Includes:
- Shift to use of spirv-header extinst.nonsemantic.shader grammar.json
- Remove extinst.nonsemantic.vulkan.debuginfo.100.grammar.json
- Enable all optimizations for Shader.DebugInfo
Also fixes scalar replacement to only insert DebugValue after all
OpVariables. This is not necessary for OpenCL.DebugInfo, but it is
for Shader.DebugInfo.
Likewise, fixes Private-to-Local to insert DebugDeclare after all
OpVariables.
Also fixes inlining to handle FunctionDefinition which can show up
after first block if early return processing happens.
Co-authored-by: baldurk <baldurk@baldurk.org>
convert-to-sampled-image pass converts images and/or samplers with
given pairs of descriptor set and binding to sampled image.
If a pair of an image and a sampler have the same pair of descriptor
set and binding that is one of the given pairs, they will be
converted to a sampled image. In addition, if only an image has the
descriptor set and binding that is one of the given pairs, it will
be converted to a sampled image as well.
For example, when we have
%a = OpLoad %type_2d_image %texture
%b = OpLoad %type_sampler %sampler
%combined = OpSampledImage %type_sampled_image %a %b
%value = OpImageSampleExplicitLod %v4float %combined ...
1. If %texture and %sampler have the same descriptor set and binding
%combine_texture_and_sampler = OpVaraible %ptr_type_sampled_image_Uniform
...
%combined = OpLoad %type_sampled_image %combine_texture_and_sampler
%value = OpImageSampleExplicitLod %v4float %combined ...
2. If %texture and %sampler have different pairs of descriptor set and binding
%a = OpLoad %type_sampled_image %texture
%extracted_image = OpImage %type_2d_image %a
%b = OpLoad %type_sampler %sampler
%combined = OpSampledImage %type_sampled_image %extracted_image %b
%value = OpImageSampleExplicitLod %v4float %combined ...
This PR adds a generic dataflow analysis framework to SPIRV-opt, with the intent of being used in SPIRV-lint. This may also be useful for SPIRV-opt, as existing ad-hoc analyses can be rewritten to use a common framework, but this is not the target of this PR.
Control dependence analysis constructs a control dependence graph,
representing the conditions for a block's execution relative to the
results of other blocks with conditional branches, etc.
This is an analysis pass that will be useful for the linter and
potentially also useful in opt. Currently it is unused except for the
added unit tests.
This is based on a legacy commit which installs a local grammar. A
followup commit will change to the grammar in SPIRV-Headers.
Co-authored-by: baldurk <baldurk@baldurk.org>
The new pass will removed interface variable on the OpEntryPoint instruction when they are not statically referenced in the call tree of the entry point.
It can be enabled on the command line using the options `remove-unused-interface-variables`.
This pass converts an internal form of GLSLstd450 Interpolate ops
to the externally valid form. The external form takes the lvalue
of the interpolant. The internal form can do a load of the interpolant.
The pass replaces the load with its pointer. The internal form is
generated by glslang and possibly other frontends for HLSL shaders.
The new pass is called as part of HLSL legalization after all
propagation is complete.
Also adds internal interpolate form to pre-legalization validation
Based on the OpLine spec, an OpLine instruction must be applied to
the instructions physically following it up to the first occurrence
of the next end of block, the next OpLine instruction, or the next
OpNoLine instruction.
```
OpLine %file 0 0
OpNoLine
OpLine %file 1 1
OpStore %foo %int_1
%value = OpLoad %int %foo
OpLine %file 2 2
```
For the above code, the current spirv-opt keeps three line
instructions `OpLine %file 0 0`, `OpNoLine`, and `OpLine %file 1 1`
in `std::vector<Instruction> dbg_line_insts_` of Instruction class
for `OpStore %foo %int_1`. It does not put any line instruction to
`std::vector<Instruction> dbg_line_insts_` of
`%value = OpLoad %int %foo` even though `OpLine %file 1 1` must be
applied to `%value = OpLoad %int %foo` based on the spec.
This results in the missing line information for
`%value = OpLoad %int %foo` while each spirv-opt pass optimizes the
code. We have to put `OpLine %file 1 1` to
`std::vector<Instruction> dbg_line_insts_` of
both `%value = OpLoad %int %foo` and `OpStore %foo %int_1`.
This commit conducts the line instruction propagation and skips
emitting the eliminated line instructions at the end, which are the same
with PropagateLineInfoPass and RedundantLineInfoElimPass. This
commit removes PropagateLineInfoPass and RedundantLineInfoElimPass.
KhronosGroup/glslang#2440 is a related PR that stop using
PropagateLineInfoPass and RedundantLineInfoElimPass from glslang.
When the code in this PR applied, the glslang tests will pass.
* Generate ext inst table for reflection
* Change build to use grammar files from SPIRV-Headers instead of
SPIRV-Tools
* Add enum for clspv reflection extended instruction set
* count it as non-semantic
* validate clspv reflection extended instruction set
* Remove local extended inst sets
* update headers deps
* Update nbuilds to use grammars from SPIRV-Headers instead of
local duplicates
We need an analysis for OpenCL.DebugInfo.100 extension instructions such
as a map between function id and its DebugFunction. This commit add an
analysis for it.
Create a pass to instrument OpDebugPrintf instructions. This pass replaces all OpDebugPrintf instructions with instructions to write a record containing the string id and the all specified values into a special printf output buffer (if space allows). This pass is designed to support the printf validation in the Vulkan validation layers.
Fixes#3210
* Combine the extinst-name and extinst-output-base into one arg.
Some build systems such as Android blueprints require that the inputs
and outputs of generator scripts are all provided as arguments. These
two arguments to generate_language_headers.py are combined to form the
output path in the script. This change simply lets the user provide the
whole output path as an argument.
* Fix typo in build_defs.bzl and update Android.mk
* Allow OpExtInst for DebugInfo between secion 9 and 10
Fixes#3086
* Handle spirv-opt errors on DebugInfo Ext
* Add IR Loader test
* Fix ir loader bug
* Handle DebugFunction/DebugTypeMember forward reference
* Add test cases (forward reference to function)
* Support old DebugInfo extension
* Validate local debug info out of function
* Clone opencl.debuginfo.100 grammar from debuginfo grammar
Update version number to 200 revision 2
* Apply content from OpenCL.DebugInfo.100 extension text
* Rename grammar file
* Support OpenCL.DebugInfo.100 extended instructions
Add support for prefixing operand type names, to disambiguate
them between different instruction sets.
* Add tests for OpenCL.DebugInfo.100
* Support lookup of OpenCL.DebugInfo.100 extinst
* Add tests for enum values
* Recognize 2017-2019 as copyright date range
* Android.mk: support OpenCL.DebugInfo.100 extended instruction set
Also, stop generating core instruction tables for non-unified1 versions
of the grammar.
* Imported entity operand type is concrete
* Bazel: Suppoort OpenCL.DebugInfo.100
* BUILD.gn: Support OpenCL.DebugInfo.100
* Handle id overflow in the ssa rewriter.
Remove LocalSSAElim pass at the same time. It does the same thing as the SSARewrite pass. Then even share almost all of the same code.
Fixes crbug.com/997246
The first pass applies the RelaxedPrecision decoration to all executable
instructions with float32 based type results. The second pass converts
all executable instructions with RelaxedPrecision result to the equivalent
float16 type, inserting converts where necessary.
Add the first steps to removing the AMD extension VK_AMD_shader_ballot.
Splitting up to make the PRs smaller.
Adding utilities to add capabilities and change the version of the
module.
Replaces the instructions:
OpGroupIAddNonUniformAMD = 5000
OpGroupFAddNonUniformAMD = 5001
OpGroupFMinNonUniformAMD = 5002
OpGroupUMinNonUniformAMD = 5003
OpGroupSMinNonUniformAMD = 5004
OpGroupFMaxNonUniformAMD = 5005
OpGroupUMaxNonUniformAMD = 5006
OpGroupSMaxNonUniformAMD = 5007
and extentend instructions
WriteInvocationAMD = 3
MbcntAMD = 4
Part of #2814
We are no able to inline OpKill instructions into a continue construct.
See #2433. However, we have to be able to inline to correctly do
legalization. This commit creates a pass that will wrap OpKill
instructions into a function of its own. That way we are able to inline
the rest of the code.
The follow up to this will be to not inline any function that contains
an OpKill.
Fixes#2726
spirv-opt: Add --graphics-robust-access
Clamps access chain indices so they are always
in bounds.
Assumes:
- Logical addressing mode
- No runtime-array-descriptor-indexing
- No variable pointers
Adds stub code for clamping coordinate and samples
for OpImageTexelPointer.
Adds SinglePassRunAndFail optimizer test fixture.
Android.mk: add source/opt/graphics_robust_access_pass.cpp
Adds Constant::GetSignExtendedValue, Constant::GetZeroExtendedValue
WebGPU requires certain variables to be initialized, whereas there are
known issues with using initializers in Vulkan. This PR is the first
of three implementing a pass to decompose initialized variables into
a variable declaration followed by a store. This has been broken up
into multiple PRs, because there 3 distinct cases that need to be
handled, which require separate implementations.
This first PR implements the basic infrastructure that is needed, and
handling of Function storage class variables. Private and Output will
be handled in future PRs.
This is part of resolving #2388
In WebGPU, the component operand 0xFFFFFFFF is forbidden, but in
Vulkan it is used to indicate a value is undefined. When converting to
WebGPU, 0xFFFFFFFF needs to converted to a legal value, though the
specific one does not matter, since it was used to indicate an
undefined entry in the original code. Choosing to use 0, since the
operands are required to be on [0, N-1], so 0 is guaranteed to always
be valid.
Fixes#2349
This pass tries to fix validation error due to a mismatch of storage classes
in instructions. There is no guarantee that all such error will be fixed,
and it is possible that in fixing these errors, it could lead to other
errors.
Fixes#2430.
Adds an optimization pass to remove usages of AtomicCounterMemory
bit. This bit is ignored in Vulkan environments and outright forbidden
in WebGPU ones.
Fixes#2242
Add a pass that looks for members of structs whose values do not affects
the output of the shader. Those members are then removed and just
treated like padding in the struct.
* Fixes#2358. Added to the reducer the ability to remove a function that is not directly called. Factored out some code from the optimizer to help with this.
Upgrade to VulkanKHR memory model
* Converts Logical GLSL450 memory model to Logical VulkanKHR
* Adds extension and capability
* Removes deprecated decorations and replaces them with appropriate
flags on downstream instructions
* Support for Workgroup upgrades
* Support for copy memory
* Adding support for image functions
* Adding barrier upgrades and tests
* Use QueueFamilyKHR scope instead of device
These are bookend passes designed to help preserve line information
across passes which delete, move and clone instructions. The propagation
pass attaches a debug line instruction to every instruction based on
SPIR-V line propagation rules. It should be performed before optimization.
The redundant line elimination pass eliminates all line instructions
which match the previous line instruction. This pass should be performed
at the end of optimization to reduce physical SPIR-V file size.
Fixes#2027.
* Add base and core bindless validation instrumentation classes
* Fix formatting.
* Few more formatting fixes
* Fix build failure
* More build fixes
* Need to call non-const functions in order.
Specifically, these are functions which call TakeNextId(). These need to
be called in a specific order to guarantee that tests which do exact
compares will work across all platforms. c++ pretty much does not
guarantee order of evaluation of operands, so any such functions need to
be called separately in individual statements to guarantee order.
* More ordering.
* And more ordering.
* And more formatting.
* Attempt to fix NDK build
* Another attempt to address NDK build problem.
* One more attempt at NDK build failure
* Add instrument.hpp to BUILD.gn
* Some name improvement in instrument.hpp
* Change all types in instrument.hpp to int.
* Improve documentation in instrument.hpp
* Format fixes
* Comment clean up in instrument.hpp
* imageInst -> image_inst
* Fix GetLabel() issue.
* Create structed cfg analysis.
There are lots of optimization that have to traverse the CFG in a
structured order just because it wants to know which constructs a
basic block in contained in. This adds extra complexity to these
optimizations, for causes too much refactoring of older optimizations.
To help with this problem, I have written an analysis that can give this
information.
* Identify branches breaking from loops.
Dead branch elimination does a search for a conditional branch to the
end of the current selection construct. This search assumes that the
only way to leave the construct is through the merge node. But that is
not true. The code can jump to the merge node of a loop that contains
the construct.
The search needs to take this into consideration.
* Create a new entry point for the optimizer
Creates a new struct to hold the options for the optimizer, and creates
an entry point that take the optimizer options as a parameter.
The old entry point that takes validator options are now deprecated.
The validator options will be one of the optimizer options.
Part of the optimizer options will also be the upper bound on the id bound.
* Add a command line option to set the max value for the id bound. The default is 0x3FFFFF.
* Modify `TakeNextIdBound` to return 0 when the limit is reached.
* Split constant opcode validation out of idUsage and into
validate_constants.cpp
* minor style fixes
* reduced duplication
* fixed an issue with array sizing