Updated desc_sroa to support flattening structures (#3448)

Not all structures should be flattened.  Code patterns used by DXC are used to create checks for which structures should be flattened.
This commit is contained in:
Ehsan 2020-06-19 13:35:18 -05:00 committed by GitHub
parent 33cf7c425a
commit 2a1b8c0622
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 433 additions and 29 deletions

View File

@ -56,7 +56,23 @@ bool DescriptorScalarReplacement::IsCandidate(Instruction* var) {
uint32_t var_type_id = ptr_type_inst->GetSingleWordInOperand(1);
Instruction* var_type_inst =
context()->get_def_use_mgr()->GetDef(var_type_id);
if (var_type_inst->opcode() != SpvOpTypeArray) {
if (var_type_inst->opcode() != SpvOpTypeArray &&
var_type_inst->opcode() != SpvOpTypeStruct) {
return false;
}
// All structures with descriptor assignments must be replaced by variables,
// one for each of their members - with the exceptions of buffers.
// Buffers are represented as structures, but we shouldn't replace a buffer
// with its elements. All buffers have offset decorations for members of their
// structure types.
bool has_offset_decoration = false;
context()->get_decoration_mgr()->ForEachDecoration(
var_type_inst->result_id(), SpvDecorationOffset,
[&has_offset_decoration](const Instruction&) {
has_offset_decoration = true;
});
if (has_offset_decoration) {
return false;
}
@ -177,21 +193,36 @@ uint32_t DescriptorScalarReplacement::GetReplacementVariable(Instruction* var,
uint32_t ptr_type_id = var->type_id();
Instruction* ptr_type_inst = get_def_use_mgr()->GetDef(ptr_type_id);
assert(ptr_type_inst->opcode() == SpvOpTypePointer &&
"Variable should be a pointer to an array.");
uint32_t arr_type_id = ptr_type_inst->GetSingleWordInOperand(1);
Instruction* arr_type_inst = get_def_use_mgr()->GetDef(arr_type_id);
assert(arr_type_inst->opcode() == SpvOpTypeArray &&
"Variable should be a pointer to an array.");
"Variable should be a pointer to an array or structure.");
uint32_t pointee_type_id = ptr_type_inst->GetSingleWordInOperand(1);
Instruction* pointee_type_inst = get_def_use_mgr()->GetDef(pointee_type_id);
const bool is_array = pointee_type_inst->opcode() == SpvOpTypeArray;
const bool is_struct = pointee_type_inst->opcode() == SpvOpTypeStruct;
assert((is_array || is_struct) &&
"Variable should be a pointer to an array or structure.");
uint32_t array_len_id = arr_type_inst->GetSingleWordInOperand(1);
const analysis::Constant* array_len_const =
context()->get_constant_mgr()->FindDeclaredConstant(array_len_id);
assert(array_len_const != nullptr && "Array length must be a constant.");
uint32_t array_len = array_len_const->GetU32();
// For arrays, each array element should be replaced with a new replacement
// variable
if (is_array) {
uint32_t array_len_id = pointee_type_inst->GetSingleWordInOperand(1);
const analysis::Constant* array_len_const =
context()->get_constant_mgr()->FindDeclaredConstant(array_len_id);
assert(array_len_const != nullptr && "Array length must be a constant.");
uint32_t array_len = array_len_const->GetU32();
replacement_vars = replacement_variables_
.insert({var, std::vector<uint32_t>(array_len, 0)})
.first;
replacement_vars = replacement_variables_
.insert({var, std::vector<uint32_t>(array_len, 0)})
.first;
}
// For structures, each member should be replaced with a new replacement
// variable
if (is_struct) {
const uint32_t num_members = pointee_type_inst->NumInOperands();
replacement_vars =
replacement_variables_
.insert({var, std::vector<uint32_t>(num_members, 0)})
.first;
}
}
if (replacement_vars->second[idx] == 0) {
@ -212,12 +243,17 @@ uint32_t DescriptorScalarReplacement::CreateReplacementVariable(
uint32_t ptr_type_id = var->type_id();
Instruction* ptr_type_inst = get_def_use_mgr()->GetDef(ptr_type_id);
assert(ptr_type_inst->opcode() == SpvOpTypePointer &&
"Variable should be a pointer to an array.");
uint32_t arr_type_id = ptr_type_inst->GetSingleWordInOperand(1);
Instruction* arr_type_inst = get_def_use_mgr()->GetDef(arr_type_id);
assert(arr_type_inst->opcode() == SpvOpTypeArray &&
"Variable should be a pointer to an array.");
uint32_t element_type_id = arr_type_inst->GetSingleWordInOperand(0);
"Variable should be a pointer to an array or structure.");
uint32_t pointee_type_id = ptr_type_inst->GetSingleWordInOperand(1);
Instruction* pointee_type_inst = get_def_use_mgr()->GetDef(pointee_type_id);
const bool is_array = pointee_type_inst->opcode() == SpvOpTypeArray;
const bool is_struct = pointee_type_inst->opcode() == SpvOpTypeStruct;
assert((is_array || is_struct) &&
"Variable should be a pointer to an array or structure.");
uint32_t element_type_id =
is_array ? pointee_type_inst->GetSingleWordInOperand(0)
: pointee_type_inst->GetSingleWordInOperand(idx);
uint32_t ptr_element_type_id = context()->get_type_mgr()->FindPointerToType(
element_type_id, storage_class);
@ -242,19 +278,33 @@ uint32_t DescriptorScalarReplacement::CreateReplacementVariable(
uint32_t decoration = new_decoration->GetSingleWordInOperand(1u);
if (decoration == SpvDecorationBinding) {
uint32_t new_binding = new_decoration->GetSingleWordInOperand(2) + idx;
uint32_t new_binding =
new_decoration->GetSingleWordInOperand(2) +
idx * GetNumBindingsUsedByType(ptr_element_type_id);
new_decoration->SetInOperand(2, {new_binding});
}
context()->AddAnnotationInst(std::move(new_decoration));
}
// Create a new OpName for the replacement variable.
std::vector<std::unique_ptr<Instruction>> names_to_add;
for (auto p : context()->GetNames(var->result_id())) {
Instruction* name_inst = p.second;
std::string name_str = utils::MakeString(name_inst->GetOperand(1).words);
name_str += "[";
name_str += utils::ToString(idx);
name_str += "]";
if (is_array) {
name_str += "[" + utils::ToString(idx) + "]";
}
if (is_struct) {
Instruction* member_name_inst =
context()->GetMemberName(pointee_type_inst->result_id(), idx);
name_str += ".";
if (member_name_inst)
name_str += utils::MakeString(member_name_inst->GetOperand(2).words);
else
// In case the member does not have a name assigned to it, use the
// member index.
name_str += utils::ToString(idx);
}
std::unique_ptr<Instruction> new_name(new Instruction(
context(), SpvOpName, 0, 0,
@ -262,12 +312,53 @@ uint32_t DescriptorScalarReplacement::CreateReplacementVariable(
{SPV_OPERAND_TYPE_ID, {id}},
{SPV_OPERAND_TYPE_LITERAL_STRING, utils::MakeVector(name_str)}}));
Instruction* new_name_inst = new_name.get();
context()->AddDebug2Inst(std::move(new_name));
get_def_use_mgr()->AnalyzeInstDefUse(new_name_inst);
names_to_add.push_back(std::move(new_name));
}
// We shouldn't add the new names when we are iterating over name ranges
// above. We can add all the new names now.
for (auto& new_name : names_to_add)
context()->AddDebug2Inst(std::move(new_name));
return id;
}
uint32_t DescriptorScalarReplacement::GetNumBindingsUsedByType(
uint32_t type_id) {
Instruction* type_inst = get_def_use_mgr()->GetDef(type_id);
// If it's a pointer, look at the underlying type.
if (type_inst->opcode() == SpvOpTypePointer) {
type_id = type_inst->GetSingleWordInOperand(1);
type_inst = get_def_use_mgr()->GetDef(type_id);
}
// Arrays consume N*M binding numbers where N is the array length, and M is
// the number of bindings used by each array element.
if (type_inst->opcode() == SpvOpTypeArray) {
uint32_t element_type_id = type_inst->GetSingleWordInOperand(0);
uint32_t length_id = type_inst->GetSingleWordInOperand(1);
const analysis::Constant* length_const =
context()->get_constant_mgr()->FindDeclaredConstant(length_id);
// OpTypeArray's length must always be a constant
assert(length_const != nullptr);
uint32_t num_elems = length_const->GetU32();
return num_elems * GetNumBindingsUsedByType(element_type_id);
}
// The number of bindings consumed by a structure is the sum of the bindings
// used by its members.
if (type_inst->opcode() == SpvOpTypeStruct) {
uint32_t sum = 0;
for (uint32_t i = 0; i < type_inst->NumInOperands(); i++)
sum += GetNumBindingsUsedByType(type_inst->GetSingleWordInOperand(i));
return sum;
}
// All other types are considered to take up 1 binding number.
return 1;
}
} // namespace opt
} // namespace spvtools

View File

@ -70,6 +70,15 @@ class DescriptorScalarReplacement : public Pass {
// element of |var|.
uint32_t CreateReplacementVariable(Instruction* var, uint32_t idx);
// Returns the number of bindings used by the given |type_id|.
// All types are considered to use 1 binding slot, except:
// 1- A pointer type consumes as many binding numbers as its pointee.
// 2- An array of size N consumes N*M binding numbers, where M is the number
// of bindings used by each array element.
// 3- The number of bindings consumed by a structure is the sum of the
// bindings used by its members.
uint32_t GetNumBindingsUsedByType(uint32_t type_id);
// A map from an OpVariable instruction to the set of variables that will be
// used to replace it. The entry |replacement_variables_[var][i]| is the id of
// a variable that will be used in the place of the the ith element of the

View File

@ -357,6 +357,13 @@ class IRContext {
inline IteratorRange<std::multimap<uint32_t, Instruction*>::iterator>
GetNames(uint32_t id);
// Returns an OpMemberName instruction that targets |struct_type_id| at
// index |index|. Returns nullptr if no such instruction exists.
// While the SPIR-V spec does not prohibit having multiple OpMemberName
// instructions for the same structure member, it is hard to imagine a member
// having more than one name. This method returns the first one it finds.
inline Instruction* GetMemberName(uint32_t struct_type_id, uint32_t index);
// Sets the message consumer to the given |consumer|. |consumer| which will be
// invoked every time there is a message to be communicated to the outside.
void SetMessageConsumer(MessageConsumer c) { consumer_ = std::move(c); }
@ -1061,7 +1068,9 @@ void IRContext::AddDebug1Inst(std::unique_ptr<Instruction>&& d) {
void IRContext::AddDebug2Inst(std::unique_ptr<Instruction>&& d) {
if (AreAnalysesValid(kAnalysisNameMap)) {
if (d->opcode() == SpvOpName || d->opcode() == SpvOpMemberName) {
id_to_name_->insert({d->result_id(), d.get()});
// OpName and OpMemberName do not have result-ids. The target of the
// instruction is at InOperand index 0.
id_to_name_->insert({d->GetSingleWordInOperand(0), d.get()});
}
}
module()->AddDebug2Inst(std::move(d));
@ -1135,6 +1144,21 @@ IRContext::GetNames(uint32_t id) {
return make_range(std::move(result.first), std::move(result.second));
}
Instruction* IRContext::GetMemberName(uint32_t struct_type_id, uint32_t index) {
if (!AreAnalysesValid(kAnalysisNameMap)) {
BuildIdToNameMap();
}
auto result = id_to_name_->equal_range(struct_type_id);
for (auto i = result.first; i != result.second; ++i) {
auto* name_instr = i->second;
if (name_instr->opcode() == SpvOpMemberName &&
name_instr->GetSingleWordInOperand(1) == index) {
return name_instr;
}
}
return nullptr;
}
} // namespace opt
} // namespace spvtools

View File

@ -25,7 +25,116 @@ namespace {
using DescriptorScalarReplacementTest = PassTest<::testing::Test>;
TEST_F(DescriptorScalarReplacementTest, ExpandTexture) {
std::string GetStructureArrayTestSpirv() {
// The SPIR-V for the following high-level shader:
// Flattening structures and arrays should result in the following binding
// numbers. Only the ones that are actually used in the shader should be in
// the final SPIR-V.
//
// globalS[0][0].t[0] 0 (used)
// globalS[0][0].t[1] 1
// globalS[0][0].s[0] 2 (used)
// globalS[0][0].s[1] 3
// globalS[0][1].t[0] 4
// globalS[0][1].t[1] 5
// globalS[0][1].s[0] 6
// globalS[0][1].s[1] 7
// globalS[1][0].t[0] 8
// globalS[1][0].t[1] 9
// globalS[1][0].s[0] 10
// globalS[1][0].s[1] 11
// globalS[1][1].t[0] 12
// globalS[1][1].t[1] 13 (used)
// globalS[1][1].s[0] 14
// globalS[1][1].s[1] 15 (used)
/*
struct S {
Texture2D t[2];
SamplerState s[2];
};
S globalS[2][2];
float4 main() : SV_Target {
return globalS[0][0].t[0].Sample(globalS[0][0].s[0], float2(0,0)) +
globalS[1][1].t[1].Sample(globalS[1][1].s[1], float2(0,0));
}
*/
return R"(
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %out_var_SV_Target
OpExecutionMode %main OriginUpperLeft
OpName %S "S"
OpMemberName %S 0 "t"
OpMemberName %S 1 "s"
OpName %type_2d_image "type.2d.image"
OpName %type_sampler "type.sampler"
OpName %globalS "globalS"
OpName %out_var_SV_Target "out.var.SV_Target"
OpName %main "main"
OpName %src_main "src.main"
OpName %bb_entry "bb.entry"
OpName %type_sampled_image "type.sampled.image"
OpDecorate %out_var_SV_Target Location 0
OpDecorate %globalS DescriptorSet 0
OpDecorate %globalS Binding 0
%int = OpTypeInt 32 1
%int_0 = OpConstant %int 0
%int_1 = OpConstant %int 1
%float = OpTypeFloat 32
%float_0 = OpConstant %float 0
%v2float = OpTypeVector %float 2
%10 = OpConstantComposite %v2float %float_0 %float_0
%uint = OpTypeInt 32 0
%uint_2 = OpConstant %uint 2
%type_2d_image = OpTypeImage %float 2D 2 0 0 1 Unknown
%_arr_type_2d_image_uint_2 = OpTypeArray %type_2d_image %uint_2
%type_sampler = OpTypeSampler
%_arr_type_sampler_uint_2 = OpTypeArray %type_sampler %uint_2
%S = OpTypeStruct %_arr_type_2d_image_uint_2 %_arr_type_sampler_uint_2
%_arr_S_uint_2 = OpTypeArray %S %uint_2
%_arr__arr_S_uint_2_uint_2 = OpTypeArray %_arr_S_uint_2 %uint_2
%_ptr_UniformConstant__arr__arr_S_uint_2_uint_2 = OpTypePointer UniformConstant %_arr__arr_S_uint_2_uint_2
%v4float = OpTypeVector %float 4
%_ptr_Output_v4float = OpTypePointer Output %v4float
%void = OpTypeVoid
%24 = OpTypeFunction %void
%28 = OpTypeFunction %v4float
%_ptr_UniformConstant_type_2d_image = OpTypePointer UniformConstant %type_2d_image
%_ptr_UniformConstant_type_sampler = OpTypePointer UniformConstant %type_sampler
%type_sampled_image = OpTypeSampledImage %type_2d_image
%globalS = OpVariable %_ptr_UniformConstant__arr__arr_S_uint_2_uint_2 UniformConstant
%out_var_SV_Target = OpVariable %_ptr_Output_v4float Output
%main = OpFunction %void None %24
%25 = OpLabel
%26 = OpFunctionCall %v4float %src_main
OpStore %out_var_SV_Target %26
OpReturn
OpFunctionEnd
%src_main = OpFunction %v4float None %28
%bb_entry = OpLabel
%31 = OpAccessChain %_ptr_UniformConstant_type_2d_image %globalS %int_0 %int_0 %int_0 %int_0
%32 = OpLoad %type_2d_image %31
%34 = OpAccessChain %_ptr_UniformConstant_type_sampler %globalS %int_0 %int_0 %int_1 %int_0
%35 = OpLoad %type_sampler %34
%37 = OpSampledImage %type_sampled_image %32 %35
%38 = OpImageSampleImplicitLod %v4float %37 %10 None
%39 = OpAccessChain %_ptr_UniformConstant_type_2d_image %globalS %int_1 %int_1 %int_0 %int_1
%40 = OpLoad %type_2d_image %39
%41 = OpAccessChain %_ptr_UniformConstant_type_sampler %globalS %int_1 %int_1 %int_1 %int_1
%42 = OpLoad %type_sampler %41
%43 = OpSampledImage %type_sampled_image %40 %42
%44 = OpImageSampleImplicitLod %v4float %43 %10 None
%45 = OpFAdd %v4float %38 %44
OpReturnValue %45
OpFunctionEnd
)";
}
TEST_F(DescriptorScalarReplacementTest, ExpandArrayOfTextures) {
const std::string text = R"(
; CHECK: OpDecorate [[var1:%\w+]] DescriptorSet 0
; CHECK: OpDecorate [[var1]] Binding 0
@ -94,7 +203,7 @@ TEST_F(DescriptorScalarReplacementTest, ExpandTexture) {
SinglePassRunAndMatch<DescriptorScalarReplacement>(text, true);
}
TEST_F(DescriptorScalarReplacementTest, ExpandSampler) {
TEST_F(DescriptorScalarReplacementTest, ExpandArrayOfSamplers) {
const std::string text = R"(
; CHECK: OpDecorate [[var1:%\w+]] DescriptorSet 0
; CHECK: OpDecorate [[var1]] Binding 1
@ -145,7 +254,7 @@ TEST_F(DescriptorScalarReplacementTest, ExpandSampler) {
SinglePassRunAndMatch<DescriptorScalarReplacement>(text, true);
}
TEST_F(DescriptorScalarReplacementTest, ExpandSSBO) {
TEST_F(DescriptorScalarReplacementTest, ExpandArrayOfSSBOs) {
// Tests the expansion of an SSBO. Also check that an access chain with more
// than 1 index is correctly handled.
const std::string text = R"(
@ -265,6 +374,177 @@ TEST_F(DescriptorScalarReplacementTest, NameNewVariables) {
SinglePassRunAndMatch<DescriptorScalarReplacement>(text, true);
}
TEST_F(DescriptorScalarReplacementTest, DontExpandCBuffers) {
// Checks that constant buffers are not expanded.
// Constant buffers are represented as global structures, but they should not
// be replaced with new variables for their elements.
/*
cbuffer MyCbuffer : register(b1) {
float2 a;
float2 b;
};
float main() : A {
return a.x + b.y;
}
*/
const std::string text = R"(
; CHECK: OpAccessChain %_ptr_Uniform_float %MyCbuffer %int_0 %int_0
; CHECK: OpAccessChain %_ptr_Uniform_float %MyCbuffer %int_1 %int_1
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Vertex %main "main" %out_var_A
OpSource HLSL 600
OpName %type_MyCbuffer "type.MyCbuffer"
OpMemberName %type_MyCbuffer 0 "a"
OpMemberName %type_MyCbuffer 1 "b"
OpName %MyCbuffer "MyCbuffer"
OpName %out_var_A "out.var.A"
OpName %main "main"
OpDecorate %out_var_A Location 0
OpDecorate %MyCbuffer DescriptorSet 0
OpDecorate %MyCbuffer Binding 1
OpMemberDecorate %type_MyCbuffer 0 Offset 0
OpMemberDecorate %type_MyCbuffer 1 Offset 8
OpDecorate %type_MyCbuffer Block
%int = OpTypeInt 32 1
%int_0 = OpConstant %int 0
%int_1 = OpConstant %int 1
%float = OpTypeFloat 32
%v2float = OpTypeVector %float 2
%type_MyCbuffer = OpTypeStruct %v2float %v2float
%_ptr_Uniform_type_MyCbuffer = OpTypePointer Uniform %type_MyCbuffer
%_ptr_Output_float = OpTypePointer Output %float
%void = OpTypeVoid
%13 = OpTypeFunction %void
%_ptr_Uniform_float = OpTypePointer Uniform %float
%MyCbuffer = OpVariable %_ptr_Uniform_type_MyCbuffer Uniform
%out_var_A = OpVariable %_ptr_Output_float Output
%main = OpFunction %void None %13
%15 = OpLabel
%16 = OpAccessChain %_ptr_Uniform_float %MyCbuffer %int_0 %int_0
%17 = OpLoad %float %16
%18 = OpAccessChain %_ptr_Uniform_float %MyCbuffer %int_1 %int_1
%19 = OpLoad %float %18
%20 = OpFAdd %float %17 %19
OpStore %out_var_A %20
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<DescriptorScalarReplacement>(text, true);
}
TEST_F(DescriptorScalarReplacementTest, DontExpandStructuredBuffers) {
// Checks that structured buffers are not expanded.
// Structured buffers are represented as global structures, that have one
// member which is a runtime array.
/*
struct S {
float2 a;
float2 b;
};
RWStructuredBuffer<S> sb;
float main() : A {
return sb[0].a.x + sb[0].b.x;
}
*/
const std::string text = R"(
; CHECK: OpAccessChain %_ptr_Uniform_float %sb %int_0 %uint_0 %int_0 %int_0
; CHECK: OpAccessChain %_ptr_Uniform_float %sb %int_0 %uint_0 %int_1 %int_0
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Vertex %main "main" %out_var_A
OpName %type_RWStructuredBuffer_S "type.RWStructuredBuffer.S"
OpName %S "S"
OpMemberName %S 0 "a"
OpMemberName %S 1 "b"
OpName %sb "sb"
OpName %out_var_A "out.var.A"
OpName %main "main"
OpDecorate %out_var_A Location 0
OpDecorate %sb DescriptorSet 0
OpDecorate %sb Binding 0
OpMemberDecorate %S 0 Offset 0
OpMemberDecorate %S 1 Offset 8
OpDecorate %_runtimearr_S ArrayStride 16
OpMemberDecorate %type_RWStructuredBuffer_S 0 Offset 0
OpDecorate %type_RWStructuredBuffer_S BufferBlock
%int = OpTypeInt 32 1
%int_0 = OpConstant %int 0
%uint = OpTypeInt 32 0
%uint_0 = OpConstant %uint 0
%int_1 = OpConstant %int 1
%float = OpTypeFloat 32
%v2float = OpTypeVector %float 2
%S = OpTypeStruct %v2float %v2float
%_runtimearr_S = OpTypeRuntimeArray %S
%type_RWStructuredBuffer_S = OpTypeStruct %_runtimearr_S
%_ptr_Uniform_type_RWStructuredBuffer_S = OpTypePointer Uniform %type_RWStructuredBuffer_S
%_ptr_Output_float = OpTypePointer Output %float
%void = OpTypeVoid
%17 = OpTypeFunction %void
%_ptr_Uniform_float = OpTypePointer Uniform %float
%sb = OpVariable %_ptr_Uniform_type_RWStructuredBuffer_S Uniform
%out_var_A = OpVariable %_ptr_Output_float Output
%main = OpFunction %void None %17
%19 = OpLabel
%20 = OpAccessChain %_ptr_Uniform_float %sb %int_0 %uint_0 %int_0 %int_0
%21 = OpLoad %float %20
%22 = OpAccessChain %_ptr_Uniform_float %sb %int_0 %uint_0 %int_1 %int_0
%23 = OpLoad %float %22
%24 = OpFAdd %float %21 %23
OpStore %out_var_A %24
OpReturn
OpFunctionEnd
)";
SinglePassRunAndMatch<DescriptorScalarReplacement>(text, true);
}
TEST_F(DescriptorScalarReplacementTest, StructureArrayNames) {
// Checks that names are properly generated for multi-dimension arrays and
// structure members.
const std::string checks = R"(
; CHECK: OpName %globalS_0__0__t_0_ "globalS[0][0].t[0]"
; CHECK: OpName %globalS_0__0__s_0_ "globalS[0][0].s[0]"
; CHECK: OpName %globalS_1__1__t_1_ "globalS[1][1].t[1]"
; CHECK: OpName %globalS_1__1__s_1_ "globalS[1][1].s[1]"
)";
const std::string text = checks + GetStructureArrayTestSpirv();
SinglePassRunAndMatch<DescriptorScalarReplacement>(text, true);
}
TEST_F(DescriptorScalarReplacementTest, StructureArrayBindings) {
// Checks that flattening structures and arrays results in correct binding
// numbers.
const std::string checks = R"(
; CHECK: OpDecorate %globalS_0__0__t_0_ Binding 0
; CHECK: OpDecorate %globalS_0__0__s_0_ Binding 2
; CHECK: OpDecorate %globalS_1__1__t_1_ Binding 13
; CHECK: OpDecorate %globalS_1__1__s_1_ Binding 15
)";
const std::string text = checks + GetStructureArrayTestSpirv();
SinglePassRunAndMatch<DescriptorScalarReplacement>(text, true);
}
TEST_F(DescriptorScalarReplacementTest, StructureArrayReplacements) {
// Checks that all access chains indexing into structures and/or arrays are
// replaced with direct access to replacement variables.
const std::string checks = R"(
; CHECK-NOT: OpAccessChain
; CHECK: OpLoad %type_2d_image %globalS_0__0__t_0_
; CHECK: OpLoad %type_sampler %globalS_0__0__s_0_
; CHECK: OpLoad %type_2d_image %globalS_1__1__t_1_
; CHECK: OpLoad %type_sampler %globalS_1__1__s_1_
)";
const std::string text = checks + GetStructureArrayTestSpirv();
SinglePassRunAndMatch<DescriptorScalarReplacement>(text, true);
}
} // namespace
} // namespace opt
} // namespace spvtools