, to the extent that it is verifiable from data in the
// binary itself, or in the validator options.
SPIRV_TOOLS_EXPORT spv_result_t spvValidateWithOptions(
const spv_const_context context, const spv_const_validator_options options,
const spv_const_binary binary, spv_diagnostic* diagnostic);
// Validates a raw SPIR-V binary for correctness. Any errors will be written
// into *diagnostic if diagnostic is non-null, otherwise the context's message
// consumer will be used.
SPIRV_TOOLS_EXPORT spv_result_t
spvValidateBinary(const spv_const_context context, const uint32_t* words,
const size_t num_words, spv_diagnostic* diagnostic);
// Creates a diagnostic object. The position parameter specifies the location in
// the text/binary stream. The message parameter, copied into the diagnostic
// object, contains the error message to display.
SPIRV_TOOLS_EXPORT spv_diagnostic
spvDiagnosticCreate(const spv_position position, const char* message);
// Destroys a diagnostic object. This is a no-op if diagnostic is a null
// pointer.
SPIRV_TOOLS_EXPORT void spvDiagnosticDestroy(spv_diagnostic diagnostic);
// Prints the diagnostic to stderr.
SPIRV_TOOLS_EXPORT spv_result_t
spvDiagnosticPrint(const spv_diagnostic diagnostic);
// Gets the name of an instruction, without the "Op" prefix.
SPIRV_TOOLS_EXPORT const char* spvOpcodeString(const uint32_t opcode);
2015-11-11 21:59:31 +00:00
// The binary parser interface.
// A pointer to a function that accepts a parsed SPIR-V header.
// The integer arguments are the 32-bit words from the header, as specified
// in SPIR-V 1.0 Section 2.3 Table 1.
// The function should return SPV_SUCCESS if parsing should continue.
typedef spv_result_t (*spv_parsed_header_fn_t)(
void* user_data, spv_endianness_t endian, uint32_t magic, uint32_t version,
uint32_t generator, uint32_t id_bound, uint32_t reserved);
// A pointer to a function that accepts a parsed SPIR-V instruction.
// The parsed_instruction value is transient: it may be overwritten
// or released immediately after the function has returned. That also
// applies to the words array member of the parsed instruction. The
// function should return SPV_SUCCESS if and only if parsing should
// continue.
2015-11-11 21:59:31 +00:00
typedef spv_result_t (*spv_parsed_instruction_fn_t)(
void* user_data, const spv_parsed_instruction_t* parsed_instruction);
// Parses a SPIR-V binary, specified as counted sequence of 32-bit words.
// Parsing feedback is provided via two callbacks provided as function
// pointers. Each callback function pointer can be a null pointer, in
// which case it is never called. Otherwise, in a valid parse the
2015-11-11 21:59:31 +00:00
// parsed-header callback is called once, and then the parsed-instruction
// callback once for each instruction in the stream. The user_data parameter
// is supplied as context to the callbacks. Returns SPV_SUCCESS on successful
// parse where the callbacks always return SPV_SUCCESS. For an invalid parse,
// returns a status code other than SPV_SUCCESS, and if diagnostic is non-null
// also emits a diagnostic. If diagnostic is null the context's message consumer
// will be used to emit any errors. If a callback returns anything other than
// SPV_SUCCESS, then that status code is returned, no further callbacks are
// issued, and no additional diagnostics are emitted.
SPIRV_TOOLS_EXPORT spv_result_t spvBinaryParse(
const spv_const_context context, void* user_data, const uint32_t* words,
const size_t num_words, spv_parsed_header_fn_t parse_header,
spv_parsed_instruction_fn_t parse_instruction, spv_diagnostic* diagnostic);
2015-11-11 21:59:31 +00:00
#ifdef __cplusplus
}
#endif
#endif // INCLUDE_SPIRV_TOOLS_LIBSPIRV_H_