Made compilation with gcc and clang more strict.

Added additional compilation flags to gcc and clang builds.
Adds -Wall -Wextra -Wno-long-long -Wshadow -Wundef -Wconversion
-WNo-sign-conversion and -Wno-missing-field-initializers
where appropriate.

Does not add -Wundef to tests, because GTEST tests undefined
macros all over the place.
This commit is contained in:
Andrew Woloszyn 2016-01-11 10:54:20 -05:00
parent 43401d2ed0
commit 7a35473573
11 changed files with 139 additions and 112 deletions

View File

@ -81,6 +81,9 @@ function(default_compile_options TARGET)
if (UNIX)
target_compile_options(${TARGET} PRIVATE
-std=c++11 -fno-exceptions -fno-rtti)
target_compile_options(${TARGET} PRIVATE
-Wall -Wextra -Wno-long-long -Wshadow -Wundef -Wconversion
-Wno-sign-conversion)
# For good call stacks in profiles, keep the frame pointers.
if(NOT "${SPIRV_PERF}" STREQUAL "")
target_compile_options(${TARGET} PRIVATE -fno-omit-frame-pointer)
@ -92,6 +95,9 @@ function(default_compile_options TARGET)
target_compile_options(${TARGET} PRIVATE
-fsanitize=${SPIRV_USE_SANITIZER})
endif()
else()
target_compile_options(${TARGET} PRIVATE
-Wno-missing-field-initializers)
endif()
endif()
endfunction()
@ -231,6 +237,10 @@ if (NOT ${SPIRV_SKIP_EXECUTABLES})
add_executable(UnitSPIRV ${TEST_SOURCES})
default_compile_options(UnitSPIRV)
if(UNIX)
target_compile_options(UnitSPIRV PRIVATE
-Wno-undef)
endif()
target_include_directories(UnitSPIRV PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}
${gmock_SOURCE_DIR}/include ${gtest_SOURCE_DIR}/include)

View File

@ -102,7 +102,8 @@ class FloatProxy {
// This is helpful to have and is guaranteed not to stomp bits.
FloatProxy<T> operator-() const {
return data_ ^ (uint_type(0x1) << (sizeof(T) * 8 - 1));
return static_cast<uint_type>(data_ ^
(uint_type(0x1) << (sizeof(T) * 8 - 1)));
}
// Returns the data as a floating point value.
@ -287,19 +288,21 @@ class HexFloat {
// Returns the bits associated with the value, without the leading sign bit.
uint_type getUnsignedBits() const {
return spvutils::BitwiseCast<uint_type>(value_) & ~sign_mask;
return static_cast<uint_type>(spvutils::BitwiseCast<uint_type>(value_) &
~sign_mask);
}
// Returns the bits associated with the exponent, shifted to start at the
// lsb of the type.
const uint_type getExponentBits() const {
return (getBits() & exponent_mask) >> num_fraction_bits;
return static_cast<uint_type>((getBits() & exponent_mask) >>
num_fraction_bits);
}
// Returns the exponent in unbiased form. This is the exponent in the
// human-friendly form.
const int_type getUnbiasedExponent() const {
return (static_cast<int_type>(getExponentBits()) - exponent_bias);
return static_cast<int_type>(getExponentBits() - exponent_bias);
}
// Returns just the significand bits from the value.
@ -317,8 +320,8 @@ class HexFloat {
if (exp == min_exponent) { // We are in denorm land.
uint_type significand_bits = getSignificandBits();
while ((significand_bits & (first_exponent_bit >> 1)) == 0) {
significand_bits <<= 1;
exp -= 1;
significand_bits = static_cast<uint_type>(significand_bits << 1);
exp = static_cast<int_type>(exp - 1);
}
significand_bits &= fraction_encode_mask;
}
@ -330,7 +333,7 @@ class HexFloat {
int_type unbiased_exponent = getUnbiasedNormalizedExponent();
uint_type significand = getSignificandBits();
for (int_type i = unbiased_exponent; i <= min_exponent; ++i) {
significand <<= 1;
significand = static_cast<uint_type>(significand << 1);
}
significand &= fraction_encode_mask;
return significand;
@ -361,31 +364,32 @@ class HexFloat {
// the significand is not zero.
significand_is_zero = false;
significand |= first_exponent_bit;
significand >>= 1;
significand = static_cast<uint_type>(significand >> 1);
}
while (exponent < min_exponent) {
significand >>= 1;
significand = static_cast<uint_type>(significand >> 1);
++exponent;
}
if (exponent == min_exponent) {
if (significand == 0 && !significand_is_zero && round_denorm_up) {
significand = 0x1;
significand = static_cast<uint_type>(0x1);
}
}
uint_type new_value = 0;
if (negative) {
new_value |= sign_mask;
new_value = static_cast<uint_type>(new_value | sign_mask);
}
exponent += exponent_bias;
exponent = static_cast<int_type>(exponent + exponent_bias);
assert(exponent >= 0);
// put it all together
exponent = (exponent << exponent_left_shift) & exponent_mask;
significand &= fraction_encode_mask;
new_value |= exponent | significand;
exponent = static_cast<uint_type>((exponent << exponent_left_shift) &
exponent_mask);
significand = static_cast<uint_type>(significand & fraction_encode_mask);
new_value = static_cast<uint_type>(new_value | (exponent | significand));
value_ = BitwiseCast<T>(new_value);
}
@ -397,14 +401,14 @@ class HexFloat {
// for a valid significand.
static uint_type incrementSignificand(uint_type significand,
uint_type to_increment, bool* carry) {
significand += to_increment;
significand = static_cast<uint_type>(significand + to_increment);
*carry = false;
if (significand & first_exponent_bit) {
*carry = true;
// The implicit 1-bit will have carried, so we should zero-out the
// top bit and shift back.
significand &= ~first_exponent_bit;
significand >>= 1;
significand = static_cast<uint_type>(significand & ~first_exponent_bit);
significand = static_cast<uint_type>(significand >> 1);
}
return significand;
}
@ -416,22 +420,30 @@ class HexFloat {
template <int_type N, typename enable = void>
struct negatable_left_shift {
static uint_type val(uint_type val) { return val >> -N; }
static uint_type val(uint_type val) {
return static_cast<uint_type>(val >> -N);
}
};
template <int_type N>
struct negatable_left_shift<N, typename std::enable_if<N >= 0>::type> {
static uint_type val(uint_type val) { return val << N; }
static uint_type val(uint_type val) {
return static_cast<uint_type>(val << N);
}
};
template <int_type N, typename enable = void>
struct negatable_right_shift {
static uint_type val(uint_type val) { return val << -N; }
static uint_type val(uint_type val) {
return static_cast<uint_type>(val << -N);
}
};
template <int_type N>
struct negatable_right_shift<N, typename std::enable_if<N >= 0>::type> {
static uint_type val(uint_type val) { return val >> N; }
static uint_type val(uint_type val) {
return static_cast<uint_type>(val >> N);
}
};
// Returns the significand, rounded to fit in a significand in
@ -465,9 +477,9 @@ class HexFloat {
uint_type significand = getNormalizedSignificand();
// If we are up-casting, then we just have to shift to the right location.
if (num_throwaway_bits <= 0) {
out_val = significand;
out_val = static_cast<other_uint_type>(significand);
uint_type shift_amount = -num_throwaway_bits;
out_val <<= shift_amount;
out_val = static_cast<other_uint_type>(out_val << shift_amount);
return out_val;
}
@ -548,10 +560,10 @@ class HexFloat {
if (exponent == min_exponent) {
// If we are denormal, normalize the exponent, so that we can encode
// easily.
exponent += 1;
exponent = static_cast<int_type>(exponent + 1);
for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0;
check_bit >>= 1) {
exponent -= 1;
check_bit = static_cast<uint_type>(check_bit >> 1)) {
exponent = static_cast<int_type>(exponent - 1);
if (check_bit & significand) break;
}
}
@ -590,11 +602,12 @@ class HexFloat {
bool round_underflow_up =
isNegative() ? round_dir == round_direction::kToNegativeInfinity
: round_dir == round_direction::kToPositiveInfinity;
using other_int_type = typename other_T::int_type;
// setFromSignUnbiasedExponentAndNormalizedSignificand will
// zero out any underflowing value (but retain the sign).
other.setFromSignUnbiasedExponentAndNormalizedSignificand(
negate, exponent, rounded_significand, round_underflow_up);
negate, static_cast<other_int_type>(exponent), rounded_significand,
round_underflow_up);
return;
}
@ -641,18 +654,18 @@ std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) {
const uint_type bits = spvutils::BitwiseCast<uint_type>(value.value());
const char* const sign = (bits & HF::sign_mask) ? "-" : "";
const uint_type exponent =
(bits & HF::exponent_mask) >> HF::num_fraction_bits;
const uint_type exponent = static_cast<uint_type>(
(bits & HF::exponent_mask) >> HF::num_fraction_bits);
uint_type fraction = (bits & HF::fraction_encode_mask)
<< HF::num_overflow_bits;
uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask)
<< HF::num_overflow_bits);
const bool is_zero = exponent == 0 && fraction == 0;
const bool is_denorm = exponent == 0 && !is_zero;
// exponent contains the biased exponent we have to convert it back into
// the normal range.
int_type int_exponent = static_cast<int_type>(exponent) - HF::exponent_bias;
int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias);
// If the number is all zeros, then we actually have to NOT shift the
// exponent.
int_exponent = is_zero ? 0 : int_exponent;
@ -662,12 +675,12 @@ std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) {
if (is_denorm) {
while ((fraction & HF::fraction_top_bit) == 0) {
fraction <<= 1;
int_exponent -= 1;
fraction = static_cast<uint_type>(fraction << 1);
int_exponent = static_cast<int_type>(int_exponent - 1);
}
// Since this is denormalized, we have to consume the leading 1 since it
// will end up being implicit.
fraction <<= 1; // eat the leading 1
fraction = static_cast<uint_type>(fraction << 1); // eat the leading 1
fraction &= HF::fraction_represent_mask;
}
@ -676,7 +689,7 @@ std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) {
// fractional part.
while (fraction_nibbles > 0 && (fraction & 0xF) == 0) {
// Shift off any trailing values;
fraction >>= 4;
fraction = static_cast<uint_type>(fraction >> 4);
--fraction_nibbles;
}
@ -828,8 +841,11 @@ std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) {
if (bits_written) {
// If we are here the bits represented belong in the fractional
// part of the float, and we have to adjust the exponent accordingly.
fraction |= write_bit << (HF::top_bit_left_shift - fraction_index++);
exponent += 1;
fraction =
fraction |
static_cast<uint_type>(
write_bit << (HF::top_bit_left_shift - fraction_index++));
exponent = static_cast<int_type>(exponent + 1);
}
bits_written |= write_bit != 0;
}
@ -855,9 +871,12 @@ std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) {
// Handle modifying the exponent here this way we can handle
// an arbitrary number of hex values without overflowing our
// integer.
exponent -= 1;
exponent = static_cast<int_type>(exponent - 1);
} else {
fraction |= write_bit << (HF::top_bit_left_shift - fraction_index++);
fraction =
fraction |
static_cast<uint_type>(
write_bit << (HF::top_bit_left_shift - fraction_index++));
}
}
} else {
@ -883,8 +902,9 @@ std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) {
exponent_sign = (next_char == '-') ? -1 : 1;
} else if (::isdigit(next_char)) {
// Hex-floats express their exponent as decimal.
written_exponent *= 10;
written_exponent += next_char - '0';
written_exponent = static_cast<int_type>(written_exponent * 10);
written_exponent =
static_cast<int_type>(written_exponent + (next_char - '0'));
} else {
break;
}
@ -892,19 +912,19 @@ std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) {
next_char = is.peek();
}
written_exponent *= exponent_sign;
exponent += written_exponent;
written_exponent = static_cast<int_type>(written_exponent * exponent_sign);
exponent = static_cast<int_type>(exponent + written_exponent);
bool is_zero = is_denorm && (fraction == 0);
if (is_denorm && !is_zero) {
fraction <<= 1;
exponent -= 1;
fraction = static_cast<uint_type>(fraction << 1);
exponent = static_cast<int_type>(exponent - 1);
} else if (is_zero) {
exponent = 0;
}
if (exponent <= 0 && !is_zero) {
fraction >>= 1;
fraction = static_cast<uint_type>(fraction >> 1);
fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift;
}
@ -915,8 +935,8 @@ std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) {
// Handle actual denorm numbers
while (exponent < 0 && !is_zero) {
fraction >>= 1;
exponent += 1;
fraction = static_cast<uint_type>(fraction >> 1);
exponent = static_cast<int_type>(exponent + 1);
fraction &= HF::fraction_encode_mask;
if (fraction == 0) {
@ -932,10 +952,14 @@ std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) {
fraction = 0;
}
uint_type output_bits = static_cast<uint_type>(negate_value ? 1 : 0)
<< HF::top_bit_left_shift;
uint_type output_bits = static_cast<uint_type>(
static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift);
output_bits |= fraction;
output_bits |= (exponent << HF::exponent_left_shift) & HF::exponent_mask;
uint_type shifted_exponent = static_cast<uint_type>(
static_cast<uint_type>(exponent << HF::exponent_left_shift) &
HF::exponent_mask);
output_bits |= shifted_exponent;
T output_float = spvutils::BitwiseCast<T>(output_bits);
value.set_value(output_float);

View File

@ -40,7 +40,6 @@ using BinaryDestroySomething = spvtest::TextToBinaryTest;
// Checks safety of destroying a validly constructed binary.
TEST_F(BinaryDestroySomething, Default) {
spv_context context = spvContextCreate();
// Use a binary object constructed by the API instead of rolling our own.
SetText("OpSource OpenCL_C 120");
spv_binary my_binary = nullptr;
@ -48,7 +47,6 @@ TEST_F(BinaryDestroySomething, Default) {
&my_binary, &diagnostic));
ASSERT_NE(nullptr, my_binary);
spvBinaryDestroy(my_binary);
spvContextDestroy(context);
}
} // anonymous namespace

View File

@ -70,10 +70,10 @@ TEST_F(BinaryHeaderGet, Default) {
}
TEST_F(BinaryHeaderGet, InvalidCode) {
spv_const_binary_t binary = {nullptr, 0};
spv_const_binary_t my_binary = {nullptr, 0};
spv_header_t header;
ASSERT_EQ(SPV_ERROR_INVALID_BINARY,
spvBinaryHeaderGet(&binary, SPV_ENDIANNESS_LITTLE, &header));
spvBinaryHeaderGet(&my_binary, SPV_ENDIANNESS_LITTLE, &header));
}
TEST_F(BinaryHeaderGet, InvalidPointerHeader) {

View File

@ -204,9 +204,9 @@ ParsedInstruction MakeParsedInt32TypeInstruction(uint32_t result_id) {
class BinaryParseTest : public spvtest::TextToBinaryTestBase<::testing::Test> {
protected:
void Parse(const SpirvVector& binary, spv_result_t expected_result) {
void Parse(const SpirvVector& words, spv_result_t expected_result) {
EXPECT_EQ(expected_result,
spvBinaryParse(context, &client_, binary.data(), binary.size(),
spvBinaryParse(context, &client_, words.data(), words.size(),
invoke_header, invoke_instruction, &diagnostic_));
}
@ -224,42 +224,42 @@ class BinaryParseTest : public spvtest::TextToBinaryTestBase<::testing::Test> {
bound, 0 /*reserved*/))
TEST_F(BinaryParseTest, EmptyModuleHasValidHeaderAndNoInstructionCallbacks) {
const auto binary = CompileSuccessfully("");
const auto words= CompileSuccessfully("");
EXPECT_HEADER(1).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).Times(0); // No instruction callback.
Parse(binary, SPV_SUCCESS);
Parse(words, SPV_SUCCESS);
EXPECT_EQ(nullptr, diagnostic_);
}
TEST_F(BinaryParseTest,
ModuleWithSingleInstructionHasValidHeaderAndInstructionCallback) {
const auto binary = CompileSuccessfully("%1 = OpTypeVoid");
const auto words = CompileSuccessfully("%1 = OpTypeVoid");
InSequence calls_expected_in_specific_order;
EXPECT_HEADER(2).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(MakeParsedVoidTypeInstruction(1)))
.WillOnce(Return(SPV_SUCCESS));
Parse(binary, SPV_SUCCESS);
Parse(words, SPV_SUCCESS);
EXPECT_EQ(nullptr, diagnostic_);
}
TEST_F(BinaryParseTest, NullHeaderCallbackIsIgnored) {
const auto binary = CompileSuccessfully("%1 = OpTypeVoid");
const auto words = CompileSuccessfully("%1 = OpTypeVoid");
EXPECT_CALL(client_, Header(_, _, _, _, _, _))
.Times(0); // No header callback.
EXPECT_CALL(client_, Instruction(MakeParsedVoidTypeInstruction(1)))
.WillOnce(Return(SPV_SUCCESS));
EXPECT_EQ(SPV_SUCCESS,
spvBinaryParse(context, &client_, binary.data(), binary.size(),
spvBinaryParse(context, &client_, words.data(), words.size(),
nullptr, invoke_instruction, &diagnostic_));
EXPECT_EQ(nullptr, diagnostic_);
}
TEST_F(BinaryParseTest, NullInstructionCallbackIsIgnored) {
const auto binary = CompileSuccessfully("%1 = OpTypeVoid");
const auto words = CompileSuccessfully("%1 = OpTypeVoid");
EXPECT_HEADER((2)).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).Times(0); // No instruction callback.
EXPECT_EQ(SPV_SUCCESS,
spvBinaryParse(context, &client_, binary.data(), binary.size(),
spvBinaryParse(context, &client_, words.data(), words.size(),
invoke_header, nullptr, &diagnostic_));
EXPECT_EQ(nullptr, diagnostic_);
}
@ -270,7 +270,7 @@ TEST_F(BinaryParseTest, NullInstructionCallbackIsIgnored) {
// spv_parsed_instruction_t struct: words, num_words, opcode, result_id,
// operands, num_operands.
TEST_F(BinaryParseTest, TwoScalarTypesGenerateTwoInstructionCallbacks) {
const auto binary = CompileSuccessfully(
const auto words = CompileSuccessfully(
"%1 = OpTypeVoid "
"%2 = OpTypeInt 32 1");
InSequence calls_expected_in_specific_order;
@ -279,40 +279,40 @@ TEST_F(BinaryParseTest, TwoScalarTypesGenerateTwoInstructionCallbacks) {
.WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(MakeParsedInt32TypeInstruction(2)))
.WillOnce(Return(SPV_SUCCESS));
Parse(binary, SPV_SUCCESS);
Parse(words, SPV_SUCCESS);
EXPECT_EQ(nullptr, diagnostic_);
}
TEST_F(BinaryParseTest, EarlyReturnWithZeroPassingCallbacks) {
const auto binary = CompileSuccessfully(
const auto words = CompileSuccessfully(
"%1 = OpTypeVoid "
"%2 = OpTypeInt 32 1");
InSequence calls_expected_in_specific_order;
EXPECT_HEADER(3).WillOnce(Return(SPV_ERROR_INVALID_BINARY));
// Early exit means no calls to Instruction().
EXPECT_CALL(client_, Instruction(_)).Times(0);
Parse(binary, SPV_ERROR_INVALID_BINARY);
Parse(words, SPV_ERROR_INVALID_BINARY);
// On error, the binary parser doesn't generate its own diagnostics.
EXPECT_EQ(nullptr, diagnostic_);
}
TEST_F(BinaryParseTest,
EarlyReturnWithZeroPassingCallbacksAndSpecifiedResultCode) {
const auto binary = CompileSuccessfully(
const auto words = CompileSuccessfully(
"%1 = OpTypeVoid "
"%2 = OpTypeInt 32 1");
InSequence calls_expected_in_specific_order;
EXPECT_HEADER(3).WillOnce(Return(SPV_REQUESTED_TERMINATION));
// Early exit means no calls to Instruction().
EXPECT_CALL(client_, Instruction(_)).Times(0);
Parse(binary, SPV_REQUESTED_TERMINATION);
Parse(words, SPV_REQUESTED_TERMINATION);
// On early termination, the binary parser doesn't generate its own
// diagnostics.
EXPECT_EQ(nullptr, diagnostic_);
}
TEST_F(BinaryParseTest, EarlyReturnWithOnePassingCallback) {
const auto binary = CompileSuccessfully(
const auto words = CompileSuccessfully(
"%1 = OpTypeVoid "
"%2 = OpTypeInt 32 1 "
"%3 = OpTypeFloat 32");
@ -320,14 +320,14 @@ TEST_F(BinaryParseTest, EarlyReturnWithOnePassingCallback) {
EXPECT_HEADER(4).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(MakeParsedVoidTypeInstruction(1)))
.WillOnce(Return(SPV_REQUESTED_TERMINATION));
Parse(binary, SPV_REQUESTED_TERMINATION);
Parse(words, SPV_REQUESTED_TERMINATION);
// On early termination, the binary parser doesn't generate its own
// diagnostics.
EXPECT_EQ(nullptr, diagnostic_);
}
TEST_F(BinaryParseTest, EarlyReturnWithTwoPassingCallbacks) {
const auto binary = CompileSuccessfully(
const auto words = CompileSuccessfully(
"%1 = OpTypeVoid "
"%2 = OpTypeInt 32 1 "
"%3 = OpTypeFloat 32");
@ -337,7 +337,7 @@ TEST_F(BinaryParseTest, EarlyReturnWithTwoPassingCallbacks) {
.WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(MakeParsedInt32TypeInstruction(2)))
.WillOnce(Return(SPV_REQUESTED_TERMINATION));
Parse(binary, SPV_REQUESTED_TERMINATION);
Parse(words, SPV_REQUESTED_TERMINATION);
// On early termination, the binary parser doesn't generate its own
// diagnostics.
EXPECT_EQ(nullptr, diagnostic_);
@ -348,7 +348,7 @@ TEST_F(BinaryParseTest, InstructionWithStringOperand) {
"the future is already here, it's just not evenly distributed";
const auto str_words = MakeVector(str);
const auto instruction = MakeInstruction(SpvOpName, {99}, str_words);
const auto binary = Concatenate({ExpectedHeaderForBound(100), instruction});
const auto words = Concatenate({ExpectedHeaderForBound(100), instruction});
InSequence calls_expected_in_specific_order;
EXPECT_HEADER(100).WillOnce(Return(SPV_SUCCESS));
const auto operands = std::vector<spv_parsed_operand_t>{
@ -361,14 +361,14 @@ TEST_F(BinaryParseTest, InstructionWithStringOperand) {
0 /* No result id for OpName*/, operands.data(),
static_cast<uint16_t>(operands.size())})))
.WillOnce(Return(SPV_SUCCESS));
Parse(binary, SPV_SUCCESS);
Parse(words, SPV_SUCCESS);
EXPECT_EQ(nullptr, diagnostic_);
}
// Checks for non-zero values for the result_id and ext_inst_type members
// spv_parsed_instruction_t.
TEST_F(BinaryParseTest, ExtendedInstruction) {
const auto binary = CompileSuccessfully(
const auto words = CompileSuccessfully(
"%extcl = OpExtInstImport \"OpenCL.std\" "
"%result = OpExtInst %float %extcl sqrt %x");
EXPECT_HEADER(5).WillOnce(Return(SPV_SUCCESS));
@ -391,7 +391,7 @@ TEST_F(BinaryParseTest, ExtendedInstruction) {
3 /*result id*/, operands.data(),
static_cast<uint16_t>(operands.size())})))
.WillOnce(Return(SPV_SUCCESS));
Parse(binary, SPV_SUCCESS);
Parse(words, SPV_SUCCESS);
EXPECT_EQ(nullptr, diagnostic_);
}
@ -407,7 +407,6 @@ using BinaryParseWordsAndCountDiagnosticTest = spvtest::TextToBinaryTestBase<
::testing::TestWithParam<WordsAndCountDiagnosticCase>>;
TEST_P(BinaryParseWordsAndCountDiagnosticTest, WordAndCountCases) {
spv_diagnostic diagnostic = nullptr;
EXPECT_EQ(
SPV_ERROR_INVALID_BINARY,
spvBinaryParse(context, nullptr, GetParam().words, GetParam().num_words,
@ -445,7 +444,6 @@ using BinaryParseWordVectorDiagnosticTest = spvtest::TextToBinaryTestBase<
::testing::TestWithParam<WordVectorDiagnosticCase>>;
TEST_P(BinaryParseWordVectorDiagnosticTest, WordVectorCases) {
spv_diagnostic diagnostic = nullptr;
const auto& words = GetParam().words;
EXPECT_THAT(spvBinaryParse(context, nullptr, words.data(), words.size(),
nullptr, nullptr, &diagnostic),
@ -459,8 +457,10 @@ INSTANTIATE_TEST_CASE_P(
::testing::ValuesIn(std::vector<WordVectorDiagnosticCase>{
{Concatenate({ExpectedHeaderForBound(1), {spvOpcodeMake(0, SpvOpNop)}}),
"Invalid instruction word count: 0"},
{Concatenate({ExpectedHeaderForBound(1),
{spvOpcodeMake(1, static_cast<SpvOp>(0xffff))}}),
{Concatenate(
{ExpectedHeaderForBound(1),
{spvOpcodeMake(1, static_cast<SpvOp>(
std::numeric_limits<uint16_t>::max()))}}),
"Invalid opcode: 65535"},
{Concatenate({ExpectedHeaderForBound(1),
MakeInstruction(SpvOpNop, {42})}),
@ -674,7 +674,6 @@ using BinaryParseAssemblyDiagnosticTest = spvtest::TextToBinaryTestBase<
::testing::TestWithParam<AssemblyDiagnosticCase>>;
TEST_P(BinaryParseAssemblyDiagnosticTest, AssemblyCases) {
spv_diagnostic diagnostic = nullptr;
auto words = CompileSuccessfully(GetParam().assembly);
EXPECT_THAT(spvBinaryParse(context, nullptr, words.data(), words.size(),
nullptr, nullptr, &diagnostic),

View File

@ -396,7 +396,6 @@ OpStore %2 %3 Aligned|Volatile 4 ; bogus, but not indented
TEST_F(TextToBinaryTest, VersionString) {
auto words = CompileSuccessfully("");
spv_text decoded_text = nullptr;
spv_diagnostic diagnostic = nullptr;
EXPECT_THAT(spvBinaryToText(context, words.data(), words.size(),
SPV_BINARY_TO_TEXT_OPTION_NONE, &decoded_text,
&diagnostic),
@ -430,7 +429,6 @@ TEST_P(GeneratorStringTest, Sample) {
SPV_GENERATOR_WORD(GetParam().generator, GetParam().misc);
spv_text decoded_text = nullptr;
spv_diagnostic diagnostic = nullptr;
EXPECT_THAT(spvBinaryToText(context, words.data(), words.size(),
SPV_BINARY_TO_TEXT_OPTION_NONE, &decoded_text,
&diagnostic),

View File

@ -592,7 +592,7 @@ TEST(HexFloatOperationTest, UnbiasedExponent) {
float float_fractions(const std::vector<uint32_t>& fractions) {
float f = 0;
for(int32_t i: fractions) {
f += ldexp(1.0f, -i);
f += std::ldexp(1.0f, -i);
}
return f;
}
@ -626,7 +626,7 @@ uint16_t half_bits_set(const std::vector<uint32_t>& bits) {
for(uint32_t i: bits) {
val |= top_bit >> i;
}
return val;
return static_cast<uint16_t>(val);
}
TEST(HexFloatOperationTest, NormalizedSignificand) {

View File

@ -184,7 +184,7 @@ TEST_F(ImmediateIntTest, StringFollowingImmediate) {
EXPECT_EQ(original,
CompiledInstructions("OpMemberName !1 !4 \"" + name + "\""))
<< name;
const uint32_t wordCount = 4 + name.size() / 4;
const uint16_t wordCount = static_cast<uint16_t>(4 + name.size() / 4);
const uint32_t firstWord = spvOpcodeMake(wordCount, SpvOpMemberName);
EXPECT_EQ(original, CompiledInstructions("!" + std::to_string(firstWord) +
" %10 !4 \"" + name + "\""))

View File

@ -65,10 +65,10 @@ class TextToBinaryTestBase : public T {
// Compiles SPIR-V text in the given assembly syntax format, asserting
// compilation success. Returns the compiled code.
SpirvVector CompileSuccessfully(const std::string& text) {
spv_result_t status = spvTextToBinary(context, text.c_str(), text.size(),
SpirvVector CompileSuccessfully(const std::string& txt) {
spv_result_t status = spvTextToBinary(context, txt.c_str(), txt.size(),
&binary, &diagnostic);
EXPECT_EQ(SPV_SUCCESS, status) << text;
EXPECT_EQ(SPV_SUCCESS, status) << txt;
SpirvVector code_copy;
if (status == SPV_SUCCESS) {
code_copy = SpirvVector(binary->code, binary->code + binary->wordCount);
@ -81,26 +81,26 @@ class TextToBinaryTestBase : public T {
// Compiles SPIR-V text with the given format, asserting compilation failure.
// Returns the error message(s).
std::string CompileFailure(const std::string& text) {
EXPECT_NE(SPV_SUCCESS, spvTextToBinary(context, text.c_str(), text.size(),
std::string CompileFailure(const std::string& txt) {
EXPECT_NE(SPV_SUCCESS, spvTextToBinary(context, txt.c_str(), txt.size(),
&binary, &diagnostic))
<< text;
<< txt;
DestroyBinary();
return diagnostic->error;
}
// Encodes SPIR-V text into binary and then decodes the binary using
// default options. Returns the decoded text.
std::string EncodeAndDecodeSuccessfully(const std::string& text) {
return EncodeAndDecodeSuccessfully(text, SPV_BINARY_TO_TEXT_OPTION_NONE);
std::string EncodeAndDecodeSuccessfully(const std::string& txt) {
return EncodeAndDecodeSuccessfully(txt, SPV_BINARY_TO_TEXT_OPTION_NONE);
}
// Encodes SPIR-V text into binary and then decodes the binary using
// given options. Returns the decoded text.
std::string EncodeAndDecodeSuccessfully(const std::string& text,
std::string EncodeAndDecodeSuccessfully(const std::string& txt,
uint32_t disassemble_options) {
DestroyBinary();
spv_result_t error = spvTextToBinary(context, text.c_str(), text.size(),
spv_result_t error = spvTextToBinary(context, txt.c_str(), txt.size(),
&binary, &diagnostic);
if (error) {
spvDiagnosticPrint(diagnostic);
@ -116,7 +116,7 @@ class TextToBinaryTestBase : public T {
spvDiagnosticPrint(diagnostic);
spvDiagnosticDestroy(diagnostic);
}
EXPECT_EQ(SPV_SUCCESS, error) << text;
EXPECT_EQ(SPV_SUCCESS, error) << txt;
const std::string decoded_string = decoded_text->str;
spvTextDestroy(decoded_text);
@ -132,9 +132,9 @@ class TextToBinaryTestBase : public T {
// is then decoded. This is expected to fail.
// Returns the error message.
std::string EncodeSuccessfullyDecodeFailed(
const std::string& text, const SpirvVector& words_to_append) {
const std::string& txt, const SpirvVector& words_to_append) {
SpirvVector code =
spvtest::Concatenate({CompileSuccessfully(text), words_to_append});
spvtest::Concatenate({CompileSuccessfully(txt), words_to_append});
spv_text decoded_text;
EXPECT_NE(SPV_SUCCESS, spvBinaryToText(context, code.data(), code.size(),
@ -151,8 +151,8 @@ class TextToBinaryTestBase : public T {
// Compiles SPIR-V text, asserts success, and returns the words representing
// the instructions. In particular, skip the words in the SPIR-V header.
SpirvVector CompiledInstructions(const std::string& text) {
const SpirvVector code = CompileSuccessfully(text);
SpirvVector CompiledInstructions(const std::string& txt) {
const SpirvVector code = CompileSuccessfully(txt);
SpirvVector result;
// Extract just the instructions.
// If the code fails to compile, then return the empty vector.

View File

@ -140,7 +140,6 @@ union char_word_t {
};
TEST_F(TextToBinaryTest, InvalidText) {
spv_binary binary;
ASSERT_EQ(SPV_ERROR_INVALID_TEXT,
spvTextToBinary(context, nullptr, 0, &binary, &diagnostic));
EXPECT_NE(nullptr, diagnostic);
@ -158,7 +157,6 @@ TEST_F(TextToBinaryTest, InvalidPointer) {
TEST_F(TextToBinaryTest, InvalidDiagnostic) {
SetText(
"OpEntryPoint Kernel 0 \"\"\nOpExecutionMode 0 LocalSizeHint 1 1 1\n");
spv_binary binary;
ASSERT_EQ(SPV_ERROR_INVALID_DIAGNOSTIC,
spvTextToBinary(context, text.str, text.length, &binary, nullptr));
}

View File

@ -79,7 +79,7 @@ void PrintTo(const WordVector& words, ::std::ostream* os);
// A proxy class to allow us to easily write out vectors of SPIR-V words.
class WordVector {
public:
explicit WordVector(const std::vector<uint32_t>& value) : value_(value) {}
explicit WordVector(const std::vector<uint32_t>& val) : value_(val) {}
explicit WordVector(const spv_binary_t& binary)
: value_(binary.code, binary.code + binary.wordCount) {}
@ -179,8 +179,8 @@ struct AutoText {
template <typename E>
class EnumCase {
public:
EnumCase(E value, std::string name, std::vector<uint32_t> operands = {})
: enum_value_(value), name_(name), operands_(operands) {}
EnumCase(E val, std::string enum_name, std::vector<uint32_t> ops = {})
: enum_value_(val), name_(enum_name), operands_(ops) {}
// Returns the enum value as a uint32_t.
uint32_t value() const { return static_cast<uint32_t>(enum_value_); }
// Returns the name of the enumerant.