Add a new legalization pass to dedupe invocation interlock instructions (#5409)

Add a new legalization pass to dedupe invocation interlock instructions

DXC will be adding support for HLSL's rasterizer ordered views by using
the SPV_EXT_fragment_shader_interlock_extension. That extension
stipulates that if an entry point has an interlock ordering execution
mode, it must dynamically execute OpBeginInvocationInterlockEXT and
OpEndInvocationInterlockEXT, in that order, exactly once. This would be
difficult to determine in DXC's SPIR-V backend, so instead we will emit
these instructions potentially multiple times, and use this legalization
pass to ensure that the final SPIR-V follows the specification.

This PR uses data-flow analysis to determine where to place begin and
end instructions; in essence, determining whether a block contains or is
preceded by a begin instruction is similar to a specialized case of a
reaching definitions analysis, where we have only a single definition,
such as `bool has_begun = false`. For this simpler case, we can compute
the set of blocks using BFS to determine the reachability of the begin
instruction.

We need to do this for both begin and end instructions, so I have
generalized portions of the code to run both forward and backward over
the CFG for each respective case.
This commit is contained in:
Cassandra Beckley 2023-09-27 16:54:10 -07:00 committed by GitHub
parent 48c97c1311
commit 1bc0e6f59a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 1283 additions and 1 deletions

View File

@ -136,6 +136,7 @@ SPVTOOLS_OPT_SRC_FILES := \
source/opt/instrument_pass.cpp \
source/opt/interface_var_sroa.cpp \
source/opt/interp_fixup_pass.cpp \
source/opt/invocation_interlock_placement_pass.cpp \
source/opt/ir_context.cpp \
source/opt/ir_loader.cpp \
source/opt/licm_pass.cpp \

View File

@ -693,6 +693,7 @@ static_library("spvtools_opt") {
"source/opt/interface_var_sroa.h",
"source/opt/interp_fixup_pass.cpp",
"source/opt/interp_fixup_pass.h",
"source/opt/invocation_interlock_placement_pass.cpp",
"source/opt/ir_builder.h",
"source/opt/ir_context.cpp",
"source/opt/ir_context.h",

View File

@ -994,6 +994,12 @@ Optimizer::PassToken CreateTrimCapabilitiesPass();
// use the new value |ds_to|.
Optimizer::PassToken CreateSwitchDescriptorSetPass(uint32_t ds_from,
uint32_t ds_to);
// Creates an invocation interlock placement pass.
// This pass ensures that an entry point will have at most one
// OpBeginInterlockInvocationEXT and one OpEndInterlockInvocationEXT, in that
// order.
Optimizer::PassToken CreateInvocationInterlockPlacementPass();
} // namespace spvtools
#endif // INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_

View File

@ -71,6 +71,7 @@ set(SPIRV_TOOLS_OPT_SOURCES
instruction_list.h
instrument_pass.h
interface_var_sroa.h
invocation_interlock_placement_pass.h
interp_fixup_pass.h
ir_builder.h
ir_context.h
@ -191,6 +192,7 @@ set(SPIRV_TOOLS_OPT_SOURCES
instruction_list.cpp
instrument_pass.cpp
interface_var_sroa.cpp
invocation_interlock_placement_pass.cpp
interp_fixup_pass.cpp
ir_context.cpp
ir_loader.cpp

View File

@ -0,0 +1,493 @@
// Copyright (c) 2023 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/opt/invocation_interlock_placement_pass.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <functional>
#include <optional>
#include <queue>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "source/enum_set.h"
#include "source/enum_string_mapping.h"
#include "source/opt/ir_context.h"
#include "source/opt/reflect.h"
#include "source/spirv_target_env.h"
#include "source/util/string_utils.h"
namespace spvtools {
namespace opt {
namespace {
constexpr uint32_t kEntryPointExecutionModelInIdx = 0;
constexpr uint32_t kEntryPointFunctionIdInIdx = 1;
constexpr uint32_t kFunctionCallFunctionIdInIdx = 0;
} // namespace
bool InvocationInterlockPlacementPass::hasSingleNextBlock(uint32_t block_id,
bool reverse_cfg) {
if (reverse_cfg) {
// We are traversing forward, so check whether there is a single successor.
BasicBlock* block = cfg()->block(block_id);
switch (block->tail()->opcode()) {
case spv::Op::OpBranchConditional:
return false;
case spv::Op::OpSwitch:
return block->tail()->NumInOperandWords() == 1;
default:
return !block->tail()->IsReturnOrAbort();
}
} else {
// We are traversing backward, so check whether there is a single
// predecessor.
return cfg()->preds(block_id).size() == 1;
}
}
void InvocationInterlockPlacementPass::forEachNext(
uint32_t block_id, bool reverse_cfg, std::function<void(uint32_t)> f) {
if (reverse_cfg) {
BasicBlock* block = cfg()->block(block_id);
block->ForEachSuccessorLabel([f](uint32_t succ_id) { f(succ_id); });
} else {
for (uint32_t pred_id : cfg()->preds(block_id)) {
f(pred_id);
}
}
}
void InvocationInterlockPlacementPass::addInstructionAtBlockBoundary(
BasicBlock* block, spv::Op opcode, bool at_end) {
if (at_end) {
assert(block->begin()->opcode() != spv::Op::OpPhi &&
"addInstructionAtBlockBoundary expects to be called with at_end == "
"true only if there is a single successor to block");
// Insert a begin instruction at the end of the block.
Instruction* begin_inst = new Instruction(context(), opcode);
begin_inst->InsertAfter(&*--block->tail());
} else {
assert(block->begin()->opcode() != spv::Op::OpPhi &&
"addInstructionAtBlockBoundary expects to be called with at_end == "
"false only if there is a single predecessor to block");
// Insert an end instruction at the beginning of the block.
Instruction* end_inst = new Instruction(context(), opcode);
end_inst->InsertBefore(&*block->begin());
}
}
bool InvocationInterlockPlacementPass::killDuplicateBegin(BasicBlock* block) {
bool found = false;
return context()->KillInstructionIf(
block->begin(), block->end(), [&found](Instruction* inst) {
if (inst->opcode() == spv::Op::OpBeginInvocationInterlockEXT) {
if (found) {
return true;
}
found = true;
}
return false;
});
}
bool InvocationInterlockPlacementPass::killDuplicateEnd(BasicBlock* block) {
std::vector<Instruction*> to_kill;
block->ForEachInst([&to_kill](Instruction* inst) {
if (inst->opcode() == spv::Op::OpEndInvocationInterlockEXT) {
to_kill.push_back(inst);
}
});
if (to_kill.size() <= 1) {
return false;
}
to_kill.pop_back();
for (Instruction* inst : to_kill) {
context()->KillInst(inst);
}
return true;
}
void InvocationInterlockPlacementPass::recordBeginOrEndInFunction(
Function* func) {
if (extracted_functions_.count(func)) {
return;
}
bool had_begin = false;
bool had_end = false;
func->ForEachInst([this, &had_begin, &had_end](Instruction* inst) {
switch (inst->opcode()) {
case spv::Op::OpBeginInvocationInterlockEXT:
had_begin = true;
break;
case spv::Op::OpEndInvocationInterlockEXT:
had_end = true;
break;
case spv::Op::OpFunctionCall: {
uint32_t function_id =
inst->GetSingleWordInOperand(kFunctionCallFunctionIdInIdx);
Function* inner_func = context()->GetFunction(function_id);
recordBeginOrEndInFunction(inner_func);
ExtractionResult result = extracted_functions_[inner_func];
had_begin = had_begin || result.had_begin;
had_end = had_end || result.had_end;
break;
}
default:
break;
}
});
ExtractionResult result = {had_begin, had_end};
extracted_functions_[func] = result;
}
bool InvocationInterlockPlacementPass::
removeBeginAndEndInstructionsFromFunction(Function* func) {
bool modified = false;
func->ForEachInst([this, &modified](Instruction* inst) {
switch (inst->opcode()) {
case spv::Op::OpBeginInvocationInterlockEXT:
context()->KillInst(inst);
modified = true;
break;
case spv::Op::OpEndInvocationInterlockEXT:
context()->KillInst(inst);
modified = true;
break;
default:
break;
}
});
return modified;
}
bool InvocationInterlockPlacementPass::extractInstructionsFromCalls(
std::vector<BasicBlock*> blocks) {
bool modified = false;
for (BasicBlock* block : blocks) {
block->ForEachInst([this, &modified](Instruction* inst) {
if (inst->opcode() == spv::Op::OpFunctionCall) {
uint32_t function_id =
inst->GetSingleWordInOperand(kFunctionCallFunctionIdInIdx);
Function* func = context()->GetFunction(function_id);
ExtractionResult result = extracted_functions_[func];
if (result.had_begin) {
Instruction* new_inst = new Instruction(
context(), spv::Op::OpBeginInvocationInterlockEXT);
new_inst->InsertBefore(inst);
modified = true;
}
if (result.had_end) {
Instruction* new_inst =
new Instruction(context(), spv::Op::OpEndInvocationInterlockEXT);
new_inst->InsertAfter(inst);
modified = true;
}
}
});
}
return modified;
}
void InvocationInterlockPlacementPass::recordExistingBeginAndEndBlock(
std::vector<BasicBlock*> blocks) {
for (BasicBlock* block : blocks) {
block->ForEachInst([this, block](Instruction* inst) {
switch (inst->opcode()) {
case spv::Op::OpBeginInvocationInterlockEXT:
begin_.insert(block->id());
break;
case spv::Op::OpEndInvocationInterlockEXT:
end_.insert(block->id());
break;
default:
break;
}
});
}
}
InvocationInterlockPlacementPass::BlockSet
InvocationInterlockPlacementPass::computeReachableBlocks(
BlockSet& previous_inside, const BlockSet& starting_nodes,
bool reverse_cfg) {
BlockSet inside = starting_nodes;
std::deque<uint32_t> worklist;
worklist.insert(worklist.begin(), starting_nodes.begin(),
starting_nodes.end());
while (!worklist.empty()) {
uint32_t block_id = worklist.front();
worklist.pop_front();
forEachNext(block_id, reverse_cfg,
[&inside, &previous_inside, &worklist](uint32_t next_id) {
previous_inside.insert(next_id);
if (inside.insert(next_id).second) {
worklist.push_back(next_id);
}
});
}
return inside;
}
bool InvocationInterlockPlacementPass::removeUnneededInstructions(
BasicBlock* block) {
bool modified = false;
if (!predecessors_after_begin_.count(block->id()) &&
after_begin_.count(block->id())) {
// None of the previous blocks are in the critical section, but this block
// is. This can only happen if this block already has at least one begin
// instruction. Leave the first begin instruction, and remove any others.
modified |= killDuplicateBegin(block);
} else if (predecessors_after_begin_.count(block->id())) {
// At least one previous block is in the critical section; remove all
// begin instructions in this block.
modified |= context()->KillInstructionIf(
block->begin(), block->end(), [](Instruction* inst) {
return inst->opcode() == spv::Op::OpBeginInvocationInterlockEXT;
});
}
if (!successors_before_end_.count(block->id()) &&
before_end_.count(block->id())) {
// Same as above
modified |= killDuplicateEnd(block);
} else if (successors_before_end_.count(block->id())) {
modified |= context()->KillInstructionIf(
block->begin(), block->end(), [](Instruction* inst) {
return inst->opcode() == spv::Op::OpEndInvocationInterlockEXT;
});
}
return modified;
}
BasicBlock* InvocationInterlockPlacementPass::splitEdge(BasicBlock* block,
uint32_t succ_id) {
// Create a new block to replace the critical edge.
auto new_succ_temp = MakeUnique<BasicBlock>(
MakeUnique<Instruction>(context(), spv::Op::OpLabel, 0, TakeNextId(),
std::initializer_list<Operand>{}));
auto* new_succ = new_succ_temp.get();
// Insert the new block into the function.
block->GetParent()->InsertBasicBlockAfter(std::move(new_succ_temp), block);
new_succ->AddInstruction(MakeUnique<Instruction>(
context(), spv::Op::OpBranch, 0, 0,
std::initializer_list<Operand>{
Operand(spv_operand_type_t::SPV_OPERAND_TYPE_ID, {succ_id})}));
assert(block->tail()->opcode() == spv::Op::OpBranchConditional ||
block->tail()->opcode() == spv::Op::OpSwitch);
// Update the first branch to successor to instead branch to
// the new successor. If there are multiple edges, we arbitrarily choose the
// first time it appears in the list. The other edges to `succ_id` will have
// to be split by another call to `splitEdge`.
block->tail()->WhileEachInId([new_succ, succ_id](uint32_t* branch_id) {
if (*branch_id == succ_id) {
*branch_id = new_succ->id();
return false;
}
return true;
});
return new_succ;
}
bool InvocationInterlockPlacementPass::placeInstructionsForEdge(
BasicBlock* block, uint32_t next_id, BlockSet& inside,
BlockSet& previous_inside, spv::Op opcode, bool reverse_cfg) {
bool modified = false;
if (previous_inside.count(next_id) && !inside.count(block->id())) {
// This block is not in the critical section but the next has at least one
// other previous block that is, so this block should be enter it as well.
// We need to add begin or end instructions to the edge.
modified = true;
if (hasSingleNextBlock(block->id(), reverse_cfg)) {
// This is the only next block.
// Additionally, because `next_id` is in `previous_inside`, we know that
// `next_id` has at least one previous block in `inside`. And because
// 'block` is not in `inside`, that means the `next_id` has to have at
// least one other previous block in `inside`.
// This is solely for a debug assertion. It is essentially recomputing the
// value of `previous_inside` to verify that it was computed correctly
// such that the above statement is true.
bool next_has_previous_inside = false;
// By passing !reverse_cfg to forEachNext, we are actually iterating over
// the previous blocks.
forEachNext(next_id, !reverse_cfg,
[&next_has_previous_inside, inside](uint32_t previous_id) {
if (inside.count(previous_id)) {
next_has_previous_inside = true;
}
});
assert(next_has_previous_inside &&
"`previous_inside` must be the set of blocks with at least one "
"previous block in `inside`");
addInstructionAtBlockBoundary(block, opcode, reverse_cfg);
} else {
// This block has multiple next blocks. Split the edge and insert the
// instruction in the new next block.
BasicBlock* new_branch;
if (reverse_cfg) {
new_branch = splitEdge(block, next_id);
} else {
new_branch = splitEdge(cfg()->block(next_id), block->id());
}
auto inst = new Instruction(context(), opcode);
inst->InsertBefore(&*new_branch->tail());
}
}
return modified;
}
bool InvocationInterlockPlacementPass::placeInstructions(BasicBlock* block) {
bool modified = false;
block->ForEachSuccessorLabel([this, block, &modified](uint32_t succ_id) {
modified |= placeInstructionsForEdge(
block, succ_id, after_begin_, predecessors_after_begin_,
spv::Op::OpBeginInvocationInterlockEXT, /* reverse_cfg= */ true);
modified |= placeInstructionsForEdge(cfg()->block(succ_id), block->id(),
before_end_, successors_before_end_,
spv::Op::OpEndInvocationInterlockEXT,
/* reverse_cfg= */ false);
});
return modified;
}
bool InvocationInterlockPlacementPass::processFragmentShaderEntry(
Function* entry_func) {
bool modified = false;
// Save the original order of blocks in the function, so we don't iterate over
// newly-added blocks.
std::vector<BasicBlock*> original_blocks;
for (auto bi = entry_func->begin(); bi != entry_func->end(); ++bi) {
original_blocks.push_back(&*bi);
}
modified |= extractInstructionsFromCalls(original_blocks);
recordExistingBeginAndEndBlock(original_blocks);
after_begin_ = computeReachableBlocks(predecessors_after_begin_, begin_,
/* reverse_cfg= */ true);
before_end_ = computeReachableBlocks(successors_before_end_, end_,
/* reverse_cfg= */ false);
for (BasicBlock* block : original_blocks) {
modified |= removeUnneededInstructions(block);
modified |= placeInstructions(block);
}
return modified;
}
bool InvocationInterlockPlacementPass::isFragmentShaderInterlockEnabled() {
if (!context()->get_feature_mgr()->HasExtension(
kSPV_EXT_fragment_shader_interlock)) {
return false;
}
if (context()->get_feature_mgr()->HasCapability(
spv::Capability::FragmentShaderSampleInterlockEXT)) {
return true;
}
if (context()->get_feature_mgr()->HasCapability(
spv::Capability::FragmentShaderPixelInterlockEXT)) {
return true;
}
if (context()->get_feature_mgr()->HasCapability(
spv::Capability::FragmentShaderShadingRateInterlockEXT)) {
return true;
}
return false;
}
Pass::Status InvocationInterlockPlacementPass::Process() {
// Skip this pass if the necessary extension or capability is missing
if (!isFragmentShaderInterlockEnabled()) {
return Status::SuccessWithoutChange;
}
bool modified = false;
std::unordered_set<Function*> entry_points;
for (Instruction& entry_inst : context()->module()->entry_points()) {
uint32_t entry_id =
entry_inst.GetSingleWordInOperand(kEntryPointFunctionIdInIdx);
entry_points.insert(context()->GetFunction(entry_id));
}
for (auto fi = context()->module()->begin(); fi != context()->module()->end();
++fi) {
Function* func = &*fi;
recordBeginOrEndInFunction(func);
if (!entry_points.count(func) && extracted_functions_.count(func)) {
modified |= removeBeginAndEndInstructionsFromFunction(func);
}
}
for (Instruction& entry_inst : context()->module()->entry_points()) {
uint32_t entry_id =
entry_inst.GetSingleWordInOperand(kEntryPointFunctionIdInIdx);
Function* entry_func = context()->GetFunction(entry_id);
auto execution_model = spv::ExecutionModel(
entry_inst.GetSingleWordInOperand(kEntryPointExecutionModelInIdx));
if (execution_model != spv::ExecutionModel::Fragment) {
continue;
}
modified |= processFragmentShaderEntry(entry_func);
}
return modified ? Pass::Status::SuccessWithChange
: Pass::Status::SuccessWithoutChange;
}
} // namespace opt
} // namespace spvtools

View File

@ -0,0 +1,158 @@
// Copyright (c) 2023 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SOURCE_OPT_DEDUPE_INTERLOCK_INVOCATION_PASS_H_
#define SOURCE_OPT_DEDUPE_INTERLOCK_INVOCATION_PASS_H_
#include <algorithm>
#include <array>
#include <functional>
#include <optional>
#include <unordered_map>
#include <unordered_set>
#include "source/enum_set.h"
#include "source/extensions.h"
#include "source/opt/ir_context.h"
#include "source/opt/module.h"
#include "source/opt/pass.h"
#include "source/spirv_target_env.h"
namespace spvtools {
namespace opt {
// This pass will ensure that an entry point will only have at most one
// OpBeginInterlockInvocationEXT and one OpEndInterlockInvocationEXT, in that
// order
class InvocationInterlockPlacementPass : public Pass {
public:
InvocationInterlockPlacementPass() {}
InvocationInterlockPlacementPass(const InvocationInterlockPlacementPass&) =
delete;
InvocationInterlockPlacementPass(InvocationInterlockPlacementPass&&) = delete;
const char* name() const override { return "dedupe-interlock-invocation"; }
Status Process() override;
private:
using BlockSet = std::unordered_set<uint32_t>;
// Specifies whether a function originally had a begin or end instruction.
struct ExtractionResult {
bool had_begin : 1;
bool had_end : 2;
};
// Check if a block has only a single next block, depending on the directing
// that we are traversing the CFG. If reverse_cfg is true, we are walking
// forward through the CFG, and will return if the block has only one
// successor. Otherwise, we are walking backward through the CFG, and will
// return if the block has only one predecessor.
bool hasSingleNextBlock(uint32_t block_id, bool reverse_cfg);
// Iterate over each of a block's predecessors or successors, depending on
// direction. If reverse_cfg is true, we are walking forward through the CFG,
// and need to iterate over the successors. Otherwise, we are walking backward
// through the CFG, and need to iterate over the predecessors.
void forEachNext(uint32_t block_id, bool reverse_cfg,
std::function<void(uint32_t)> f);
// Add either a begin or end instruction to the edge of the basic block. If
// at_end is true, add the instruction to the end of the block; otherwise add
// the instruction to the beginning of the basic block.
void addInstructionAtBlockBoundary(BasicBlock* block, spv::Op opcode,
bool at_end);
// Remove every OpBeginInvocationInterlockEXT instruction in block after the
// first. Returns whether any instructions were removed.
bool killDuplicateBegin(BasicBlock* block);
// Remove every OpBeginInvocationInterlockEXT instruction in block before the
// last. Returns whether any instructions were removed.
bool killDuplicateEnd(BasicBlock* block);
// Records whether a function will potentially execute a begin or end
// instruction.
void recordBeginOrEndInFunction(Function* func);
// Recursively removes any begin or end instructions from func and any
// function func calls. Returns whether any instructions were removed.
bool removeBeginAndEndInstructionsFromFunction(Function* func);
// For every function call in any of the passed blocks, move any begin or end
// instructions outside of the function call. Returns whether any extractions
// occurred.
bool extractInstructionsFromCalls(std::vector<BasicBlock*> blocks);
// Finds the sets of blocks that contain OpBeginInvocationInterlockEXT and
// OpEndInvocationInterlockEXT, storing them in the member variables begin_
// and end_ respectively.
void recordExistingBeginAndEndBlock(std::vector<BasicBlock*> blocks);
// Compute the set of blocks including or after the barrier instruction, and
// the set of blocks with any previous blocks inside the barrier instruction.
// If reverse_cfg is true, move forward through the CFG, computing
// after_begin_ and predecessors_after_begin_computing after_begin_ and
// predecessors_after_begin_, otherwise, move backward through the CFG,
// computing before_end_ and successors_before_end_.
BlockSet computeReachableBlocks(BlockSet& in_set,
const BlockSet& starting_nodes,
bool reverse_cfg);
// Remove unneeded begin and end instructions in block.
bool removeUnneededInstructions(BasicBlock* block);
// Given a block which branches to multiple successors, and a specific
// successor, creates a new empty block, and update the branch instruction to
// branch to the new block instead.
BasicBlock* splitEdge(BasicBlock* block, uint32_t succ_id);
// For the edge from block to next_id, places a begin or end instruction on
// the edge, based on the direction we are walking the CFG, specified in
// reverse_cfg.
bool placeInstructionsForEdge(BasicBlock* block, uint32_t next_id,
BlockSet& inside, BlockSet& previous_inside,
spv::Op opcode, bool reverse_cfg);
// Calls placeInstructionsForEdge for each edge in block.
bool placeInstructions(BasicBlock* block);
// Processes a single fragment shader entry function.
bool processFragmentShaderEntry(Function* entry_func);
// Returns whether the module has the SPV_EXT_fragment_shader_interlock
// extension and one of the FragmentShader*InterlockEXT capabilities.
bool isFragmentShaderInterlockEnabled();
// Maps a function to whether that function originally held a begin or end
// instruction.
std::unordered_map<Function*, ExtractionResult> extracted_functions_;
// The set of blocks which have an OpBeginInvocationInterlockEXT instruction.
BlockSet begin_;
// The set of blocks which have an OpEndInvocationInterlockEXT instruction.
BlockSet end_;
// The set of blocks which either have a begin instruction, or have a
// predecessor which has a begin instruction.
BlockSet after_begin_;
// The set of blocks which either have an end instruction, or have a successor
// which have an end instruction.
BlockSet before_end_;
// The set of blocks which have a predecessor in after_begin_.
BlockSet predecessors_after_begin_;
// The set of blocks which have a successor in before_end_.
BlockSet successors_before_end_;
};
} // namespace opt
} // namespace spvtools
#endif // SOURCE_OPT_DEDUPE_INTERLOCK_INVOCATION_PASS_H_

View File

@ -158,7 +158,8 @@ Optimizer& Optimizer::RegisterLegalizationPasses(bool preserve_interface) {
.RegisterPass(CreateDeadInsertElimPass())
.RegisterPass(CreateReduceLoadSizePass())
.RegisterPass(CreateAggressiveDCEPass(preserve_interface))
.RegisterPass(CreateInterpolateFixupPass());
.RegisterPass(CreateInterpolateFixupPass())
.RegisterPass(CreateInvocationInterlockPlacementPass());
}
Optimizer& Optimizer::RegisterLegalizationPasses() {
@ -1113,6 +1114,11 @@ Optimizer::PassToken CreateSwitchDescriptorSetPass(uint32_t from, uint32_t to) {
return MakeUnique<Optimizer::PassToken::Impl>(
MakeUnique<opt::SwitchDescriptorSetPass>(from, to));
}
Optimizer::PassToken CreateInvocationInterlockPlacementPass() {
return MakeUnique<Optimizer::PassToken::Impl>(
MakeUnique<opt::InvocationInterlockPlacementPass>());
}
} // namespace spvtools
extern "C" {

View File

@ -53,6 +53,7 @@
#include "source/opt/inst_debug_printf_pass.h"
#include "source/opt/interface_var_sroa.h"
#include "source/opt/interp_fixup_pass.h"
#include "source/opt/invocation_interlock_placement_pass.h"
#include "source/opt/licm_pass.h"
#include "source/opt/local_access_chain_convert_pass.h"
#include "source/opt/local_redundancy_elimination.h"

View File

@ -66,6 +66,7 @@ add_spvtools_unittest(TARGET opt
instruction_list_test.cpp
instruction_test.cpp
interface_var_sroa_test.cpp
invocation_interlock_placement_test.cpp
interp_fixup_test.cpp
ir_builder.cpp
ir_context_test.cpp

View File

@ -0,0 +1,613 @@
// Copyright (c) 2023 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "spirv-tools/optimizer.hpp"
#include "test/opt/pass_fixture.h"
#include "test/opt/pass_utils.h"
namespace spvtools {
namespace opt {
namespace {
using InterlockInvocationPlacementTest = PassTest<::testing::Test>;
TEST_F(InterlockInvocationPlacementTest, CheckUnchangedIfNotFragment) {
const std::string kTest = R"(
OpCapability Shader
OpCapability FragmentShaderSampleInterlockEXT
OpExtension "SPV_EXT_fragment_shader_interlock"
OpMemoryModel Logical GLSL450
OpEntryPoint Vertex %main "main"
OpExecutionMode %main SampleInterlockOrderedEXT
OpName %main "main"
%void = OpTypeVoid
%1 = OpTypeFunction %void
%main = OpFunction %void None %1
%2 = OpLabel
OpBeginInvocationInterlockEXT
OpBeginInvocationInterlockEXT
OpEndInvocationInterlockEXT
OpBeginInvocationInterlockEXT
OpEndInvocationInterlockEXT
OpReturn
OpFunctionEnd
)";
SetTargetEnv(SPV_ENV_VULKAN_1_3);
EXPECT_EQ(
Pass::Status::SuccessWithoutChange,
std::get<1>(SinglePassRunAndDisassemble<InvocationInterlockPlacementPass>(
kTest, /* skip_nop= */ false, /* do_validation= */ false)));
}
TEST_F(InterlockInvocationPlacementTest, CheckUnchangedWithoutCapability) {
const std::string kTest = R"(
OpCapability Shader
OpExtension "SPV_EXT_fragment_shader_interlock"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpExecutionMode %main SampleInterlockOrderedEXT
OpName %main "main"
%void = OpTypeVoid
%1 = OpTypeFunction %void
%main = OpFunction %void None %1
%2 = OpLabel
OpBeginInvocationInterlockEXT
OpBeginInvocationInterlockEXT
OpEndInvocationInterlockEXT
OpBeginInvocationInterlockEXT
OpEndInvocationInterlockEXT
OpReturn
OpFunctionEnd
)";
SetTargetEnv(SPV_ENV_VULKAN_1_3);
EXPECT_EQ(
Pass::Status::SuccessWithoutChange,
std::get<1>(SinglePassRunAndDisassemble<InvocationInterlockPlacementPass>(
kTest, /* skip_nop= */ false, /* do_validation= */ false)));
}
TEST_F(InterlockInvocationPlacementTest, CheckSingleBasicBlock) {
// We're using OpNoLine as a generic standin for any other instruction, to
// test that begin and end aren't moved.
const std::string kTest = R"(
OpCapability Shader
OpCapability FragmentShaderSampleInterlockEXT
OpExtension "SPV_EXT_fragment_shader_interlock"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpExecutionMode %main SampleInterlockOrderedEXT
OpName %main "main"
%void = OpTypeVoid
%1 = OpTypeFunction %void
%main = OpFunction %void None %1
; CHECK: OpLabel
%2 = OpLabel
; CHECK-NEXT: OpNoLine
OpNoLine
; CHECK-NEXT: OpBeginInvocationInterlockEXT
OpBeginInvocationInterlockEXT
OpBeginInvocationInterlockEXT
OpEndInvocationInterlockEXT
OpBeginInvocationInterlockEXT
; CHECK-NEXT: OpNoLine
OpNoLine
; CHECK-NEXT: OpEndInvocationInterlockEXT
OpEndInvocationInterlockEXT
; CHECK-NEXT: OpNoLine
OpNoLine
; CHECK-NEXT: OpReturn
OpReturn
OpFunctionEnd
)";
SetTargetEnv(SPV_ENV_VULKAN_1_3);
const auto result = SinglePassRunAndMatch<InvocationInterlockPlacementPass>(
kTest, /* skip_nop= */ false);
EXPECT_EQ(std::get<1>(result), Pass::Status::SuccessWithChange);
}
TEST_F(InterlockInvocationPlacementTest, CheckFunctionCallExtractionBegin) {
const std::string kTest = R"(
OpCapability Shader
OpCapability FragmentShaderSampleInterlockEXT
OpExtension "SPV_EXT_fragment_shader_interlock"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpExecutionMode %main SampleInterlockOrderedEXT
OpName %main "main"
%void = OpTypeVoid
%1 = OpTypeFunction %void
%foo = OpFunction %void None %1
; CHECK: OpLabel
; CHECK-NOT: OpBeginInvocationInterlockEXT
%2 = OpLabel
OpBeginInvocationInterlockEXT
OpBeginInvocationInterlockEXT
OpReturn
; CHECK: OpFunctionEnd
OpFunctionEnd
%main = OpFunction %void None %1
; CHECK: OpLabel
%3 = OpLabel
; CHECK-NEXT: OpBeginInvocationInterlockEXT
; CHECK-NEXT: OpFunctionCall
%4 = OpFunctionCall %void %foo
; CHECK-NEXT: OpReturn
OpReturn
OpFunctionEnd
)";
SetTargetEnv(SPV_ENV_VULKAN_1_3);
const auto result = SinglePassRunAndMatch<InvocationInterlockPlacementPass>(
kTest, /* skip_nop= */ false);
EXPECT_EQ(std::get<1>(result), Pass::Status::SuccessWithChange);
}
TEST_F(InterlockInvocationPlacementTest, CheckFunctionCallExtractionEnd) {
const std::string kTest = R"(
OpCapability Shader
OpCapability FragmentShaderSampleInterlockEXT
OpExtension "SPV_EXT_fragment_shader_interlock"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpExecutionMode %main SampleInterlockOrderedEXT
OpName %main "main"
%void = OpTypeVoid
%1 = OpTypeFunction %void
%foo = OpFunction %void None %1
; CHECK: OpLabel
; CHECK-NOT: OpEndInvocationInterlockEXT
%2 = OpLabel
OpEndInvocationInterlockEXT
OpEndInvocationInterlockEXT
OpReturn
; CHECK: OpFunctionEnd
OpFunctionEnd
%main = OpFunction %void None %1
; CHECK: OpLabel
%3 = OpLabel
; CHECK-NEXT: OpFunctionCall
%4 = OpFunctionCall %void %foo
; CHECK-NEXT: OpEndInvocationInterlockEXT
; CHECK-NEXT: OpReturn
OpReturn
OpFunctionEnd
)";
SetTargetEnv(SPV_ENV_VULKAN_1_3);
const auto result = SinglePassRunAndMatch<InvocationInterlockPlacementPass>(
kTest, /* skip_nop= */ false);
EXPECT_EQ(std::get<1>(result), Pass::Status::SuccessWithChange);
}
TEST_F(InterlockInvocationPlacementTest,
CheckFunctionCallExtractionRepeatedCall) {
const std::string kTest = R"(
OpCapability Shader
OpCapability FragmentShaderSampleInterlockEXT
OpExtension "SPV_EXT_fragment_shader_interlock"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpExecutionMode %main SampleInterlockOrderedEXT
OpName %main "main"
%void = OpTypeVoid
%1 = OpTypeFunction %void
%foo = OpFunction %void None %1
; CHECK: OpLabel
; CHECK-NOT: OpBeginInvocationInterlockEXT
; CHECK-NOT: OpEndInvocationInterlockEXT
%2 = OpLabel
OpBeginInvocationInterlockEXT
OpEndInvocationInterlockEXT
OpReturn
; CHECK: OpFunctionEnd
OpFunctionEnd
%main = OpFunction %void None %1
; CHECK: OpLabel
%3 = OpLabel
; CHECK-NEXT: OpBeginInvocationInterlockEXT
; CHECK-NEXT: OpFunctionCall
%4 = OpFunctionCall %void %foo
; CHECK-NEXT: OpFunctionCall
%5 = OpFunctionCall %void %foo
; CHECK-NEXT: OpEndInvocationInterlockEXT
; CHECK-NEXT: OpReturn
OpReturn
OpFunctionEnd
)";
SetTargetEnv(SPV_ENV_VULKAN_1_3);
const auto result = SinglePassRunAndMatch<InvocationInterlockPlacementPass>(
kTest, /* skip_nop= */ false);
EXPECT_EQ(std::get<1>(result), Pass::Status::SuccessWithChange);
}
TEST_F(InterlockInvocationPlacementTest,
CheckFunctionCallExtractionNestedCall) {
const std::string kTest = R"(
OpCapability Shader
OpCapability FragmentShaderSampleInterlockEXT
OpExtension "SPV_EXT_fragment_shader_interlock"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpExecutionMode %main SampleInterlockOrderedEXT
OpName %main "main"
%void = OpTypeVoid
%1 = OpTypeFunction %void
%foo = OpFunction %void None %1
; CHECK: OpLabel
; CHECK-NOT: OpBeginInvocationInterlockEXT
; CHECK-NOT: OpEndInvocationInterlockEXT
%2 = OpLabel
OpBeginInvocationInterlockEXT
OpEndInvocationInterlockEXT
OpReturn
; CHECK: OpFunctionEnd
OpFunctionEnd
%bar = OpFunction %void None %1
; CHECK: OpLabel
; CHECK-NOT: OpBeginInvocationInterlockEXT
; CHECK-NOT: OpEndInvocationInterlockEXT
%3 = OpLabel
%4 = OpFunctionCall %void %foo
OpReturn
; CHECK: OpFunctionEnd
OpFunctionEnd
%main = OpFunction %void None %1
; CHECK: OpLabel
%5 = OpLabel
; CHECK-NEXT: OpBeginInvocationInterlockEXT
; CHECK-NEXT: OpFunctionCall
%6 = OpFunctionCall %void %bar
; CHECK-NEXT: OpEndInvocationInterlockEXT
; CHECK-NEXT: OpReturn
OpReturn
OpFunctionEnd
)";
SetTargetEnv(SPV_ENV_VULKAN_1_3);
const auto result = SinglePassRunAndMatch<InvocationInterlockPlacementPass>(
kTest, /* skip_nop= */ false);
EXPECT_EQ(std::get<1>(result), Pass::Status::SuccessWithChange);
}
TEST_F(InterlockInvocationPlacementTest, CheckLoopExtraction) {
// Tests that any begin or end instructions in a loop are moved outside of the
// loop.
const std::string kTest = R"(
OpCapability Shader
OpCapability FragmentShaderSampleInterlockEXT
OpExtension "SPV_EXT_fragment_shader_interlock"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpExecutionMode %main SampleInterlockOrderedEXT
%void = OpTypeVoid
%bool = OpTypeBool
%true = OpConstantTrue %bool
%1 = OpTypeFunction %void
%main = OpFunction %void None %1
%2 = OpLabel
; CHECK: OpBeginInvocationInterlockEXT
; CHECK-NOT: OpBeginInvocationInterlockEXT
; CHECK-NOT: OpEndInvocationInterlockEXT
OpBranch %3
%3 = OpLabel
OpLoopMerge %3 %4 None
; CHECK: OpBranchConditional
; CHECK-NOT: OpBeginInvocationInterlockEXT
; CHECK-NOT: OpEndInvocationInterlockEXT
OpBranchConditional %true %4 %5
%4 = OpLabel
OpBeginInvocationInterlockEXT
OpEndInvocationInterlockEXT
; CHECK: OpBranch
OpBranch %3
; CHECK-NEXT: OpLabel
%5 = OpLabel
; CHECK-NEXT: OpEndInvocationInterlockEXT
; CHECK-NOT: OpEndInvocationInterlockEXT
OpEndInvocationInterlockEXT
OpReturn
OpFunctionEnd
)";
SetTargetEnv(SPV_ENV_VULKAN_1_3);
const auto result = SinglePassRunAndMatch<InvocationInterlockPlacementPass>(
kTest, /* skip_nop= */ false);
EXPECT_EQ(std::get<1>(result), Pass::Status::SuccessWithChange);
}
TEST_F(InterlockInvocationPlacementTest, CheckAddBeginToElse) {
// Test that if there is a begin in a single branch of a conditional, begin
// will be added to the other branch.
const std::string kTest = R"(
OpCapability Shader
OpCapability FragmentShaderSampleInterlockEXT
OpExtension "SPV_EXT_fragment_shader_interlock"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpExecutionMode %main SampleInterlockOrderedEXT
OpName %main "main"
%void = OpTypeVoid
%bool = OpTypeBool
%true = OpConstantTrue %bool
%1 = OpTypeFunction %void
%main = OpFunction %void None %1
%2 = OpLabel
; CHECK-NOT: OpBeginInvocationInterlockEXT
OpSelectionMerge %5 None
; CHECK: OpBranchConditional
OpBranchConditional %true %3 %4
; CHECK-NEXT: OpLabel
%3 = OpLabel
; CHECK-NEXT: OpBeginInvocationInterlockEXT
OpBeginInvocationInterlockEXT
OpEndInvocationInterlockEXT
; CHECK-NEXT: OpBranch
OpBranch %5
%4 = OpLabel
; CHECK: OpBeginInvocationInterlockEXT
; CHECK-NEXT: OpBranch
OpBranch %5
; CHECK-NEXT: OpLabel
%5 = OpLabel
OpBeginInvocationInterlockEXT
; CHECK-NEXT: OpEndInvocationInterlockEXT
OpEndInvocationInterlockEXT
OpReturn
OpFunctionEnd
)";
SetTargetEnv(SPV_ENV_VULKAN_1_3);
const auto result = SinglePassRunAndMatch<InvocationInterlockPlacementPass>(
kTest, /* skip_nop= */ false);
EXPECT_EQ(std::get<1>(result), Pass::Status::SuccessWithChange);
}
TEST_F(InterlockInvocationPlacementTest, CheckAddEndToElse) {
const std::string kTest = R"(
OpCapability Shader
OpCapability FragmentShaderSampleInterlockEXT
OpExtension "SPV_EXT_fragment_shader_interlock"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpExecutionMode %main SampleInterlockOrderedEXT
OpName %main "main"
%void = OpTypeVoid
%bool = OpTypeBool
%true = OpConstantTrue %bool
%1 = OpTypeFunction %void
%main = OpFunction %void None %1
%2 = OpLabel
; CHECK: OpBeginInvocationInterlockEXT
OpBeginInvocationInterlockEXT
; CHECK-NOT: OpEndInvocationInterlockEXT
OpEndInvocationInterlockEXT
OpSelectionMerge %5 None
; CHECK: OpBranchConditional
OpBranchConditional %true %3 %4
; CHECK-NEXT: OpLabel
%3 = OpLabel
OpBeginInvocationInterlockEXT
; CHECK-NEXT: OpEndInvocationInterlockEXT
OpEndInvocationInterlockEXT
; CHECK-NEXT: OpBranch
OpBranch %5
%4 = OpLabel
; CHECK: OpEndInvocationInterlockEXT
; CHECK-NEXT: OpBranch
OpBranch %5
; CHECK-NEXT: OpLabel
%5 = OpLabel
; CHECK-NOT: OpEndInvocationInterlockEXT
OpReturn
OpFunctionEnd
)";
SetTargetEnv(SPV_ENV_VULKAN_1_3);
const auto result = SinglePassRunAndMatch<InvocationInterlockPlacementPass>(
kTest, /* skip_nop= */ false);
EXPECT_EQ(std::get<1>(result), Pass::Status::SuccessWithChange);
}
TEST_F(InterlockInvocationPlacementTest, CheckSplitIfWithoutElseBegin) {
// Test that if there is a begin in the then branch of a conditional, and no
// else branch, an else branch with a begin will created.
const std::string kTest = R"(
OpCapability Shader
OpCapability FragmentShaderSampleInterlockEXT
OpExtension "SPV_EXT_fragment_shader_interlock"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpExecutionMode %main SampleInterlockOrderedEXT
OpName %main "main"
%void = OpTypeVoid
%bool = OpTypeBool
%true = OpConstantTrue %bool
%1 = OpTypeFunction %void
%main = OpFunction %void None %1
%2 = OpLabel
; CHECK-NOT: OpBeginInvocationInterlockEXT
OpSelectionMerge %5 None
; CHECK: OpBranchConditional
OpBranchConditional %true %3 %5
; CHECK-NEXT: OpLabel
; CHECK-NEXT: OpBeginInvocationInterlockEXT
; CHECK-NEXT: OpBranch
; CHECK-NEXT: OpLabel
%3 = OpLabel
; CHECK-NEXT: OpBeginInvocationInterlockEXT
; CHECK-NOT: OpEndInvocationInterlockEXT
OpBeginInvocationInterlockEXT
OpEndInvocationInterlockEXT
OpBranch %5
; CHECK: OpLabel
%5 = OpLabel
; CHECK-NOT: OpBeginInvocationInterlockEXT
OpBeginInvocationInterlockEXT
; CHECK-NEXT: OpEndInvocationInterlockEXT
OpEndInvocationInterlockEXT
OpReturn
OpFunctionEnd
)";
SetTargetEnv(SPV_ENV_VULKAN_1_3);
const auto result = SinglePassRunAndMatch<InvocationInterlockPlacementPass>(
kTest, /* skip_nop= */ false);
EXPECT_EQ(std::get<1>(result), Pass::Status::SuccessWithChange);
}
TEST_F(InterlockInvocationPlacementTest, CheckSplitIfWithoutElseEnd) {
const std::string kTest = R"(
OpCapability Shader
OpCapability FragmentShaderSampleInterlockEXT
OpExtension "SPV_EXT_fragment_shader_interlock"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpExecutionMode %main SampleInterlockOrderedEXT
OpName %main "main"
%void = OpTypeVoid
%bool = OpTypeBool
%true = OpConstantTrue %bool
%1 = OpTypeFunction %void
%main = OpFunction %void None %1
%2 = OpLabel
; CHECK: OpBeginInvocationInterlockEXT
OpBeginInvocationInterlockEXT
; CHECK-NOT: OpEndInvocationInterlockEXT
OpEndInvocationInterlockEXT
; CHECK-NEXT: OpSelectionMerge [[merge:%\d+]]
OpSelectionMerge %5 None
; CHECK-NEXT: OpBranchConditional %true [[then:%\d+]] [[else:%\d+]]
OpBranchConditional %true %3 %5
; CHECK-NEXT: [[else]] = OpLabel
; CHECK-NEXT: OpEndInvocationInterlockEXT
; CHECK-NEXT: OpBranch [[merge]]
; CHECK-NEXT: [[then]] = OpLabel
%3 = OpLabel
; CHECK-NEXT: OpEndInvocationInterlockEXT
OpBeginInvocationInterlockEXT
OpEndInvocationInterlockEXT
; CHECK-NEXT: OpBranch [[merge]]
OpBranch %5
; CHECK-NEXT: [[merge]] = OpLabel
%5 = OpLabel
; CHECK-NEXT: OpReturn
OpReturn
OpFunctionEnd
)";
SetTargetEnv(SPV_ENV_VULKAN_1_3);
const auto result = SinglePassRunAndMatch<InvocationInterlockPlacementPass>(
kTest, /* skip_nop= */ false);
EXPECT_EQ(std::get<1>(result), Pass::Status::SuccessWithChange);
}
TEST_F(InterlockInvocationPlacementTest, CheckSplitSwitch) {
// Test that if there is a begin or end in a single branch of a switch, begin
// or end will be added to all the other branches.
const std::string kTest = R"(
OpCapability Shader
OpCapability FragmentShaderSampleInterlockEXT
OpExtension "SPV_EXT_fragment_shader_interlock"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpExecutionMode %main SampleInterlockOrderedEXT
OpName %main "main"
%void = OpTypeVoid
%uint = OpTypeInt 32 0
%uint_1 = OpConstant %uint 1
%1 = OpTypeFunction %void
%main = OpFunction %void None %1
; CHECK: OpLabel
%2 = OpLabel
; CHECK-NEXT: OpSelectionMerge [[merge:%\d+]]
OpSelectionMerge %8 None
; CHECK-NEXT: OpSwitch %uint_1 [[default:%\d+]] 0 [[case_0:%\d+]] 1 [[case_1:%\d+]] 2 [[case_2:%\d+]]
OpSwitch %uint_1 %8 0 %4 1 %5 2 %8
; CHECK-NEXT: [[case_2]] = OpLabel
; CHECK-NEXT: OpBeginInvocationInterlockEXT
; CHECK-NEXT: OpBranch [[merge]]
; CHECK-NEXT: [[default]] = OpLabel
; CHECK-NEXT: OpBeginInvocationInterlockEXT
; CHECK-NEXT: OpBranch [[merge]]
; CHECK-NEXT: [[case_0]] = OpLabel
%4 = OpLabel
; CHECK-NEXT: OpBeginInvocationInterlockEXT
; CHECK-NOT: OpEndInvocationInterlockEXT
OpBeginInvocationInterlockEXT
OpEndInvocationInterlockEXT
; CHECK-NEXT: OpNoLine
OpNoLine
; CHECK-NEXT: OpBranch [[merge]]
OpBranch %8
; CHECK-NEXT: [[case_1]] = OpLabel
%5 = OpLabel
; CHECK-NEXT: OpBeginInvocationInterlockEXT
; CHECK-NOT: OpEndInvocationInterlockEXT
OpBeginInvocationInterlockEXT
OpEndInvocationInterlockEXT
; CHECK-NEXT: OpNoLine
OpNoLine
; CHECK-NEXT: OpNoLine
OpNoLine
; CHECK-NEXT: OpBranch [[merge]]
OpBranch %8
; CHECK-NEXT: [[merge]] = OpLabel
%8 = OpLabel
; CHECK-NOT: OpBeginInvocationInterlockEXT
OpBeginInvocationInterlockEXT
; CHECK-NEXT: OpEndInvocationInterlockEXT
OpEndInvocationInterlockEXT
OpReturn
OpFunctionEnd
)";
SetTargetEnv(SPV_ENV_VULKAN_1_3);
const auto result = SinglePassRunAndMatch<InvocationInterlockPlacementPass>(
kTest, /* skip_nop= */ false);
EXPECT_EQ(std::get<1>(result), Pass::Status::SuccessWithChange);
}
} // namespace
} // namespace opt
} // namespace spvtools