It is possible that the result of a void function call is used. In case
it is used, we need something that still defines its id after inlining.
We use an undef for that purpose.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/3704
CCP should mark IR changed if it created new constants.
This fixes#3636.
When CCP is simulating statements, it will sometimes successfully fold
an instruction, which laters switches to varying. The initial fold of
the instruction may generate a new constant K.
The problem we were running into is when K never gets propagated to the
IR. Its definition will still exist, so CCP should mark the IR modified
in this case.
In fixing this bug, I noticed that an existing test was suffering from
the same bug. The change also makes PassTest::SinglePassRunAndMatch()
return the result from the pass, so that we can check that the pass
marks the IR modified in this case.
In the existing code, ADCE pass does not check DebugScope of an
instruction when it checks the users of each instruction, which results
in removing OpenCL.Debug.100 instructions that are only used by
DebugScope. This commit lets ADCE pass add DebugScope of an instruction
to the live instruction set when the instruction is added to the live
instruction set.
* No longer blindly add global non-semantic info instructions to global
types and values
* functions now have a list of non-semantic instructions that succeed
them in the global scope
* global non-semantic instructions go in global types and values if
they appear before any function, otherwise they are attached to the
immediate function predecessor in the module
* changed ADCE to use the function removal utility
* Modified EliminateFunction to have special handling for non-semantic
instructions in the global scope
* non-semantic instructions are moved to an earlier function (or full
global set) if the function they are attached to is eliminated
* Added IRContext::KillNonSemanticInfo to remove the tree of
non-semantic instructions that use an instruction
* this is used in function elimination
* There is still significant work in the optimizer to handle
non-semantic instructions fully in the optimizer
For each local variable, ssa-rewrite should remove its DebugDeclare
if and only if it is replaced by any number of DebugValues for store
and phi instructions.
For example, when we have two variables `a` whose DebugDeclare
will be replaced to DebugValues by ssa-rewrite pass and `b` whose
DebugDeclare will not be replaced, we have to remove only DebugDeclare
for `a`, not `b`.
When we copy the loop body to unroll it, we have to copy its
instructions but DebugDeclare or DebugValue used for the declaration
i.e., DebugValue with Deref must not be copied and only the first block
can contain those instructions.
Rename the `${SPIRV_TOOLS}` target to `${SPIRV_TOOLS}-static` and alias `${SPIRV_TOOLS}` to either `${SPIRV_TOOLS}-static` or `${SPIRV_TOOLS}-shared` depending on `BUILD_SHARED_LIBS`.
Re-point all internal uses of `${SPIRV_TOOLS}` to `${SPIRV_TOOLS}-static`.
`${SPIRV_TOOLS}-static` is explicitly renamed to just `${SPIRV_TOOLS}` to ensure the name does not change from current behavior.
Build the `SPIRV-Tools-*` libraries as static, as this is what they always were.
Force the external targets `gmock` and `effcee` to be built statically. These either do not support being built as shared libraries, or require special flags.
Issue: #3482
1. Set the debug scope and line information for the new replacement
instructions.
2. Replace DebugDeclare and DebugValue if their OpVariable or value
operands are replaced by scalars. It uses 'Indexes' operand of
DebugValue. For example,
struct S { int a; int b;}
S foo; // before scalar replacement
int foo_a; // after scalar replacement
int foo_b;
DebugDeclare %dbg_foo %foo %null_expr // before
DebugValue %dbg_foo %foo_a %Deref_expr 0 // after
DebugValue %dbg_foo %foo_b %Deref_expr 1 // means Value(foo.members[1]) == Deref(%foo_b)
Essentially, it marks all DebugInfo instructions in functions (and their operands) as live. It treats DebugDeclare and DebugValue with Deref as loads and so marks Stores of their variables as live.
It marks each DebugGlobalVariables as live except for its variable. After closure, it rechecks if the variable is live. If not, the DebugGlobalVariable instruction's variable operand is set to DebugInfoNone, per the DebugInfo spec.
This pass basically follows the same process as ssa-rewrite: it adds a DebugValue after each Store and removes the DebugDeclare or DebugValue Deref. It only does this if all instructions that are dependent on the Store are Loads and are replaced.
This commit lets the vector DCE pass preserve the OpenCL.DebugInfo.100
information properly. When the vector DCE pass determines the liveness
of instructions, the debug instructions must not affect the decision. In
addition, when it kills some instructions, it has to kill DebugValue
instructions that use the killed instructions. When it updates some
composite values to meaningful values (not undef), it has to remove
DebugValue because the value information becomes incorrect.
The decision to reduce the load must be not affected by debug
instructions. For example, even when a DebugValue references a
result id of a loaded composite value, this change lets the
reduce-load-size pass reduce the load if the full composite value is not
used anywhere other than the DebugValue.
When the pass replaces the local variable `OpVariable` ids to their
corresponding pointers, we have to update operands of DebugValue or
DebugDeclare instructions.
When there are multiple entries and the shader has a variable with
WorkGroup storage class, those multiple entry functions store values to
the variable. Since ADCE pass uses def-use chains to propagate the work
list, some of instructions in the work list are not actually a part of
the currently processed function. As a result, it adds instructions in
other functions and put them in |live_insts_|. However, it does not
have the control flow information for those instructions in other
functions i.e., |block2headerBranch_| and |header2nextHeaderBranch_|.
When it processes those instructions (they are added when it processes a
different function), it skips handling them because they are already in
|live_insts_| and does not check |block2headerBranch_| and
|header2nextHeaderBranch_|, which results in skipping some branches.
Even though those branches are live branches, it considers they are dead
branches.
For many spirv-opt passes such as simplify-instructions pass, we have to
correctly clear the OpenCL.DebugInfo.100 debug information for
KillInst() and ReplaceAllUses(). If we keep some debug information that
disappeared because of KillInst() and ReplaceAllUses(), adding new
DebugValue instructions based on the existing DebugDeclare information
will generate incorrect information. This CL update DebugInfoManager
and IRContext to correctly clear debug information.
* Support load and extract pattern in desc_sroa.
* Fix typo in comments.
* Load replacement var before use; and added test.
* fix formatting
* Address code review comments.
Add OpenCL.DebugInfo.100 `DebugValue` instructions for store
and phi instructions of local variables to provide the debugger with
the updated values of local variables correctly.
Handles the OpenCL100Debug extension in inlining. It preserves the information that is available while also adding the debug inlined at for all of the inlining that it does.
Reject folding comparisons with unfoldable types.
Fixes#3343
When CCP is evaluating an instruction, it was trying to fold a
comparison with 64 bit integers. This was causing a fold failure later
since the folder still cannot deal with 64 bit integers.
ssa-rewrite fails in `MemPass::GetPtr()` when the SPIR-V code contains
`OpLoad` for the result id of `OpConstantNull` because of the out of
index access for an operand to get the base address. This commit fixes
it.
Fixes#3344
In this PR, the classes that represent the adjust branch weights
transformation and fuzzer pass were implemented. This transformation
adjusts the branch weights of a OpBranchConditional instruction.