According to spec this opcode is a constant instruction - that's it
can appear outside of function bodies.
Co-authored-by: DmitryBushev <dmitry.bushev@intel.com>
* Don't eliminate dead members from StructuredBuffer as layout(offset) qualifiers cannot be applied to structure fields.
* Traverse arrays when marking structs as fully used.
Co-authored-by: Steven Perron <stevenperron@google.com>
* Have ADCE use cfg struct analysis (NFC)
ADCE has a lot of code and variables to keep track of
information that is easily obtains using the Struct
cfg analysis. Most of this change is to refactor the
code to have small functions to get the information
from the struct cfg analysis.
A few other changes small refactoring changes are
done.
* Factor out work list initialization in ADCE (NFC)
We move the code that will initially populate the work list into its own
function. We also simplify the code by making use of the struct cfg
analysis. That way we can reduce the number of tables used to track
information as we traverse the CFG.
Debug[No]Line are tracked and optimized using the same mechanism that tracks
and optimizes Op[No]Line.
Also:
- Fix missing DebugScope at top of block.
- Allow scalar replacement of access chain in DebugDeclare
* Fix extract with out-of-bounds index
When folding a OpCompositeExtract that is fed by an
OpCompositeConstruct, we handle and out of bounds
index, but only in the case where the result of the
OpCompostiteConstruct is a struct. This change
refactors that folding rule and then improves it to
handle an out-of-bounds access when the result of the
OpCompositeConstruct is a vector.
Includes:
- Shift to use of spirv-header extinst.nonsemantic.shader grammar.json
- Remove extinst.nonsemantic.vulkan.debuginfo.100.grammar.json
- Enable all optimizations for Shader.DebugInfo
Also fixes scalar replacement to only insert DebugValue after all
OpVariables. This is not necessary for OpenCL.DebugInfo, but it is
for Shader.DebugInfo.
Likewise, fixes Private-to-Local to insert DebugDeclare after all
OpVariables.
Also fixes inlining to handle FunctionDefinition which can show up
after first block if early return processing happens.
Co-authored-by: baldurk <baldurk@baldurk.org>
In SPIR-V, integers use 2s complement representation, so that signed
integer overflow and underflow is well defined. However, the constant
folder was causing overflow / underflow at the C++ level. This change
avoids such overflows by performing constant folding for IAdd, ISub and
IMul in the context of unsigned values, which works because signedness
is irrelevant according to the SPIR-V semantics for these instructions.
Fixes#4510.
It is possible that other optimization will propagate
a value into an OpCompositeExtract or OpVectorShuffle
instruction that is larger than the vector size.
Vector DCE has to be able to handle it.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/4513.
ADCE does not handle exported functions. This was an explicit decision
because we did not believe that the linkage attribute could be used in
shaders, but it can now. This change has been made.
While fixing this error, I noticed that the OpName for labels is
sometimes removed because the label instructions are not marked
explicitly marked as live. This has able been fixed.
convert-to-sampled-image pass converts images and/or samplers with
given pairs of descriptor set and binding to sampled image.
If a pair of an image and a sampler have the same pair of descriptor
set and binding that is one of the given pairs, they will be
converted to a sampled image. In addition, if only an image has the
descriptor set and binding that is one of the given pairs, it will
be converted to a sampled image as well.
For example, when we have
%a = OpLoad %type_2d_image %texture
%b = OpLoad %type_sampler %sampler
%combined = OpSampledImage %type_sampled_image %a %b
%value = OpImageSampleExplicitLod %v4float %combined ...
1. If %texture and %sampler have the same descriptor set and binding
%combine_texture_and_sampler = OpVaraible %ptr_type_sampled_image_Uniform
...
%combined = OpLoad %type_sampled_image %combine_texture_and_sampler
%value = OpImageSampleExplicitLod %v4float %combined ...
2. If %texture and %sampler have different pairs of descriptor set and binding
%a = OpLoad %type_sampled_image %texture
%extracted_image = OpImage %type_2d_image %a
%b = OpLoad %type_sampler %sampler
%combined = OpSampledImage %type_sampled_image %extracted_image %b
%value = OpImageSampleExplicitLod %v4float %combined ...
Only the first two operands were tested for constness, missing the third
one. Since the FoldFPBinaryOp() at the end of FoldClamp1() returns null
when not both of its operands are constant, this doesn't change any
behavior, but it avoids some needless work.
Also the comment for FoldClamp2() was fixed.
This PR adds a generic dataflow analysis framework to SPIRV-opt, with the intent of being used in SPIRV-lint. This may also be useful for SPIRV-opt, as existing ad-hoc analyses can be rewritten to use a common framework, but this is not the target of this PR.
Control dependence analysis constructs a control dependence graph,
representing the conditions for a block's execution relative to the
results of other blocks with conditional branches, etc.
This is an analysis pass that will be useful for the linter and
potentially also useful in opt. Currently it is unused except for the
added unit tests.
The new pass will removed interface variable on the OpEntryPoint instruction when they are not statically referenced in the call tree of the entry point.
It can be enabled on the command line using the options `remove-unused-interface-variables`.
This change allows the reducer to merge together blocks even when they
are unreachable, but keeps the restriction of reachability in place
for the optimizer.
Fixes#4302.
There was a lot of code in the codebase that would get the dominator
analysis for a function and then use it to check whether a block is
reachable. In the fuzzer, a utility method had been introduced to make
this more concise, but it was not being used consistently.
This change moves the utility method to IRContext, so that it can be
used throughout the codebase, and refactors all existing checks for
block reachability to use the utility method.
* Initial support for SPV_KHR_integer_dot_product
- Adds new operand types for packed-vector-format
- Moves ray tracing enums to the end
- PackedVectorFormat is a new optional operand type, so it requires
special handling in grammar table generation.
- Add SPV_KHR_integer_dot_product to optimizer whitelists.
- Pass-through validation: valid cases pass validation
Validation errors are not checked.
- Update SPIRV-Headers
Patch by David Neto <dneto@google.com>
Rebase and minor tweaks by Kevin Petit <kevin.petit@arm.com>
Signed-off-by: David Neto <dneto@google.com>
Signed-off-by: Kevin Petit <kevin.petit@arm.com>
Change-Id: Icb41741cb7f0f1063e5541ce25e5ba6c02266d2c
* format fixes
Change-Id: I35c82ec27bded3d1b62373fa6daec3ffd91105a3
Fix dangling phi bug from loop-unroll
When unrolling the following loop:
```
%const0 = OpConstant ...
%const1 = OpConstant ...
...
%LoopHeader = OpLabel
%phi0 = OpPhi %float %const0 %PreHeader %phi1 %Latch
%phi1 = OpPhi %float %const1 %PreHeader %x %Latch
...
%LoopBody = OpLabel
%x = OpFSub %float %phi1 %phi0
...
```
the loop-unroll pass sets the value of `%phi0` as `%phi1` for the second
copy of the loop body. For example, the second copy of
`%x = OpFSub %float %phi1 %phi0` will be
`%y = OpFSub %float %x %phi1`.
Since all phi instructions for inductions will are removed after the
loop unrolling, `%phi1` will be a dead dangling phi.
It happens only for the phi values of the first loop iteration. Replacing those
dangling phis with their initial values fixes this issue.
For example, the second copy of `%x = OpFSub %float %phi1 %phi0` should be
`%y = OpFSub %float %x %const1` because the value of `%phi1` from the
first loop iteration is `%const1`.
This pass converts an internal form of GLSLstd450 Interpolate ops
to the externally valid form. The external form takes the lvalue
of the interpolant. The internal form can do a load of the interpolant.
The pass replaces the load with its pointer. The internal form is
generated by glslang and possibly other frontends for HLSL shaders.
The new pass is called as part of HLSL legalization after all
propagation is complete.
Also adds internal interpolate form to pre-legalization validation
This allows the GPU-AV layer to differentiate between errors with
uniform buffers versus storage buffers and map these to the relevant
VUIDs.
This is a resubmit of a previously reverted commit. The revert was
done as someone erroneously attempted to build the latest validation
layers with a TOT spirv-tools. The validation layers must be built with
their known-good glslang and its known-good spirv-tools and spirv-headers.
* Mark module as modified if convert-to-half removes decorations.
If the convert-to-half pass does not change the body of the function,
but removes decorations, it returns that nothing changed. This is
incorrect, and will be fixed.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/4117
* Update comment for RemoveDecorationsFrom
The existing spirv-opt `DebugInfoManager::AddDebugValueForDecl()` sets
the scope and line info of the new added DebugValue using the scope and
line of DebugDeclare. This is wrong because only a single DebugDeclare
must exist under a scope while we have to add DebugValue for all the
places where the variable's value is updated. Therefore, we have to set
the scope and line of DebugValue based on the places of the variable
updates.
This bug makes
https://github.com/google/amber/blob/main/tests/cases/debugger_hlsl_shadowed_vars.amber
fail. This commit fixes the bug.