Add bitwise operations validator pass

The pass checks correctness of operand types of all bitwise instructions
(opcode range from SpvOpShiftRightLogical to SpvOpBitCount).
This commit is contained in:
Andrey Tuganov 2017-09-18 16:49:11 -04:00 committed by David Neto
parent dcf42433a6
commit 64d5e5214f
7 changed files with 779 additions and 1 deletions

View File

@ -6,6 +6,7 @@ v2017.1-dev 2017-09-01
- Validator:
- Type check basic arithmetic operations
- Type check Relational and Logical instructions
- Type check Bit instructions
- OpModuleProcessed is only allowed after debug names section and before annotations
section.
- Recognize extensions listed on SPIR-V registry,

View File

@ -253,6 +253,7 @@ set(SPIRV_SOURCES
${CMAKE_CURRENT_SOURCE_DIR}/text_handler.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_arithmetics.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_bitwise.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_cfg.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_capability.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_datarules.cpp

View File

@ -182,6 +182,7 @@ spv_result_t ProcessInstruction(void* user_data,
if (auto error = TypeUniquePass(_, inst)) return error;
if (auto error = ArithmeticsPass(_, inst)) return error;
if (auto error = LogicalsPass(_, inst)) return error;
if (auto error = BitwisePass(_, inst)) return error;
return SPV_SUCCESS;
}

View File

@ -119,6 +119,10 @@ spv_result_t ArithmeticsPass(ValidationState_t& _,
spv_result_t LogicalsPass(ValidationState_t& _,
const spv_parsed_instruction_t* inst);
/// Validates correctness of bitwise instructions.
spv_result_t BitwisePass(ValidationState_t& _,
const spv_parsed_instruction_t* inst);
// Validates that capability declarations use operands allowed in the current
// context.
spv_result_t CapabilityPass(ValidationState_t& _,

254
source/validate_bitwise.cpp Normal file
View File

@ -0,0 +1,254 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Validates correctness of bitwise instructions.
#include "validate.h"
#include "diagnostic.h"
#include "opcode.h"
#include "val/instruction.h"
#include "val/validation_state.h"
namespace libspirv {
namespace {
// Returns operand word for given instruction and operand index.
// The operand is expected to only have one word.
inline uint32_t GetOperandWord(const spv_parsed_instruction_t* inst,
size_t operand_index) {
assert(operand_index < inst->num_operands);
const spv_parsed_operand_t& operand = inst->operands[operand_index];
assert(operand.num_words == 1);
return inst->words[operand.offset];
}
// Returns the type id of instruction operand at |operand_index|.
// The operand is expected to be an id.
inline uint32_t GetOperandTypeId(ValidationState_t& _,
const spv_parsed_instruction_t* inst,
size_t operand_index) {
return _.GetTypeId(GetOperandWord(inst, operand_index));
}
}
// Validates correctness of bitwise instructions.
spv_result_t BitwisePass(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
const SpvOp opcode = static_cast<SpvOp>(inst->opcode);
const uint32_t result_type = inst->type_id;
switch (opcode) {
case SpvOpShiftRightLogical:
case SpvOpShiftRightArithmetic:
case SpvOpShiftLeftLogical: {
if (!_.IsIntScalarType(result_type) &&
!_.IsIntVectorType(result_type))
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected int scalar or vector type as Result Type: "
<< spvOpcodeString(opcode);
const uint32_t result_dimension = _.GetDimension(result_type);
const uint32_t base_type = GetOperandTypeId(_, inst, 2);
const uint32_t shift_type = GetOperandTypeId(_, inst, 3);
if (!base_type ||
(!_.IsIntScalarType(base_type) && !_.IsIntVectorType(base_type)))
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected Base to be int scalar or vector: "
<< spvOpcodeString(opcode);
if (_.GetDimension(base_type) != result_dimension)
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected Base to have the same dimension "
<< "as Result Type: "
<< spvOpcodeString(opcode);
if (_.GetBitWidth(base_type) != _.GetBitWidth(result_type))
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected Base to have the same bit width "
<< "as Result Type: "
<< spvOpcodeString(opcode);
if (!shift_type ||
(!_.IsIntScalarType(shift_type) && !_.IsIntVectorType(shift_type)))
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected Shift to be int scalar or vector: "
<< spvOpcodeString(opcode);
if (_.GetDimension(shift_type) != result_dimension)
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected Shift to have the same dimension "
<< "as Result Type: "
<< spvOpcodeString(opcode);
break;
}
case SpvOpBitwiseOr:
case SpvOpBitwiseXor:
case SpvOpBitwiseAnd:
case SpvOpNot: {
if (!_.IsIntScalarType(result_type) &&
!_.IsIntVectorType(result_type))
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected int scalar or vector type as Result Type: "
<< spvOpcodeString(opcode);
const uint32_t result_dimension = _.GetDimension(result_type);
const uint32_t result_bit_width = _.GetBitWidth(result_type);
for (size_t operand_index = 2; operand_index < inst->num_operands;
++operand_index) {
const uint32_t type_id = GetOperandTypeId(_, inst, operand_index);
if (!type_id ||
(!_.IsIntScalarType(type_id) && !_.IsIntVectorType(type_id)))
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected int scalar or vector as operand: "
<< spvOpcodeString(opcode) << " operand index " << operand_index;
if (_.GetDimension(type_id) != result_dimension)
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected operands to have the same dimension "
<< "as Result Type: "
<< spvOpcodeString(opcode) << " operand index " << operand_index;
if (_.GetBitWidth(type_id) != result_bit_width)
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected operands to have the same bit width "
<< "as Result Type: "
<< spvOpcodeString(opcode) << " operand index " << operand_index;
}
break;
}
case SpvOpBitFieldInsert: {
if (!_.IsIntScalarType(result_type) &&
!_.IsIntVectorType(result_type))
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected int scalar or vector type as Result Type: "
<< spvOpcodeString(opcode);
const uint32_t base_type = GetOperandTypeId(_, inst, 2);
const uint32_t insert_type = GetOperandTypeId(_, inst, 3);
const uint32_t offset_type = GetOperandTypeId(_, inst, 4);
const uint32_t count_type = GetOperandTypeId(_, inst, 5);
if (base_type != result_type)
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected Base Type to be equal to Result Type: "
<< spvOpcodeString(opcode);
if (insert_type != result_type)
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected Insert Type to be equal to Result Type: "
<< spvOpcodeString(opcode);
if (!offset_type || !_.IsIntScalarType(offset_type))
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected Offset Type to be int scalar: "
<< spvOpcodeString(opcode);
if (!count_type || !_.IsIntScalarType(count_type))
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected Count Type to be int scalar: "
<< spvOpcodeString(opcode);
break;
}
case SpvOpBitFieldSExtract:
case SpvOpBitFieldUExtract: {
if (!_.IsIntScalarType(result_type) &&
!_.IsIntVectorType(result_type))
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected int scalar or vector type as Result Type: "
<< spvOpcodeString(opcode);
const uint32_t base_type = GetOperandTypeId(_, inst, 2);
const uint32_t offset_type = GetOperandTypeId(_, inst, 3);
const uint32_t count_type = GetOperandTypeId(_, inst, 4);
if (base_type != result_type)
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected Base Type to be equal to Result Type: "
<< spvOpcodeString(opcode);
if (!offset_type || !_.IsIntScalarType(offset_type))
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected Offset Type to be int scalar: "
<< spvOpcodeString(opcode);
if (!count_type || !_.IsIntScalarType(count_type))
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected Count Type to be int scalar: "
<< spvOpcodeString(opcode);
break;
}
case SpvOpBitReverse: {
if (!_.IsIntScalarType(result_type) &&
!_.IsIntVectorType(result_type))
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected int scalar or vector type as Result Type: "
<< spvOpcodeString(opcode);
const uint32_t base_type = GetOperandTypeId(_, inst, 2);
if (base_type != result_type)
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected Base Type to be equal to Result Type: "
<< spvOpcodeString(opcode);
break;
}
case SpvOpBitCount: {
if (!_.IsIntScalarType(result_type) &&
!_.IsIntVectorType(result_type))
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected int scalar or vector type as Result Type: "
<< spvOpcodeString(opcode);
const uint32_t base_type = GetOperandTypeId(_, inst, 2);
if (!base_type ||
(!_.IsIntScalarType(base_type) && !_.IsIntVectorType(base_type)))
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected Base Type to be int scalar or vector: "
<< spvOpcodeString(opcode);
const uint32_t base_dimension = _.GetDimension(base_type);
const uint32_t result_dimension = _.GetDimension(result_type);
if (base_dimension != result_dimension)
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Expected Base dimension to be equal to Result Type dimension: "
<< spvOpcodeString(opcode);
//TODO(dneto): Add a check for:
// "The components must be wide enough to hold the unsigned Width of Base
// as an unsigned value. That is, no sign bit is needed or counted when
// checking for a wide enough result width."
break;
}
default:
break;
}
return SPV_SUCCESS;
}
} // namespace libspirv

View File

@ -15,7 +15,6 @@
set(VAL_TEST_COMMON_SRCS
${CMAKE_CURRENT_SOURCE_DIR}/../test_fixture.h
${CMAKE_CURRENT_SOURCE_DIR}/../unit_spirv.h
${CMAKE_CURRENT_SOURCE_DIR}/../unit_spirv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/val_fixtures.h
${CMAKE_CURRENT_SOURCE_DIR}/val_fixtures.cpp
)
@ -87,6 +86,12 @@ add_spvtools_unittest(TARGET val_logicals
LIBS ${SPIRV_TOOLS}
)
add_spvtools_unittest(TARGET val_bitwise
SRCS val_bitwise_test.cpp
${VAL_TEST_COMMON_SRCS}
LIBS ${SPIRV_TOOLS}
)
add_spvtools_unittest(TARGET val_limits
SRCS val_limits_test.cpp
${VAL_TEST_COMMON_SRCS}

View File

@ -0,0 +1,512 @@
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Tests for unique type declaration rules validator.
#include <string>
#include "gmock/gmock.h"
#include "unit_spirv.h"
#include "val_fixtures.h"
namespace {
using ::testing::HasSubstr;
using ::testing::Not;
using ValidateBitwise = spvtest::ValidateBase<bool>;
std::string GenerateShaderCode(
const std::string& body,
const std::string& capabilities_and_extensions = "") {
const std::string capabilities =
R"(
OpCapability Shader
OpCapability Int64
OpCapability Float64)";
const std::string after_extension_before_body =
R"(
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
%void = OpTypeVoid
%func = OpTypeFunction %void
%bool = OpTypeBool
%f32 = OpTypeFloat 32
%u32 = OpTypeInt 32 0
%s32 = OpTypeInt 32 1
%f64 = OpTypeFloat 64
%u64 = OpTypeInt 64 0
%s64 = OpTypeInt 64 1
%boolvec2 = OpTypeVector %bool 2
%s32vec2 = OpTypeVector %s32 2
%u32vec2 = OpTypeVector %u32 2
%u64vec2 = OpTypeVector %u64 2
%f32vec2 = OpTypeVector %f32 2
%f64vec2 = OpTypeVector %f64 2
%boolvec3 = OpTypeVector %bool 3
%u32vec3 = OpTypeVector %u32 3
%u64vec3 = OpTypeVector %u64 3
%s32vec3 = OpTypeVector %s32 3
%f32vec3 = OpTypeVector %f32 3
%f64vec3 = OpTypeVector %f64 3
%boolvec4 = OpTypeVector %bool 4
%u32vec4 = OpTypeVector %u32 4
%u64vec4 = OpTypeVector %u64 4
%s32vec4 = OpTypeVector %s32 4
%f32vec4 = OpTypeVector %f32 4
%f64vec4 = OpTypeVector %f64 4
%f32_0 = OpConstant %f32 0
%f32_1 = OpConstant %f32 1
%f32_2 = OpConstant %f32 2
%f32_3 = OpConstant %f32 3
%f32_4 = OpConstant %f32 4
%s32_0 = OpConstant %s32 0
%s32_1 = OpConstant %s32 1
%s32_2 = OpConstant %s32 2
%s32_3 = OpConstant %s32 3
%s32_4 = OpConstant %s32 4
%s32_m1 = OpConstant %s32 -1
%u32_0 = OpConstant %u32 0
%u32_1 = OpConstant %u32 1
%u32_2 = OpConstant %u32 2
%u32_3 = OpConstant %u32 3
%u32_4 = OpConstant %u32 4
%f64_0 = OpConstant %f64 0
%f64_1 = OpConstant %f64 1
%f64_2 = OpConstant %f64 2
%f64_3 = OpConstant %f64 3
%f64_4 = OpConstant %f64 4
%s64_0 = OpConstant %s64 0
%s64_1 = OpConstant %s64 1
%s64_2 = OpConstant %s64 2
%s64_3 = OpConstant %s64 3
%s64_4 = OpConstant %s64 4
%s64_m1 = OpConstant %s64 -1
%u64_0 = OpConstant %u64 0
%u64_1 = OpConstant %u64 1
%u64_2 = OpConstant %u64 2
%u64_3 = OpConstant %u64 3
%u64_4 = OpConstant %u64 4
%u32vec2_01 = OpConstantComposite %u32vec2 %u32_0 %u32_1
%u32vec2_12 = OpConstantComposite %u32vec2 %u32_1 %u32_2
%u32vec3_012 = OpConstantComposite %u32vec3 %u32_0 %u32_1 %u32_2
%u32vec3_123 = OpConstantComposite %u32vec3 %u32_1 %u32_2 %u32_3
%u32vec4_0123 = OpConstantComposite %u32vec4 %u32_0 %u32_1 %u32_2 %u32_3
%u32vec4_1234 = OpConstantComposite %u32vec4 %u32_1 %u32_2 %u32_3 %u32_4
%s32vec2_01 = OpConstantComposite %s32vec2 %s32_0 %s32_1
%s32vec2_12 = OpConstantComposite %s32vec2 %s32_1 %s32_2
%s32vec3_012 = OpConstantComposite %s32vec3 %s32_0 %s32_1 %s32_2
%s32vec3_123 = OpConstantComposite %s32vec3 %s32_1 %s32_2 %s32_3
%s32vec4_0123 = OpConstantComposite %s32vec4 %s32_0 %s32_1 %s32_2 %s32_3
%s32vec4_1234 = OpConstantComposite %s32vec4 %s32_1 %s32_2 %s32_3 %s32_4
%f32vec2_01 = OpConstantComposite %f32vec2 %f32_0 %f32_1
%f32vec2_12 = OpConstantComposite %f32vec2 %f32_1 %f32_2
%f32vec3_012 = OpConstantComposite %f32vec3 %f32_0 %f32_1 %f32_2
%f32vec3_123 = OpConstantComposite %f32vec3 %f32_1 %f32_2 %f32_3
%f32vec4_0123 = OpConstantComposite %f32vec4 %f32_0 %f32_1 %f32_2 %f32_3
%f32vec4_1234 = OpConstantComposite %f32vec4 %f32_1 %f32_2 %f32_3 %f32_4
%main = OpFunction %void None %func
%main_entry = OpLabel)";
const std::string after_body =
R"(
OpReturn
OpFunctionEnd)";
return capabilities + capabilities_and_extensions +
after_extension_before_body + body + after_body;
}
TEST_F(ValidateBitwise, ShiftAllSuccess) {
const std::string body = R"(
%val1 = OpShiftRightLogical %u64 %u64_1 %s32_2
%val2 = OpShiftRightArithmetic %s32vec2 %s32vec2_12 %s32vec2_12
%val3 = OpShiftLeftLogical %u32vec2 %s32vec2_12 %u32vec2_12
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateBitwise, OpShiftRightLogicalWrongResultType) {
const std::string body = R"(
%val1 = OpShiftRightLogical %bool %u64_1 %s32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected int scalar or vector type as Result Type: ShiftRightLogical"));
}
TEST_F(ValidateBitwise, OpShiftRightLogicalBaseNotInt) {
const std::string body = R"(
%val1 = OpShiftRightLogical %u32 %f32_1 %s32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected Base to be int scalar or vector: ShiftRightLogical"));
}
TEST_F(ValidateBitwise, OpShiftRightLogicalBaseWrongDimension) {
const std::string body = R"(
%val1 = OpShiftRightLogical %u32 %u32vec2_12 %s32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected Base to have the same dimension as Result Type: "
"ShiftRightLogical"));
}
TEST_F(ValidateBitwise, OpShiftRightLogicalBaseWrongBitWidth) {
const std::string body = R"(
%val1 = OpShiftRightLogical %u64 %u32_1 %s32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected Base to have the same bit width as Result Type: "
"ShiftRightLogical"));
}
TEST_F(ValidateBitwise, OpShiftRightLogicalShiftNotInt) {
const std::string body = R"(
%val1 = OpShiftRightLogical %u32 %u32_1 %f32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected Shift to be int scalar or vector: ShiftRightLogical"));
}
TEST_F(ValidateBitwise, OpShiftRightLogicalShiftWrongDimension) {
const std::string body = R"(
%val1 = OpShiftRightLogical %u32 %u32_1 %s32vec2_12
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected Shift to have the same dimension as Result Type: "
"ShiftRightLogical"));
}
TEST_F(ValidateBitwise, LogicAllSuccess) {
const std::string body = R"(
%val1 = OpBitwiseOr %u64 %u64_1 %s64_0
%val2 = OpBitwiseAnd %s64 %s64_1 %u64_0
%val3 = OpBitwiseXor %s32vec2 %s32vec2_12 %u32vec2_01
%val4 = OpNot %s32vec2 %u32vec2_01
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateBitwise, OpBitwiseAndWrongResultType) {
const std::string body = R"(
%val1 = OpBitwiseAnd %bool %u64_1 %s32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected int scalar or vector type as Result Type: BitwiseAnd"));
}
TEST_F(ValidateBitwise, OpBitwiseAndLeftNotInt) {
const std::string body = R"(
%val1 = OpBitwiseAnd %u32 %f32_1 %s32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected int scalar or vector as operand: BitwiseAnd "
"operand index 2"));
}
TEST_F(ValidateBitwise, OpBitwiseAndRightNotInt) {
const std::string body = R"(
%val1 = OpBitwiseAnd %u32 %u32_1 %f32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected int scalar or vector as operand: BitwiseAnd "
"operand index 3"));
}
TEST_F(ValidateBitwise, OpBitwiseAndLeftWrongDimension) {
const std::string body = R"(
%val1 = OpBitwiseAnd %u32 %u32vec2_12 %s32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected operands to have the same dimension as Result Type: "
"BitwiseAnd operand index 2"));
}
TEST_F(ValidateBitwise, OpBitwiseAndRightWrongDimension) {
const std::string body = R"(
%val1 = OpBitwiseAnd %u32 %s32_2 %u32vec2_12
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected operands to have the same dimension as Result Type: "
"BitwiseAnd operand index 3"));
}
TEST_F(ValidateBitwise, OpBitwiseAndLeftWrongBitWidth) {
const std::string body = R"(
%val1 = OpBitwiseAnd %u64 %u32_1 %s64_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected operands to have the same bit width as Result Type: "
"BitwiseAnd operand index 2"));
}
TEST_F(ValidateBitwise, OpBitwiseAndRightWrongBitWidth) {
const std::string body = R"(
%val1 = OpBitwiseAnd %u64 %u64_1 %s32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected operands to have the same bit width as Result Type: "
"BitwiseAnd operand index 3"));
}
TEST_F(ValidateBitwise, OpBitFieldInsertSuccess) {
const std::string body = R"(
%val1 = OpBitFieldInsert %u64 %u64_1 %u64_2 %s32_1 %s32_2
%val2 = OpBitFieldInsert %s32vec2 %s32vec2_12 %s32vec2_12 %s32_1 %u32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateBitwise, OpBitFieldInsertWrongResultType) {
const std::string body = R"(
%val1 = OpBitFieldInsert %bool %u64_1 %u64_2 %s32_1 %s32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected int scalar or vector type as Result Type: BitFieldInsert"));
}
TEST_F(ValidateBitwise, OpBitFieldInsertWrongBaseType) {
const std::string body = R"(
%val1 = OpBitFieldInsert %u64 %s64_1 %u64_2 %s32_1 %s32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected Base Type to be equal to Result Type: BitFieldInsert"));
}
TEST_F(ValidateBitwise, OpBitFieldInsertWrongInsertType) {
const std::string body = R"(
%val1 = OpBitFieldInsert %u64 %u64_1 %s64_2 %s32_1 %s32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected Insert Type to be equal to Result Type: BitFieldInsert"));
}
TEST_F(ValidateBitwise, OpBitFieldInsertOffsetNotInt) {
const std::string body = R"(
%val1 = OpBitFieldInsert %u64 %u64_1 %u64_2 %f32_1 %s32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected Offset Type to be int scalar: BitFieldInsert"));
}
TEST_F(ValidateBitwise, OpBitFieldInsertCountNotInt) {
const std::string body = R"(
%val1 = OpBitFieldInsert %u64 %u64_1 %u64_2 %u32_1 %f32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected Count Type to be int scalar: BitFieldInsert"));
}
TEST_F(ValidateBitwise, OpBitFieldSExtractSuccess) {
const std::string body = R"(
%val1 = OpBitFieldSExtract %u64 %u64_1 %s32_1 %s32_2
%val2 = OpBitFieldSExtract %s32vec2 %s32vec2_12 %s32_1 %u32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateBitwise, OpBitFieldSExtractWrongResultType) {
const std::string body = R"(
%val1 = OpBitFieldSExtract %bool %u64_1 %s32_1 %s32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected int scalar or vector type as Result Type: BitFieldSExtract"));
}
TEST_F(ValidateBitwise, OpBitFieldSExtractWrongBaseType) {
const std::string body = R"(
%val1 = OpBitFieldSExtract %u64 %s64_1 %s32_1 %s32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected Base Type to be equal to Result Type: BitFieldSExtract"));
}
TEST_F(ValidateBitwise, OpBitFieldSExtractOffsetNotInt) {
const std::string body = R"(
%val1 = OpBitFieldSExtract %u64 %u64_1 %f32_1 %s32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected Offset Type to be int scalar: BitFieldSExtract"));
}
TEST_F(ValidateBitwise, OpBitFieldSExtractCountNotInt) {
const std::string body = R"(
%val1 = OpBitFieldSExtract %u64 %u64_1 %u32_1 %f32_2
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected Count Type to be int scalar: BitFieldSExtract"));
}
TEST_F(ValidateBitwise, OpBitReverseSuccess) {
const std::string body = R"(
%val1 = OpBitReverse %u64 %u64_1
%val2 = OpBitReverse %s32vec2 %s32vec2_12
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateBitwise, OpBitReverseWrongResultType) {
const std::string body = R"(
%val1 = OpBitReverse %bool %u64_1
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected int scalar or vector type as Result Type: BitReverse"));
}
TEST_F(ValidateBitwise, OpBitReverseWrongBaseType) {
const std::string body = R"(
%val1 = OpBitReverse %u64 %s64_1
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected Base Type to be equal to Result Type: BitReverse"));
}
TEST_F(ValidateBitwise, OpBitCountSuccess) {
const std::string body = R"(
%val1 = OpBitCount %s32 %u64_1
%val2 = OpBitCount %u32vec2 %s32vec2_12
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateBitwise, OpBitCountWrongResultType) {
const std::string body = R"(
%val1 = OpBitCount %bool %u64_1
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected int scalar or vector type as Result Type: BitCount"));
}
TEST_F(ValidateBitwise, OpBitCountBaseNotInt) {
const std::string body = R"(
%val1 = OpBitCount %u32 %f64_1
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected Base Type to be int scalar or vector: BitCount"));
}
TEST_F(ValidateBitwise, OpBitCountBaseWrongDimension) {
const std::string body = R"(
%val1 = OpBitCount %u32 %u32vec2_12
)";
CompileSuccessfully(GenerateShaderCode(body).c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(
"Expected Base dimension to be equal to Result Type dimension: "
"BitCount"));
}
} // anonymous namespace