spirv-fuzz: Limit adding of new variables to 'basic' types (#3257)

To avoid problems where global and local variables of opaque or
runtime-sized types are added to a module, this change introduces the
notion of a 'basic type' -- a type made up from floats, ints, bools,
or vectors, matrices, structs and fixed-size arrays of basic types.
Added variables have to be of basic type.
This commit is contained in:
Alastair Donaldson 2020-04-02 17:35:18 +01:00 committed by GitHub
parent f28cdeff16
commit bfd25ace08
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 105 additions and 71 deletions

View File

@ -14,6 +14,8 @@
#include "source/fuzz/fuzzer_pass.h"
#include <set>
#include "source/fuzz/fuzzer_util.h"
#include "source/fuzz/instruction_descriptor.h"
#include "source/fuzz/transformation_add_constant_boolean.h"
@ -329,43 +331,72 @@ uint32_t FuzzerPass::FindOrCreateGlobalUndef(uint32_t type_id) {
}
std::pair<std::vector<uint32_t>, std::map<uint32_t, std::vector<uint32_t>>>
FuzzerPass::GetAvailableBaseTypesAndPointers(
FuzzerPass::GetAvailableBasicTypesAndPointers(
SpvStorageClass storage_class) const {
// Records all of the base types available in the module.
std::vector<uint32_t> base_types;
// Records all of the basic types available in the module.
std::set<uint32_t> basic_types;
// For each base type, records all the associated pointer types that target
// that base type and that have |storage_class| as their storage class.
std::map<uint32_t, std::vector<uint32_t>> base_type_to_pointers;
// For each basic type, records all the associated pointer types that target
// the basic type and that have |storage_class| as their storage class.
std::map<uint32_t, std::vector<uint32_t>> basic_type_to_pointers;
for (auto& inst : GetIRContext()->types_values()) {
// For each basic type that we come across, record type, and the fact that
// we cannot yet have seen any pointers that use the basic type as its
// pointee type.
//
// For pointer types with basic pointee types, associate the pointer type
// with the basic type.
switch (inst.opcode()) {
case SpvOpTypeArray:
case SpvOpTypeBool:
case SpvOpTypeFloat:
case SpvOpTypeInt:
case SpvOpTypeMatrix:
case SpvOpTypeStruct:
case SpvOpTypeVector:
// These types are suitable as pointer base types. Record the type,
// and the fact that we cannot yet have seen any pointers that use this
// as its base type.
base_types.push_back(inst.result_id());
base_type_to_pointers.insert({inst.result_id(), {}});
// These are all basic types.
basic_types.insert(inst.result_id());
basic_type_to_pointers.insert({inst.result_id(), {}});
break;
case SpvOpTypePointer:
if (inst.GetSingleWordInOperand(0) == storage_class) {
// The pointer has the desired storage class, so we are interested in
// it. Associate it with its base type.
base_type_to_pointers.at(inst.GetSingleWordInOperand(1))
.push_back(inst.result_id());
case SpvOpTypeArray:
// An array type is basic if its base type is basic.
if (basic_types.count(inst.GetSingleWordInOperand(0))) {
basic_types.insert(inst.result_id());
basic_type_to_pointers.insert({inst.result_id(), {}});
}
break;
case SpvOpTypeStruct: {
// A struct type is basic if all of its members are basic.
bool all_members_are_basic_types = true;
for (uint32_t i = 0; i < inst.NumInOperands(); i++) {
if (!basic_types.count(inst.GetSingleWordInOperand(i))) {
all_members_are_basic_types = false;
break;
}
}
if (all_members_are_basic_types) {
basic_types.insert(inst.result_id());
basic_type_to_pointers.insert({inst.result_id(), {}});
}
break;
}
case SpvOpTypePointer: {
// We are interested in the pointer if its pointee type is basic and it
// has the right storage class.
auto pointee_type = inst.GetSingleWordInOperand(1);
if (inst.GetSingleWordInOperand(0) == storage_class &&
basic_types.count(pointee_type)) {
// The pointer has the desired storage class, and its pointee type is
// a basic type, so we are interested in it. Associate it with its
// basic type.
basic_type_to_pointers.at(pointee_type).push_back(inst.result_id());
}
break;
}
default:
break;
}
}
return {base_types, base_type_to_pointers};
return {{basic_types.begin(), basic_types.end()}, basic_type_to_pointers};
}
uint32_t FuzzerPass::FindOrCreateZeroConstant(

View File

@ -169,18 +169,21 @@ class FuzzerPass {
// If no such instruction exists, a transformation is applied to add it.
uint32_t FindOrCreateGlobalUndef(uint32_t type_id);
// Yields a pair, (base_type_ids, base_type_ids_to_pointers), such that:
// - base_type_ids captures every scalar or composite type declared in the
// module (i.e., all int, bool, float, vector, matrix, struct and array
// types
// - base_type_ids_to_pointers maps every such base type to the sequence
// Define a *basic type* to be an integer, boolean or floating-point type,
// or a matrix, vector, struct or fixed-size array built from basic types. In
// particular, a basic type cannot contain an opaque type (such as an image),
// or a runtime-sized array.
//
// Yields a pair, (basic_type_ids, basic_type_ids_to_pointers), such that:
// - basic_type_ids captures every basic type declared in the module.
// - basic_type_ids_to_pointers maps every such basic type to the sequence
// of all pointer types that have storage class |storage_class| and the
// given base type as their pointee type. The sequence may be empty for
// some base types if no pointers to those types are defined for the given
// given basic type as their pointee type. The sequence may be empty for
// some basic types if no pointers to those types are defined for the given
// storage class, and the sequence will have multiple elements if there are
// repeated pointer declarations for the same base type and storage class.
// repeated pointer declarations for the same basic type and storage class.
std::pair<std::vector<uint32_t>, std::map<uint32_t, std::vector<uint32_t>>>
GetAvailableBaseTypesAndPointers(SpvStorageClass storage_class) const;
GetAvailableBasicTypesAndPointers(SpvStorageClass storage_class) const;
// Given a type id, |scalar_or_composite_type_id|, which must correspond to
// some scalar or composite type, returns the result id of an instruction

View File

@ -30,45 +30,45 @@ FuzzerPassAddGlobalVariables::FuzzerPassAddGlobalVariables(
FuzzerPassAddGlobalVariables::~FuzzerPassAddGlobalVariables() = default;
void FuzzerPassAddGlobalVariables::Apply() {
auto base_type_ids_and_pointers =
GetAvailableBaseTypesAndPointers(SpvStorageClassPrivate);
auto basic_type_ids_and_pointers =
GetAvailableBasicTypesAndPointers(SpvStorageClassPrivate);
// These are the base types that are available to this fuzzer pass.
auto& base_types = base_type_ids_and_pointers.first;
// These are the basic types that are available to this fuzzer pass.
auto& basic_types = basic_type_ids_and_pointers.first;
// These are the pointers to those base types that are *initially* available
// These are the pointers to those basic types that are *initially* available
// to the fuzzer pass. The fuzzer pass might add pointer types in cases where
// none are available for a given base type.
auto& base_type_to_pointers = base_type_ids_and_pointers.second;
// none are available for a given basic type.
auto& basic_type_to_pointers = basic_type_ids_and_pointers.second;
// Probabilistically keep adding global variables.
while (GetFuzzerContext()->ChoosePercentage(
GetFuzzerContext()->GetChanceOfAddingGlobalVariable())) {
// Choose a random base type; the new variable's type will be a pointer to
// this base type.
uint32_t base_type =
base_types[GetFuzzerContext()->RandomIndex(base_types)];
// Choose a random basic type; the new variable's type will be a pointer to
// this basic type.
uint32_t basic_type =
basic_types[GetFuzzerContext()->RandomIndex(basic_types)];
uint32_t pointer_type_id;
std::vector<uint32_t>& available_pointers_to_base_type =
base_type_to_pointers.at(base_type);
// Determine whether there is at least one pointer to this base type.
if (available_pointers_to_base_type.empty()) {
std::vector<uint32_t>& available_pointers_to_basic_type =
basic_type_to_pointers.at(basic_type);
// Determine whether there is at least one pointer to this basic type.
if (available_pointers_to_basic_type.empty()) {
// There is not. Make one, to use here, and add it to the available
// pointers for the base type so that future variables can potentially
// pointers for the basic type so that future variables can potentially
// use it.
pointer_type_id = GetFuzzerContext()->GetFreshId();
available_pointers_to_base_type.push_back(pointer_type_id);
available_pointers_to_basic_type.push_back(pointer_type_id);
ApplyTransformation(TransformationAddTypePointer(
pointer_type_id, SpvStorageClassPrivate, base_type));
pointer_type_id, SpvStorageClassPrivate, basic_type));
} else {
// There is - grab one.
pointer_type_id =
available_pointers_to_base_type[GetFuzzerContext()->RandomIndex(
available_pointers_to_base_type)];
available_pointers_to_basic_type[GetFuzzerContext()->RandomIndex(
available_pointers_to_basic_type)];
}
ApplyTransformation(TransformationAddGlobalVariable(
GetFuzzerContext()->GetFreshId(), pointer_type_id,
FindOrCreateZeroConstant(base_type), true));
FindOrCreateZeroConstant(basic_type), true));
}
}

View File

@ -31,47 +31,47 @@ FuzzerPassAddLocalVariables::FuzzerPassAddLocalVariables(
FuzzerPassAddLocalVariables::~FuzzerPassAddLocalVariables() = default;
void FuzzerPassAddLocalVariables::Apply() {
auto base_type_ids_and_pointers =
GetAvailableBaseTypesAndPointers(SpvStorageClassFunction);
auto basic_type_ids_and_pointers =
GetAvailableBasicTypesAndPointers(SpvStorageClassFunction);
// These are the base types that are available to this fuzzer pass.
auto& base_types = base_type_ids_and_pointers.first;
// These are the basic types that are available to this fuzzer pass.
auto& basic_types = basic_type_ids_and_pointers.first;
// These are the pointers to those base types that are *initially* available
// These are the pointers to those basic types that are *initially* available
// to the fuzzer pass. The fuzzer pass might add pointer types in cases where
// none are available for a given base type.
auto& base_type_to_pointers = base_type_ids_and_pointers.second;
// none are available for a given basic type.
auto& basic_type_to_pointers = basic_type_ids_and_pointers.second;
// Consider every function in the module.
for (auto& function : *GetIRContext()->module()) {
// Probabilistically keep adding random variables to this function.
while (GetFuzzerContext()->ChoosePercentage(
GetFuzzerContext()->GetChanceOfAddingLocalVariable())) {
// Choose a random base type; the new variable's type will be a pointer to
// this base type.
uint32_t base_type =
base_types[GetFuzzerContext()->RandomIndex(base_types)];
// Choose a random basic type; the new variable's type will be a pointer
// to this basic type.
uint32_t basic_type =
basic_types[GetFuzzerContext()->RandomIndex(basic_types)];
uint32_t pointer_type;
std::vector<uint32_t>& available_pointers_to_base_type =
base_type_to_pointers.at(base_type);
// Determine whether there is at least one pointer to this base type.
if (available_pointers_to_base_type.empty()) {
std::vector<uint32_t>& available_pointers_to_basic_type =
basic_type_to_pointers.at(basic_type);
// Determine whether there is at least one pointer to this basic type.
if (available_pointers_to_basic_type.empty()) {
// There is not. Make one, to use here, and add it to the available
// pointers for the base type so that future variables can potentially
// pointers for the basic type so that future variables can potentially
// use it.
pointer_type = GetFuzzerContext()->GetFreshId();
ApplyTransformation(TransformationAddTypePointer(
pointer_type, SpvStorageClassFunction, base_type));
available_pointers_to_base_type.push_back(pointer_type);
pointer_type, SpvStorageClassFunction, basic_type));
available_pointers_to_basic_type.push_back(pointer_type);
} else {
// There is - grab one.
pointer_type =
available_pointers_to_base_type[GetFuzzerContext()->RandomIndex(
available_pointers_to_base_type)];
available_pointers_to_basic_type[GetFuzzerContext()->RandomIndex(
available_pointers_to_basic_type)];
}
ApplyTransformation(TransformationAddLocalVariable(
GetFuzzerContext()->GetFreshId(), pointer_type, function.result_id(),
FindOrCreateZeroConstant(base_type), true));
FindOrCreateZeroConstant(basic_type), true));
}
}
}