spirv-fuzz: Limit adding of new variables to 'basic' types (#3257)

To avoid problems where global and local variables of opaque or
runtime-sized types are added to a module, this change introduces the
notion of a 'basic type' -- a type made up from floats, ints, bools,
or vectors, matrices, structs and fixed-size arrays of basic types.
Added variables have to be of basic type.
This commit is contained in:
Alastair Donaldson 2020-04-02 17:35:18 +01:00 committed by GitHub
parent f28cdeff16
commit bfd25ace08
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 105 additions and 71 deletions

View File

@ -14,6 +14,8 @@
#include "source/fuzz/fuzzer_pass.h" #include "source/fuzz/fuzzer_pass.h"
#include <set>
#include "source/fuzz/fuzzer_util.h" #include "source/fuzz/fuzzer_util.h"
#include "source/fuzz/instruction_descriptor.h" #include "source/fuzz/instruction_descriptor.h"
#include "source/fuzz/transformation_add_constant_boolean.h" #include "source/fuzz/transformation_add_constant_boolean.h"
@ -329,43 +331,72 @@ uint32_t FuzzerPass::FindOrCreateGlobalUndef(uint32_t type_id) {
} }
std::pair<std::vector<uint32_t>, std::map<uint32_t, std::vector<uint32_t>>> std::pair<std::vector<uint32_t>, std::map<uint32_t, std::vector<uint32_t>>>
FuzzerPass::GetAvailableBaseTypesAndPointers( FuzzerPass::GetAvailableBasicTypesAndPointers(
SpvStorageClass storage_class) const { SpvStorageClass storage_class) const {
// Records all of the base types available in the module. // Records all of the basic types available in the module.
std::vector<uint32_t> base_types; std::set<uint32_t> basic_types;
// For each base type, records all the associated pointer types that target // For each basic type, records all the associated pointer types that target
// that base type and that have |storage_class| as their storage class. // the basic type and that have |storage_class| as their storage class.
std::map<uint32_t, std::vector<uint32_t>> base_type_to_pointers; std::map<uint32_t, std::vector<uint32_t>> basic_type_to_pointers;
for (auto& inst : GetIRContext()->types_values()) { for (auto& inst : GetIRContext()->types_values()) {
// For each basic type that we come across, record type, and the fact that
// we cannot yet have seen any pointers that use the basic type as its
// pointee type.
//
// For pointer types with basic pointee types, associate the pointer type
// with the basic type.
switch (inst.opcode()) { switch (inst.opcode()) {
case SpvOpTypeArray:
case SpvOpTypeBool: case SpvOpTypeBool:
case SpvOpTypeFloat: case SpvOpTypeFloat:
case SpvOpTypeInt: case SpvOpTypeInt:
case SpvOpTypeMatrix: case SpvOpTypeMatrix:
case SpvOpTypeStruct:
case SpvOpTypeVector: case SpvOpTypeVector:
// These types are suitable as pointer base types. Record the type, // These are all basic types.
// and the fact that we cannot yet have seen any pointers that use this basic_types.insert(inst.result_id());
// as its base type. basic_type_to_pointers.insert({inst.result_id(), {}});
base_types.push_back(inst.result_id());
base_type_to_pointers.insert({inst.result_id(), {}});
break; break;
case SpvOpTypePointer: case SpvOpTypeArray:
if (inst.GetSingleWordInOperand(0) == storage_class) { // An array type is basic if its base type is basic.
// The pointer has the desired storage class, so we are interested in if (basic_types.count(inst.GetSingleWordInOperand(0))) {
// it. Associate it with its base type. basic_types.insert(inst.result_id());
base_type_to_pointers.at(inst.GetSingleWordInOperand(1)) basic_type_to_pointers.insert({inst.result_id(), {}});
.push_back(inst.result_id());
} }
break; break;
case SpvOpTypeStruct: {
// A struct type is basic if all of its members are basic.
bool all_members_are_basic_types = true;
for (uint32_t i = 0; i < inst.NumInOperands(); i++) {
if (!basic_types.count(inst.GetSingleWordInOperand(i))) {
all_members_are_basic_types = false;
break;
}
}
if (all_members_are_basic_types) {
basic_types.insert(inst.result_id());
basic_type_to_pointers.insert({inst.result_id(), {}});
}
break;
}
case SpvOpTypePointer: {
// We are interested in the pointer if its pointee type is basic and it
// has the right storage class.
auto pointee_type = inst.GetSingleWordInOperand(1);
if (inst.GetSingleWordInOperand(0) == storage_class &&
basic_types.count(pointee_type)) {
// The pointer has the desired storage class, and its pointee type is
// a basic type, so we are interested in it. Associate it with its
// basic type.
basic_type_to_pointers.at(pointee_type).push_back(inst.result_id());
}
break;
}
default: default:
break; break;
} }
} }
return {base_types, base_type_to_pointers}; return {{basic_types.begin(), basic_types.end()}, basic_type_to_pointers};
} }
uint32_t FuzzerPass::FindOrCreateZeroConstant( uint32_t FuzzerPass::FindOrCreateZeroConstant(

View File

@ -169,18 +169,21 @@ class FuzzerPass {
// If no such instruction exists, a transformation is applied to add it. // If no such instruction exists, a transformation is applied to add it.
uint32_t FindOrCreateGlobalUndef(uint32_t type_id); uint32_t FindOrCreateGlobalUndef(uint32_t type_id);
// Yields a pair, (base_type_ids, base_type_ids_to_pointers), such that: // Define a *basic type* to be an integer, boolean or floating-point type,
// - base_type_ids captures every scalar or composite type declared in the // or a matrix, vector, struct or fixed-size array built from basic types. In
// module (i.e., all int, bool, float, vector, matrix, struct and array // particular, a basic type cannot contain an opaque type (such as an image),
// types // or a runtime-sized array.
// - base_type_ids_to_pointers maps every such base type to the sequence //
// Yields a pair, (basic_type_ids, basic_type_ids_to_pointers), such that:
// - basic_type_ids captures every basic type declared in the module.
// - basic_type_ids_to_pointers maps every such basic type to the sequence
// of all pointer types that have storage class |storage_class| and the // of all pointer types that have storage class |storage_class| and the
// given base type as their pointee type. The sequence may be empty for // given basic type as their pointee type. The sequence may be empty for
// some base types if no pointers to those types are defined for the given // some basic types if no pointers to those types are defined for the given
// storage class, and the sequence will have multiple elements if there are // storage class, and the sequence will have multiple elements if there are
// repeated pointer declarations for the same base type and storage class. // repeated pointer declarations for the same basic type and storage class.
std::pair<std::vector<uint32_t>, std::map<uint32_t, std::vector<uint32_t>>> std::pair<std::vector<uint32_t>, std::map<uint32_t, std::vector<uint32_t>>>
GetAvailableBaseTypesAndPointers(SpvStorageClass storage_class) const; GetAvailableBasicTypesAndPointers(SpvStorageClass storage_class) const;
// Given a type id, |scalar_or_composite_type_id|, which must correspond to // Given a type id, |scalar_or_composite_type_id|, which must correspond to
// some scalar or composite type, returns the result id of an instruction // some scalar or composite type, returns the result id of an instruction

View File

@ -30,45 +30,45 @@ FuzzerPassAddGlobalVariables::FuzzerPassAddGlobalVariables(
FuzzerPassAddGlobalVariables::~FuzzerPassAddGlobalVariables() = default; FuzzerPassAddGlobalVariables::~FuzzerPassAddGlobalVariables() = default;
void FuzzerPassAddGlobalVariables::Apply() { void FuzzerPassAddGlobalVariables::Apply() {
auto base_type_ids_and_pointers = auto basic_type_ids_and_pointers =
GetAvailableBaseTypesAndPointers(SpvStorageClassPrivate); GetAvailableBasicTypesAndPointers(SpvStorageClassPrivate);
// These are the base types that are available to this fuzzer pass. // These are the basic types that are available to this fuzzer pass.
auto& base_types = base_type_ids_and_pointers.first; auto& basic_types = basic_type_ids_and_pointers.first;
// These are the pointers to those base types that are *initially* available // These are the pointers to those basic types that are *initially* available
// to the fuzzer pass. The fuzzer pass might add pointer types in cases where // to the fuzzer pass. The fuzzer pass might add pointer types in cases where
// none are available for a given base type. // none are available for a given basic type.
auto& base_type_to_pointers = base_type_ids_and_pointers.second; auto& basic_type_to_pointers = basic_type_ids_and_pointers.second;
// Probabilistically keep adding global variables. // Probabilistically keep adding global variables.
while (GetFuzzerContext()->ChoosePercentage( while (GetFuzzerContext()->ChoosePercentage(
GetFuzzerContext()->GetChanceOfAddingGlobalVariable())) { GetFuzzerContext()->GetChanceOfAddingGlobalVariable())) {
// Choose a random base type; the new variable's type will be a pointer to // Choose a random basic type; the new variable's type will be a pointer to
// this base type. // this basic type.
uint32_t base_type = uint32_t basic_type =
base_types[GetFuzzerContext()->RandomIndex(base_types)]; basic_types[GetFuzzerContext()->RandomIndex(basic_types)];
uint32_t pointer_type_id; uint32_t pointer_type_id;
std::vector<uint32_t>& available_pointers_to_base_type = std::vector<uint32_t>& available_pointers_to_basic_type =
base_type_to_pointers.at(base_type); basic_type_to_pointers.at(basic_type);
// Determine whether there is at least one pointer to this base type. // Determine whether there is at least one pointer to this basic type.
if (available_pointers_to_base_type.empty()) { if (available_pointers_to_basic_type.empty()) {
// There is not. Make one, to use here, and add it to the available // There is not. Make one, to use here, and add it to the available
// pointers for the base type so that future variables can potentially // pointers for the basic type so that future variables can potentially
// use it. // use it.
pointer_type_id = GetFuzzerContext()->GetFreshId(); pointer_type_id = GetFuzzerContext()->GetFreshId();
available_pointers_to_base_type.push_back(pointer_type_id); available_pointers_to_basic_type.push_back(pointer_type_id);
ApplyTransformation(TransformationAddTypePointer( ApplyTransformation(TransformationAddTypePointer(
pointer_type_id, SpvStorageClassPrivate, base_type)); pointer_type_id, SpvStorageClassPrivate, basic_type));
} else { } else {
// There is - grab one. // There is - grab one.
pointer_type_id = pointer_type_id =
available_pointers_to_base_type[GetFuzzerContext()->RandomIndex( available_pointers_to_basic_type[GetFuzzerContext()->RandomIndex(
available_pointers_to_base_type)]; available_pointers_to_basic_type)];
} }
ApplyTransformation(TransformationAddGlobalVariable( ApplyTransformation(TransformationAddGlobalVariable(
GetFuzzerContext()->GetFreshId(), pointer_type_id, GetFuzzerContext()->GetFreshId(), pointer_type_id,
FindOrCreateZeroConstant(base_type), true)); FindOrCreateZeroConstant(basic_type), true));
} }
} }

View File

@ -31,47 +31,47 @@ FuzzerPassAddLocalVariables::FuzzerPassAddLocalVariables(
FuzzerPassAddLocalVariables::~FuzzerPassAddLocalVariables() = default; FuzzerPassAddLocalVariables::~FuzzerPassAddLocalVariables() = default;
void FuzzerPassAddLocalVariables::Apply() { void FuzzerPassAddLocalVariables::Apply() {
auto base_type_ids_and_pointers = auto basic_type_ids_and_pointers =
GetAvailableBaseTypesAndPointers(SpvStorageClassFunction); GetAvailableBasicTypesAndPointers(SpvStorageClassFunction);
// These are the base types that are available to this fuzzer pass. // These are the basic types that are available to this fuzzer pass.
auto& base_types = base_type_ids_and_pointers.first; auto& basic_types = basic_type_ids_and_pointers.first;
// These are the pointers to those base types that are *initially* available // These are the pointers to those basic types that are *initially* available
// to the fuzzer pass. The fuzzer pass might add pointer types in cases where // to the fuzzer pass. The fuzzer pass might add pointer types in cases where
// none are available for a given base type. // none are available for a given basic type.
auto& base_type_to_pointers = base_type_ids_and_pointers.second; auto& basic_type_to_pointers = basic_type_ids_and_pointers.second;
// Consider every function in the module. // Consider every function in the module.
for (auto& function : *GetIRContext()->module()) { for (auto& function : *GetIRContext()->module()) {
// Probabilistically keep adding random variables to this function. // Probabilistically keep adding random variables to this function.
while (GetFuzzerContext()->ChoosePercentage( while (GetFuzzerContext()->ChoosePercentage(
GetFuzzerContext()->GetChanceOfAddingLocalVariable())) { GetFuzzerContext()->GetChanceOfAddingLocalVariable())) {
// Choose a random base type; the new variable's type will be a pointer to // Choose a random basic type; the new variable's type will be a pointer
// this base type. // to this basic type.
uint32_t base_type = uint32_t basic_type =
base_types[GetFuzzerContext()->RandomIndex(base_types)]; basic_types[GetFuzzerContext()->RandomIndex(basic_types)];
uint32_t pointer_type; uint32_t pointer_type;
std::vector<uint32_t>& available_pointers_to_base_type = std::vector<uint32_t>& available_pointers_to_basic_type =
base_type_to_pointers.at(base_type); basic_type_to_pointers.at(basic_type);
// Determine whether there is at least one pointer to this base type. // Determine whether there is at least one pointer to this basic type.
if (available_pointers_to_base_type.empty()) { if (available_pointers_to_basic_type.empty()) {
// There is not. Make one, to use here, and add it to the available // There is not. Make one, to use here, and add it to the available
// pointers for the base type so that future variables can potentially // pointers for the basic type so that future variables can potentially
// use it. // use it.
pointer_type = GetFuzzerContext()->GetFreshId(); pointer_type = GetFuzzerContext()->GetFreshId();
ApplyTransformation(TransformationAddTypePointer( ApplyTransformation(TransformationAddTypePointer(
pointer_type, SpvStorageClassFunction, base_type)); pointer_type, SpvStorageClassFunction, basic_type));
available_pointers_to_base_type.push_back(pointer_type); available_pointers_to_basic_type.push_back(pointer_type);
} else { } else {
// There is - grab one. // There is - grab one.
pointer_type = pointer_type =
available_pointers_to_base_type[GetFuzzerContext()->RandomIndex( available_pointers_to_basic_type[GetFuzzerContext()->RandomIndex(
available_pointers_to_base_type)]; available_pointers_to_basic_type)];
} }
ApplyTransformation(TransformationAddLocalVariable( ApplyTransformation(TransformationAddLocalVariable(
GetFuzzerContext()->GetFreshId(), pointer_type, function.result_id(), GetFuzzerContext()->GetFreshId(), pointer_type, function.result_id(),
FindOrCreateZeroConstant(base_type), true)); FindOrCreateZeroConstant(basic_type), true));
} }
} }
} }