Added bit stream utils

Also added generalized zigzag coding.
- Due to signed integers being mostly non-negative, improved zigzag coding
  to favor positive values.
This commit is contained in:
Andrey Tuganov 2017-04-24 15:17:33 -04:00 committed by David Neto
parent f5facf842f
commit 3eb716cae4
5 changed files with 1910 additions and 0 deletions

View File

@ -190,6 +190,7 @@ set(SPIRV_SOURCES
${spirv-tools_SOURCE_DIR}/include/spirv-tools/libspirv.h
${CMAKE_CURRENT_SOURCE_DIR}/util/bitutils.h
${CMAKE_CURRENT_SOURCE_DIR}/util/bit_stream.h
${CMAKE_CURRENT_SOURCE_DIR}/util/hex_float.h
${CMAKE_CURRENT_SOURCE_DIR}/util/parse_number.h
${CMAKE_CURRENT_SOURCE_DIR}/util/string_utils.h
@ -218,6 +219,7 @@ set(SPIRV_SOURCES
${CMAKE_CURRENT_SOURCE_DIR}/text_handler.h
${CMAKE_CURRENT_SOURCE_DIR}/validate.h
${CMAKE_CURRENT_SOURCE_DIR}/util/bit_stream.cpp
${CMAKE_CURRENT_SOURCE_DIR}/util/parse_number.cpp
${CMAKE_CURRENT_SOURCE_DIR}/util/string_utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/assembly_grammar.cpp

387
source/util/bit_stream.cpp Normal file
View File

@ -0,0 +1,387 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <cassert>
#include <cstring>
#include <sstream>
#include <type_traits>
#include "util/bit_stream.h"
namespace spvutils {
namespace {
// Returns if the system is little-endian. Unfortunately only works during
// runtime.
bool IsLittleEndian() {
// This constant value allows the detection of the host machine's endianness.
// Accessing it as an array of bytes is valid due to C++11 section 3.10
// paragraph 10.
static const uint16_t kFF00 = 0xff00;
return reinterpret_cast<const unsigned char*>(&kFF00)[0] == 0;
}
// Copies uint8_t buffer to a uint64_t buffer.
// Motivation: casting uint64_t* to uint8_t* is ok. Casting in the other
// direction is only advisable if uint8_t* is aligned to 64-bit word boundary.
std::vector<uint64_t> ToBuffer64(const std::vector<uint8_t>& in) {
std::vector<uint64_t> out;
out.resize((in.size() + 7) / 8, 0);
memcpy(out.data(), in.data(), in.size());
return out;
}
// Returns uint64_t containing the same bits as |val|.
// Type size must be less than 8 bytes.
template <typename T>
uint64_t ToU64(T val) {
static_assert(sizeof(T) <= 8, "Type size too big");
uint64_t val64 = 0;
std::memcpy(&val64, &val, sizeof(T));
return val64;
}
// Returns value of type T containing the same bits as |val64|.
// Type size must be less than 8 bytes. Upper (unused) bits of |val64| must be
// zero (irrelevant, but is checked with assertion).
template <typename T>
T FromU64(uint64_t val64) {
assert(sizeof(T) == 8 || (val64 >> (sizeof(T) * 8)) == 0);
static_assert(sizeof(T) <= 8, "Type size too big");
T val = 0;
std::memcpy(&val, &val64, sizeof(T));
return val;
}
// Writes bits from |val| to |writer| in chunks of size |chunk_length|.
// Signal bit is used to signal if the reader should expect another chunk:
// 0 - no more chunks to follow
// 1 - more chunks to follow
// If number of written bits reaches |max_payload| last chunk is truncated.
void WriteVariableWidthInternal(BitWriterInterface* writer, uint64_t val,
size_t chunk_length, size_t max_payload) {
assert(chunk_length > 0);
assert(chunk_length < max_payload);
assert(max_payload == 64 || (val >> max_payload) == 0);
if (val == 0) {
writer->WriteBits(0, chunk_length + 1);
return;
}
size_t payload_written = 0;
while (val) {
if (payload_written + chunk_length >= max_payload) {
// This has to be the last chunk.
// There is no need for the signal bit and the chunk can be truncated.
const size_t left_to_write = max_payload - payload_written;
assert((val >> left_to_write) == 0);
writer->WriteBits(val, left_to_write);
break;
}
writer->WriteBits(val, chunk_length);
payload_written += chunk_length;
val = val >> chunk_length;
// Write a single bit to signal if there is more to come.
writer->WriteBits(val ? 1 : 0, 1);
}
}
// Reads data written with WriteVariableWidthInternal. |chunk_length| and
// |max_payload| should be identical to those used to write the data.
// Returns false if the stream ends prematurely.
bool ReadVariableWidthInternal(BitReaderInterface* reader, uint64_t* val,
size_t chunk_length, size_t max_payload) {
assert(chunk_length > 0);
assert(chunk_length <= max_payload);
size_t payload_read = 0;
while (payload_read + chunk_length < max_payload) {
uint64_t bits = 0;
if (reader->ReadBits(&bits, chunk_length) != chunk_length)
return false;
*val |= bits << payload_read;
payload_read += chunk_length;
uint64_t more_to_come = 0;
if (reader->ReadBits(&more_to_come, 1) != 1)
return false;
if (!more_to_come) {
return true;
}
}
// Need to read the last chunk which may be truncated. No signal bit follows.
uint64_t bits = 0;
const size_t left_to_read = max_payload - payload_read;
if (reader->ReadBits(&bits, left_to_read) != left_to_read)
return false;
*val |= bits << payload_read;
return true;
}
// Calls WriteVariableWidthInternal with the right max_payload argument.
template <typename T>
void WriteVariableWidthUnsigned(BitWriterInterface* writer, T val,
size_t chunk_length) {
static_assert(std::is_unsigned<T>::value, "Type must be unsigned");
static_assert(std::is_integral<T>::value, "Type must be integral");
WriteVariableWidthInternal(writer, val, chunk_length, sizeof(T) * 8);
}
// Calls ReadVariableWidthInternal with the right max_payload argument.
template <typename T>
bool ReadVariableWidthUnsigned(BitReaderInterface* reader, T* val,
size_t chunk_length) {
static_assert(std::is_unsigned<T>::value, "Type must be unsigned");
static_assert(std::is_integral<T>::value, "Type must be integral");
uint64_t val64 = 0;
if (!ReadVariableWidthInternal(reader, &val64, chunk_length, sizeof(T) * 8))
return false;
*val = static_cast<T>(val64);
assert(*val == val64);
return true;
}
// Encodes signed |val| to an unsigned value and calls
// WriteVariableWidthInternal with the right max_payload argument.
template <typename T>
void WriteVariableWidthSigned(BitWriterInterface* writer, T val,
size_t chunk_length, size_t zigzag_exponent) {
static_assert(std::is_signed<T>::value, "Type must be signed");
static_assert(std::is_integral<T>::value, "Type must be integral");
WriteVariableWidthInternal(writer, EncodeZigZag(val, zigzag_exponent),
chunk_length, sizeof(T) * 8);
}
// Calls ReadVariableWidthInternal with the right max_payload argument
// and decodes the value.
template <typename T>
bool ReadVariableWidthSigned(BitReaderInterface* reader, T* val,
size_t chunk_length, size_t zigzag_exponent) {
static_assert(std::is_signed<T>::value, "Type must be signed");
static_assert(std::is_integral<T>::value, "Type must be integral");
uint64_t encoded = 0;
if (!ReadVariableWidthInternal(reader, &encoded, chunk_length, sizeof(T) * 8))
return false;
const int64_t decoded = DecodeZigZag(encoded, zigzag_exponent);
*val = static_cast<T>(decoded);
assert(*val == decoded);
return true;
}
} // namespace
void BitWriterInterface::WriteVariableWidthU64(uint64_t val,
size_t chunk_length) {
WriteVariableWidthUnsigned(this, val, chunk_length);
}
void BitWriterInterface::WriteVariableWidthU32(uint32_t val,
size_t chunk_length) {
WriteVariableWidthUnsigned(this, val, chunk_length);
}
void BitWriterInterface::WriteVariableWidthU16(uint16_t val,
size_t chunk_length) {
WriteVariableWidthUnsigned(this, val, chunk_length);
}
void BitWriterInterface::WriteVariableWidthU8(uint8_t val,
size_t chunk_length) {
WriteVariableWidthUnsigned(this, val, chunk_length);
}
void BitWriterInterface::WriteVariableWidthS64(int64_t val,
size_t chunk_length,
size_t zigzag_exponent) {
WriteVariableWidthSigned(this, val, chunk_length, zigzag_exponent);
}
void BitWriterInterface::WriteVariableWidthS32(int32_t val,
size_t chunk_length,
size_t zigzag_exponent) {
WriteVariableWidthSigned(this, val, chunk_length, zigzag_exponent);
}
void BitWriterInterface::WriteVariableWidthS16(int16_t val,
size_t chunk_length,
size_t zigzag_exponent) {
WriteVariableWidthSigned(this, val, chunk_length, zigzag_exponent);
}
void BitWriterInterface::WriteVariableWidthS8(int8_t val,
size_t chunk_length,
size_t zigzag_exponent) {
WriteVariableWidthSigned(this, val, chunk_length, zigzag_exponent);
}
BitWriterWord64::BitWriterWord64(size_t reserve_bits) : end_(0) {
buffer_.reserve(NumBitsToNumWords<64>(reserve_bits));
}
void BitWriterWord64::WriteBits(uint64_t bits, size_t num_bits) {
// Check that |bits| and |num_bits| are valid and consistent.
assert(num_bits <= 64);
const bool is_little_endian = IsLittleEndian();
assert(is_little_endian && "Big-endian architecture support not implemented");
if (!is_little_endian) return;
bits = GetLowerBits(bits, num_bits);
// Offset from the start of the current word.
const size_t offset = end_ % 64;
if (offset == 0) {
// If no offset, simply add |bits| as a new word to the buffer_.
buffer_.push_back(bits);
} else {
// Shift bits and add them to the current word after offset.
const uint64_t first_word = bits << offset;
buffer_.back() |= first_word;
// If we don't overflow to the next word, there is nothing more to do.
if (offset + num_bits > 64) {
// We overflow to the next word.
const uint64_t second_word = bits >> (64 - offset);
// Add remaining bits as a new word to buffer_.
buffer_.push_back(second_word);
}
}
// Move end_ into position for next write.
end_ += num_bits;
assert(buffer_.size() * 64 >= end_);
}
bool BitReaderInterface::ReadVariableWidthU64(uint64_t* val,
size_t chunk_length) {
return ReadVariableWidthUnsigned(this, val, chunk_length);
}
bool BitReaderInterface::ReadVariableWidthU32(uint32_t* val,
size_t chunk_length) {
return ReadVariableWidthUnsigned(this, val, chunk_length);
}
bool BitReaderInterface::ReadVariableWidthU16(uint16_t* val,
size_t chunk_length) {
return ReadVariableWidthUnsigned(this, val, chunk_length);
}
bool BitReaderInterface::ReadVariableWidthU8(uint8_t* val,
size_t chunk_length) {
return ReadVariableWidthUnsigned(this, val, chunk_length);
}
bool BitReaderInterface::ReadVariableWidthS64(int64_t* val,
size_t chunk_length,
size_t zigzag_exponent) {
return ReadVariableWidthSigned(this, val, chunk_length, zigzag_exponent);
}
bool BitReaderInterface::ReadVariableWidthS32(int32_t* val,
size_t chunk_length,
size_t zigzag_exponent) {
return ReadVariableWidthSigned(this, val, chunk_length, zigzag_exponent);
}
bool BitReaderInterface::ReadVariableWidthS16(int16_t* val,
size_t chunk_length,
size_t zigzag_exponent) {
return ReadVariableWidthSigned(this, val, chunk_length, zigzag_exponent);
}
bool BitReaderInterface::ReadVariableWidthS8(int8_t* val,
size_t chunk_length,
size_t zigzag_exponent) {
return ReadVariableWidthSigned(this, val, chunk_length, zigzag_exponent);
}
BitReaderWord64::BitReaderWord64(std::vector<uint64_t>&& buffer)
: buffer_(std::move(buffer)), pos_(0) {}
BitReaderWord64::BitReaderWord64(const std::vector<uint8_t>& buffer)
: buffer_(ToBuffer64(buffer)), pos_(0) {}
size_t BitReaderWord64::ReadBits(uint64_t* bits, size_t num_bits) {
assert(num_bits <= 64);
const bool is_little_endian = IsLittleEndian();
assert(is_little_endian && "Big-endian architecture support not implemented");
if (!is_little_endian) return 0;
if (ReachedEnd())
return 0;
// Index of the current word.
const size_t index = pos_ / 64;
// Bit position in the current word where we start reading.
const size_t offset = pos_ % 64;
// Read all bits from the current word (it might be too much, but
// excessive bits will be removed later).
*bits = buffer_[index] >> offset;
const size_t num_read_from_first_word = std::min(64 - offset, num_bits);
pos_ += num_read_from_first_word;
if (pos_ >= buffer_.size() * 64) {
// Reached end of buffer_.
return num_read_from_first_word;
}
if (offset + num_bits > 64) {
// Requested |num_bits| overflows to next word.
// Write all bits from the beginning of next word to *bits after offset.
*bits |= buffer_[index + 1] << (64 - offset);
pos_ += offset + num_bits - 64;
}
// We likely have written more bits than requested. Clear excessive bits.
*bits = GetLowerBits(*bits, num_bits);
return num_bits;
}
bool BitReaderWord64::ReachedEnd() const {
return pos_ >= buffer_.size() * 64;
}
bool BitReaderWord64::OnlyZeroesLeft() const {
if (ReachedEnd())
return true;
const size_t index = pos_ / 64;
if (index < buffer_.size() - 1)
return false;
assert(index == buffer_.size() - 1);
const size_t offset = pos_ % 64;
const uint64_t remaining_bits = buffer_[index] >> offset;
return !remaining_bits;
}
} // namespace spvutils

378
source/util/bit_stream.h Normal file
View File

@ -0,0 +1,378 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Contains utils for reading, writing and debug printing bit streams.
#ifndef LIBSPIRV_UTIL_BIT_STREAM_H_
#define LIBSPIRV_UTIL_BIT_STREAM_H_
#include <bitset>
#include <cstdint>
#include <string>
#include <sstream>
#include <vector>
namespace spvutils {
// Terminology:
// Bits - usually used for a uint64 word, first bit is the lowest.
// Stream - std::string of '0' and '1', read left-to-right,
// i.e. first bit is at the front and not at the end as in
// std::bitset::to_string().
// Bitset - std::bitset corresponding to uint64 bits and to reverse(stream).
// Converts number of bits to a respective number of chunks of size N.
// For example NumBitsToNumWords<8> returns how many bytes are needed to store
// |num_bits|.
template <size_t N>
inline size_t NumBitsToNumWords(size_t num_bits) {
return (num_bits + (N - 1)) / N;
}
// Returns value of the same type as |in|, where all but the first |num_bits|
// are set to zero.
template <typename T>
inline T GetLowerBits(T in, size_t num_bits) {
return sizeof(T) * 8 == num_bits ? in : in & T((T(1) << num_bits) - T(1));
}
// Encodes signed integer as unsigned in zigzag order:
// 0 -> 0
// -1 -> 1
// 1 -> 2
// -2 -> 3
// 2 -> 4
// Motivation: -1 is 0xFF...FF what doesn't work very well with
// WriteVariableWidth which prefers to have as many 0 bits as possible.
inline uint64_t EncodeZigZag(int64_t val) {
return (val << 1) ^ (val >> 63);
}
// Decodes signed integer encoded with EncodeZigZag.
inline int64_t DecodeZigZag(uint64_t val) {
if (val & 1) {
// Negative.
// 1 -> -1
// 3 -> -2
// 5 -> -3
return -1 - (val >> 1);
} else {
// Non-negative.
// 0 -> 0
// 2 -> 1
// 4 -> 2
return val >> 1;
}
}
// Encodes signed integer as unsigned. This is a generalized version of
// EncodeZigZag, designed to favor small positive numbers.
// Values are transformed in blocks of 2^|block_exponent|.
// If |block_exponent| is zero, then this degenerates into normal EncodeZigZag.
// Example when |block_exponent| is 1 (return value is the index):
// 0, 1, -1, -2, 2, 3, -3, -4, 4, 5, -5, -6, 6, 7, -7, -8
// Example when |block_exponent| is 2:
// 0, 1, 2, 3, -1, -2, -3, -4, 4, 5, 6, 7, -5, -6, -7, -8
inline uint64_t EncodeZigZag(int64_t val, size_t block_exponent) {
assert(block_exponent < 64);
const uint64_t uval = static_cast<uint64_t>(val >= 0 ? val : -val - 1);
const uint64_t block_num = ((uval >> block_exponent) << 1) + (val >= 0 ? 0 : 1);
const uint64_t pos = GetLowerBits(uval, block_exponent);
return (block_num << block_exponent) + pos;
}
// Decodes signed integer encoded with EncodeZigZag. |block_exponent| must be
// the same.
inline int64_t DecodeZigZag(uint64_t val, size_t block_exponent) {
assert(block_exponent < 64);
const uint64_t block_num = val >> block_exponent;
const uint64_t pos = GetLowerBits(val, block_exponent);
if (block_num & 1) {
// Negative.
return -1LL - ((block_num >> 1) << block_exponent) - pos;
} else {
// Positive.
return ((block_num >> 1) << block_exponent) + pos;
}
}
// Converts |buffer| to a stream of '0' and '1'.
template <typename T>
std::string BufferToStream(const std::vector<T>& buffer) {
std::stringstream ss;
for (auto it = buffer.begin(); it != buffer.end(); ++it) {
std::string str = std::bitset<sizeof(T) * 8>(*it).to_string();
// Strings generated by std::bitset::to_string are read right to left.
// Reversing to left to right.
std::reverse(str.begin(), str.end());
ss << str;
}
return ss.str();
}
// Converts a left-to-right input string of '0' and '1' to a buffer of |T|
// words.
template <typename T>
std::vector<T> StreamToBuffer(std::string str) {
// The input string is left-to-right, the input argument of std::bitset needs
// to right-to-left. Instead of reversing tokens, reverse the entire string
// and iterate tokens from end to begin.
std::reverse(str.begin(), str.end());
const int word_size = static_cast<int>(sizeof(T) * 8);
const int str_length = static_cast<int>(str.length());
std::vector<T> buffer;
buffer.reserve(NumBitsToNumWords<sizeof(T)>(str.length()));
for (int index = str_length - word_size; index >= 0; index -= word_size) {
buffer.push_back(static_cast<T>(std::bitset<sizeof(T) * 8>(
str, index, word_size).to_ullong()));
}
const size_t suffix_length = str.length() % word_size;
if (suffix_length != 0) {
buffer.push_back(static_cast<T>(std::bitset<sizeof(T) * 8>(
str, 0, suffix_length).to_ullong()));
}
return buffer;
}
// Adds '0' chars at the end of the string until the size is a multiple of N.
template <size_t N>
inline std::string PadToWord(std::string&& str) {
const size_t tail_length = str.size() % N;
if (tail_length != 0)
str += std::string(N - tail_length, '0');
return str;
}
// Adds '0' chars at the end of the string until the size is a multiple of N.
template <size_t N>
inline std::string PadToWord(const std::string& str) {
return PadToWord<N>(std::string(str));
}
// Converts a left-to-right stream of bits to std::bitset.
template <size_t N>
inline std::bitset<N> StreamToBitset(std::string str) {
std::reverse(str.begin(), str.end());
return std::bitset<N>(str);
}
// Converts first |num_bits| of std::bitset to a left-to-right stream of bits.
template <size_t N>
inline std::string BitsetToStream(const std::bitset<N>& bits, size_t num_bits = N) {
std::string str = bits.to_string().substr(N - num_bits);
std::reverse(str.begin(), str.end());
return str;
}
// Converts a left-to-right stream of bits to uint64.
inline uint64_t StreamToBits(std::string str) {
std::reverse(str.begin(), str.end());
return std::bitset<64>(str).to_ullong();
}
// Converts first |num_bits| stored in uint64 to a left-to-right stream of bits.
inline std::string BitsToStream(uint64_t bits, size_t num_bits = 64) {
std::bitset<64> bitset(bits);
return BitsetToStream(bitset, num_bits);
}
// Base class for writing sequences of bits.
class BitWriterInterface {
public:
BitWriterInterface() {}
virtual ~BitWriterInterface() {}
// Writes lower |num_bits| in |bits| to the stream.
// |num_bits| must be no greater than 64.
virtual void WriteBits(uint64_t bits, size_t num_bits) = 0;
// Writes left-to-right string of '0' and '1' to stream.
// String length must be no greater than 64.
// Note: "01" will be writen as 0x2, not 0x1. The string doesn't represent
// numbers but a stream of bits in the order they come from encoder.
virtual void WriteStream(const std::string& bits) {
WriteBits(StreamToBits(bits), bits.length());
}
// Writes lower |num_bits| in |bits| to the stream.
// |num_bits| must be no greater than 64.
template <size_t N>
void WriteBitset(const std::bitset<N>& bits, size_t num_bits = N) {
WriteBits(bits.to_ullong(), num_bits);
}
// Writes |val| in chunks of size |chunk_length| followed by a signal bit:
// 0 - no more chunks to follow
// 1 - more chunks to follow
// for example 255 is encoded into 1111 1 1111 0 for chunk length 4.
// The last chunk can be truncated and signal bit omitted, if the entire
// payload (for example 16 bit for uint16_t has already been written).
void WriteVariableWidthU64(uint64_t val, size_t chunk_length);
void WriteVariableWidthU32(uint32_t val, size_t chunk_length);
void WriteVariableWidthU16(uint16_t val, size_t chunk_length);
void WriteVariableWidthU8(uint8_t val, size_t chunk_length);
void WriteVariableWidthS64(
int64_t val, size_t chunk_length, size_t zigzag_exponent);
void WriteVariableWidthS32(
int32_t val, size_t chunk_length, size_t zigzag_exponent);
void WriteVariableWidthS16(
int16_t val, size_t chunk_length, size_t zigzag_exponent);
void WriteVariableWidthS8(
int8_t val, size_t chunk_length, size_t zigzag_exponent);
// Returns number of bits written.
virtual size_t GetNumBits() const = 0;
// Provides direct access to the buffer data if implemented.
virtual const uint8_t* GetData() const {
return nullptr;
}
// Returns buffer size in bytes.
size_t GetDataSizeBytes() const {
return NumBitsToNumWords<8>(GetNumBits());
}
// Generates and returns byte array containing written bits.
virtual std::vector<uint8_t> GetDataCopy() const = 0;
BitWriterInterface(const BitWriterInterface&) = delete;
BitWriterInterface& operator=(const BitWriterInterface&) = delete;
};
// This class is an implementation of BitWriterInterface, using
// std::vector<uint64_t> to store written bits.
class BitWriterWord64 : public BitWriterInterface {
public:
explicit BitWriterWord64(size_t reserve_bits = 64);
void WriteBits(uint64_t bits, size_t num_bits) override;
size_t GetNumBits() const override {
return end_;
}
const uint8_t* GetData() const override {
return reinterpret_cast<const uint8_t*>(buffer_.data());
}
std::vector<uint8_t> GetDataCopy() const override {
return std::vector<uint8_t>(GetData(), GetData() + GetDataSizeBytes());
}
// Returns written stream as std::string, padded with zeroes so that the
// length is a multiple of 64.
std::string GetStreamPadded64() const {
return BufferToStream(buffer_);
}
private:
std::vector<uint64_t> buffer_;
// Total number of bits written so far. Named 'end' as analogy to std::end().
size_t end_;
};
// Base class for reading sequences of bits.
class BitReaderInterface {
public:
BitReaderInterface() {}
virtual ~BitReaderInterface() {}
// Reads |num_bits| from the stream, stores them in |bits|.
// Returns number of read bits. |num_bits| must be no greater than 64.
virtual size_t ReadBits(uint64_t* bits, size_t num_bits) = 0;
// Reads |num_bits| from the stream, stores them in |bits|.
// Returns number of read bits. |num_bits| must be no greater than 64.
template <size_t N>
size_t ReadBitset(std::bitset<N>* bits, size_t num_bits = N) {
uint64_t val = 0;
size_t num_read = ReadBits(&val, num_bits);
if (num_read) {
*bits = std::bitset<N>(val);
}
return num_read;
}
// Reads |num_bits| from the stream, returns string in left-to-right order.
// The length of the returned string may be less than |num_bits| if end was
// reached.
std::string ReadStream(size_t num_bits) {
uint64_t bits = 0;
size_t num_read = ReadBits(&bits, num_bits);
return BitsToStream(bits, num_read);
}
// These two functions define 'hard' and 'soft' EOF.
//
// Returns true if the end of the buffer was reached.
virtual bool ReachedEnd() const = 0;
// Returns true if we reached the end of the buffer or are nearing it and only
// zero bits are left to read. Implementations of this function are allowed to
// commit a "false negative" error if the end of the buffer was not reached,
// i.e. it can return false even if indeed only zeroes are left.
// It is assumed that the consumer expects that
// the buffer stream ends with padding zeroes, and would accept this as a
// 'soft' EOF. Implementations of this class do not necessarily need to
// implement this, default behavior can simply delegate to ReachedEnd().
virtual bool OnlyZeroesLeft() const {
return ReachedEnd();
}
// Reads value encoded with WriteVariableWidthXXX (see BitWriterInterface).
// Reader and writer must use the same |chunk_length| and variable type.
// Returns true on success, false if the bit stream ends prematurely.
bool ReadVariableWidthU64(uint64_t* val, size_t chunk_length);
bool ReadVariableWidthU32(uint32_t* val, size_t chunk_length);
bool ReadVariableWidthU16(uint16_t* val, size_t chunk_length);
bool ReadVariableWidthU8(uint8_t* val, size_t chunk_length);
bool ReadVariableWidthS64(
int64_t* val, size_t chunk_length, size_t zigzag_exponent);
bool ReadVariableWidthS32(
int32_t* val, size_t chunk_length, size_t zigzag_exponent);
bool ReadVariableWidthS16(
int16_t* val, size_t chunk_length, size_t zigzag_exponent);
bool ReadVariableWidthS8(
int8_t* val, size_t chunk_length, size_t zigzag_exponent);
BitReaderInterface(const BitReaderInterface&) = delete;
BitReaderInterface& operator=(const BitReaderInterface&) = delete;
};
// This class is an implementation of BitReaderInterface which accepts both
// uint8_t and uint64_t buffers as input. uint64_t buffers are consumed and
// owned. uint8_t buffers are copied.
class BitReaderWord64 : public BitReaderInterface {
public:
// Consumes and owns the buffer.
explicit BitReaderWord64(std::vector<uint64_t>&& buffer);
// Copies the buffer and casts it to uint64.
// Consuming the original buffer and casting it to uint64 is difficult,
// as it would potentially cause data misalignment and poor performance.
explicit BitReaderWord64(const std::vector<uint8_t>& buffer);
size_t ReadBits(uint64_t* bits, size_t num_bits) override;
bool ReachedEnd() const override;
bool OnlyZeroesLeft() const override;
BitReaderWord64() = delete;
private:
const std::vector<uint64_t> buffer_;
size_t pos_;
};
} // namespace spvutils
#endif // LIBSPIRV_UTIL_BIT_STREAM_H_

View File

@ -164,6 +164,11 @@ add_spvtools_unittest(
SRCS preserve_numeric_ids_test.cpp
LIBS ${SPIRV_TOOLS})
add_spvtools_unittest(
TARGET bit_stream
SRCS bit_stream.cpp
LIBS ${SPIRV_TOOLS})
add_subdirectory(opt)
add_subdirectory(val)
add_subdirectory(stats)

1138
test/bit_stream.cpp Normal file

File diff suppressed because it is too large Load Diff