This prevents CCP from making constant -> constant transitions when
evaluating instruction values. In this case, FClamp is evaluated twice.
On the first evaluation, if computes FClamp(0.5, 0.5, -1) which returns
-1. On the second evaluation, it computes FClamp(0.5, 0.5, VARYING)
which returns 0.5.
Both fold() computations are correct given the semantics of FClamp() but
this causes a lateral transition in the constant lattice which was not
being considered VARYING by CCP.
CCP should mark IR changed if it created new constants.
This fixes#3636.
When CCP is simulating statements, it will sometimes successfully fold
an instruction, which laters switches to varying. The initial fold of
the instruction may generate a new constant K.
The problem we were running into is when K never gets propagated to the
IR. Its definition will still exist, so CCP should mark the IR modified
in this case.
In fixing this bug, I noticed that an existing test was suffering from
the same bug. The change also makes PassTest::SinglePassRunAndMatch()
return the result from the pass, so that we can check that the pass
marks the IR modified in this case.
Currently it is impossible to invalidate the constnat and type manager.
However, the compact ids pass changes the ids for the types and
constants, which makes them invalid. This change will make them
analyses that have to been explicitly marked as preserved by passes.
This will allow compact ids to invalidate them.
Fixes#2220.
Currently the IRContext is passed into the Pass::Process method. It is
then up to the individual pass to store the context into the context_
variable. This CL changes the Run method to store the context before
calling Process which no-longer receives the context as a parameter.
This CL moves the files in opt/ to consistenly be under the opt::
namespace. This frees up the ir:: namespace so it can be used to make a
shared ir represenation.
The following passes are updated to preserve the inst-to-block and
def-use analysies:
private-to-local
aggressive dead-code elimination
dead branch elimination
local-single-block elimination
local-single-store elimination
reduce load size
compact ids (inst-to-block only)
merge block
dead-insert elimination
ccp
The one execption is that compact ids still kills the def-use manager.
This is because it changes so many ids it is faster to kill and rebuild.
Does everything in
https://github.com/KhronosGroup/SPIRV-Tools/issues/1593 except for the
changes to merge return.
This fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/1143.
When an instruction transitions from constant to bottom (varying) in the
lattice, we were telling the propagator that the instruction was
varying, but never updating the actual value in the values table.
This led to incorrect value substitutions at the end of propagation.
The patch also re-enables CCP in -O and -Os.
This implements the conditional constant propagation pass proposed in
Constant propagation with conditional branches,
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
The main logic resides in CCPPass::VisitInstruction. Instruction that
may produce a constant value are evaluated with the constant folder. If
they produce a new constant, the instruction is considered interesting.
Otherwise, it's considered varying (for unfoldable instructions) or
just not interesting (when not enough operands have a constant value).
The other main piece of logic is in CCPPass::VisitBranch. This
evaluates the selector of the branch. When it's found to be a known
value, it computes the destination basic block and sets it. This tells
the propagator which branches to follow.
The patch required extensions to the constant manager as well. Instead
of hashing the Constant pointers, this patch changes the constant pool
to hash the contents of the Constant. This allows the lookups to be
done using the actual values of the Constant, preventing duplicate
definitions.