* Check var pointer capability in ADCE.
* Check var ptr capability for common uniform.
* Check var ptr capability in access chain convert.
Since we want this pass to run even if there are variable pointer on
storage buffers, we had to remove asserts that assumed there were no
variable pointers. The functions with the asserts will now work, it
becomes the responsibility of the callers to deal with the output as
appropriate.
* Single block elimination and variable pointers.
It seems like the code in local single block elimination is able to
handle cases with variable pointers already. This is because the
function `HasOnlySupportedRefs` ensures that variables that feed a
variable pointer are not candidates.
* Single store elimination and variable pointers.
It seems like the code in local single stroe elimination is able to
handle cases with variable pointers already. This is because the
function `FindSingleStoreAndCheckUses` ensures that variables that feed
a variable pointer are not candidates.
* SSA rewriter and variable pointers.
It seems like the code in the two passes that call the SSA rewriter are
able to handle cases with variable pointers already. This is because the
function `HasOnlySupportedRefs` ensures that variables that feed
a variable pointer are not candidates.
Fixes#2458.
Fixes#2456
* When eliminating a structured construct that has an unreachable merge,
replace that unreachable terminator with an appropriate return
* New tests
* Remove use of deprecated googletest macro
INSTANTIATE_TEST_CASE_P has been deprecated. We need to use
INSTANTIATE_TEST_SUITE_P instead.
* Remove extra commas from test suites.
* Invalidate the decoration manager at the start of ADCE.
If the decoration manager is kept live the the contex will try to keep
it up to date. ADCE deals with group decorations by changing the
operands in |OpGroupDecorate| instructions directly without informing
the decoration manager. This puts it in an invalid state, which will
cause an error when the context tries to update it. To Avoid this
problem, we will invalidate the decoration manager upfront.
At the same time, the decoration manager is now considered when checking
the consistency of the decoration manager.
Fixes#2104
* Checks the rules for logical addressing and variable pointers
* Has an out for relaxed logical pointers
* Updated PassFixture to expose validator options
* enabled relaxed logical pointers for some tests
* New validator tests
This CL takes the various opt unit tests and makes a single executable
instead of one per test. This reduces the number of build targets by
~125 when building with ninja.
ADCE liveness algorithm should treat OpUnreachable at least like other
branch instructions. It was being treated as always live which was
preventing useless structured constructs from being eliminated.
OpUnreachable is generated by dead branch elimination which is now
being required by merge return, so this fix should accompany that
change.
Was removing control structures which didn't have data dependency
with enclosed live loop and otherwise did not contain live code.
An example is a counting loop around a live loop.
Fixes#1967.
The HlslCounterBufferGOOGLE that was introduced changed the OpDecorateId
so that is can now reference an id other than the target. If that other
id is used only in the decoration, then the definition of the id will be
removed because decoration do not count as real uses.
However, if the target of the decoration is still live the decoration
will not be removed. This leaves a reference to an id that is not
defined.
There are two solutions to consider. The first is that is the decoration
is kept, then the definition of the id should be kept live. Implementing
this change would be involved because the way ADCE handles decorations
will have to be reimplemented.
The other solution is to remove the decoration the id is otherwise dead.
This works for this specific case. Also this is the more desirable
behaviour in this case. The id will always be the id of a variable that
belongs to a descriptor set. If that variable is not bound and we do
not remove it, the driver will complain.
I chose to implement the second solution. The first will be left to when
a case for it comes up.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/1885.
* Check rules from Execution Mode tables, 2.16.2 and the Vulkan
environment spec
* Allows MeshNV execution model with the following execution modes
* LocalSize, LocalSizeId, OutputPoints and OutputVertices
* Done to not break their validation
* Handle breaks from structured-ifs in DCE.
dead code elimination assumes that are conditional branches except for
breaks and continues in loops will have an OpSelectionMerge before them.
That is not true when breaking out of a selection construct.
The fix is to look for breaks in selection constructs in the same place
we look for breaks and continues for loops.
Fixes#1120
Checks that all static uses of the Input and Output variables are listed
as interfaces in each corresponding entry point declaration.
* Changed validation state to track interface lists
* updated many tests
* Modified validation state to store entry point names
* Combined with interface list and called EntryPointDescription
* Updated uses
* Changed interface validation error messages to output entry point name
in addtion to ID
ADCE does not treat OpCopyMemory as an instruction that references
memory. Because of that stores are removed that should not be.
This change teaches ADCE that OpCopyMemory and OpCopyMemorySize both
loads from and stores to memory. This will keep other stores live when
needed, and will allows ADCE to remove OpCopyMemory instructions as
well.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/1556.
If there is a shader with a variable in the workgroup storage class that
is stored to, but not loadeds, then we know nothing will read those
loads. It should be safe to remove them.
This is implemented in ADCE by treating workgroup variables the same
way that private variables are treated.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/1550.
Currently OpImageTexelPointer operations are treat like a use of the
pointer, but it does
not look for the memory being referenced to make sure stores are not
removed.
This change teaches it so identify the memory being accessed, and
treats it as if that memory is loaded.
Fixes to #1445.
CPPreference.com has this description of digits10:
“The value of std::numeric_limits<T>::digits10 is the number of
base-10 digits that can be represented by the type T without change,
that is, any number with this many significant decimal digits can be
converted to a value of type T and back to decimal form, without
change due to rounding or overflow.”
This means that any number with this many digits can be represented
accurately in the corresponding type. A change in any digit in a
number after that may or may not cause it a different bitwise
representation. Therefore this isn’t necessarily enough precision to
accurately represent the value in text. Instead we need max_digits10
which has the following description:
“The value of std::numeric_limits<T>::max_digits10 is the number of
base-10 digits that are necessary to uniquely represent all distinct
values of the type T, such as necessary for
serialization/deserialization to text.”
The patch includes a test case in hex_float_test which tries to do a
round-robin conversion of a number that requires more than 6 decimal
places to be accurately represented. This would fail without the
patch.
Sadly this also breaks a bunch of other tests. Some of the tests in
hex_float_test use ldexp and then compare it with a value which is not
the same as the one returned by ldexp but instead is the value rounded
to 6 decimals. Others use values that are not evenly representable as
a binary floating fraction but then happened to generate the same
value when rounded to 6 decimals. Where the actual value didn’t seem
to matter these have been changed with different values that can be
represented as a binary fraction.
* AddToWorklist can now be called unconditionally
* It will only add instructions that have not already been marked as
live
* Fixes a case where a merge was not added to the worklist because the
branch was already marked as live
* Added two similar tests that fail without the fix
Modified ADCE to remove dead globals.
* Entry point and execution mode instructions are marked as alive
* Reachable functions and their parameters are marked as alive
* Instruction deletion now deferred until the end of the pass
* Eliminated dead insts set, added IsDead to calculate that value
instead
* Ported applicable dead variable elimination tests
* Ported dead constant elim tests
Added dead function elimination to ADCE
* ported dead function elim tests
Added handling of decoration groups in ADCE
* Uses a custom sorter to traverse decorations in a specific order
* Simplifies necessary checks
Updated -O and -Os pass lists.
A few optimizations are updates to handle code that is suppose to be
using the logical addressing mode, but still has variables that contain
pointers as long as the pointer are to opaque objects. This is called
"relaxed logical addressing".
|Instruction::GetBaseAddress| will check that pointers that are use meet
the relaxed logical addressing rules. Optimization that now handle
relaxed logical addressing instead of logical addressing are:
- aggressive dead-code elimination
- local access chain convert
- local store elimination passes.
This fixes issue #1075
- Mark continue when conditional branch with merge block.
Only mark if merge block is not continue block.
- Handle conditional branch break with preceding merge
This class implements a generic value propagation algorithm based on the
conditional constant propagation algorithm proposed in
Constant propagation with conditional branches,
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
The implementation is based on
A Propagation Engine for GCC
Diego Novillo, GCC Summit 2005
http://ols.fedoraproject.org/GCC/Reprints-2005/novillo-Reprint.pdf
The purpose of this implementation is to act as a common framework for any
transformation that needs to propagate values from statements producing new
values to statements using those values.
Re-formatted the source tree with the command:
$ /usr/bin/clang-format -style=file -i \
$(find include source tools test utils -name '*.cpp' -or -name '*.h')
This required a fix to source/val/decoration.h. It was not including
spirv.h, which broke builds when the #include headers were re-ordered by
clang-format.
Mark structured conditional branches live only if one or more instructions
in their associated construct is marked live. After closure, replace dead
structured conditional branches with a branch to its merge and remove
dead blocks.
ADCE: Dead If Elim: Remove duplicate StructuredOrder code
Also generalize ComputeStructuredOrder so that the caller can specify the
root block for the order. Phi insertion uses pseudo_entry_block and adce and
dead branch elim use the first block of the function.
ADCE: Dead If Elim: Pull redundant code out of InsertPhiInstructions
ADCE: Dead If Elim: Encapsulate CFG Cleanup Initialization
ADCE: Dead If Elim: Remove redundant code from ADCE initialization
ADCE: Dead If: Use CFGCleanup to eliminate newly dead blocks
Moved bulk of CFG Cleanup code into MemPass.
Includes code to deal correctly with OpFunctionParameter. This
is needed by opaque propagation which may not exhaustively inline
entry point functions.
Adds ProcessEntryPointCallTree: a method to do work on the
functions in the entry point call trees in a deterministic order.
ADCE will now generate correct code in the presence of function calls.
This is needed for opaque type optimization needed by glslang. Currently
all function calls are marked as live. TODO: mark calls live only if they
write a non-local.
Currently only SPV_KHR_variable_pointers is disallowed in passes which
do pointer analysis. Positive and negative tests of the general extensions
mechanism were added to aggressive_dce but cover all passes.
Create aggressive dead code elimination pass
This pass eliminates unused code from functions. In addition,
it detects and eliminates code which may have spurious uses but which do
not contribute to the output of the function. The most common cause of
such code sequences is summations in loops whose result is no longer used
due to dead code elimination. This optimization has additional compile
time cost over standard dead code elimination.
This pass only processes entry point functions. It also only processes
shaders with logical addressing. It currently will not process functions
with function calls. It currently only supports the GLSL.std.450 extended
instruction set. It currently does not support any extensions.
This pass will be made more effective by first running passes that remove
dead control flow and inlines function calls.
This pass can be especially useful after running Local Access Chain
Conversion, which tends to cause cycles of dead code to be left after
Store/Load elimination passes are completed. These cycles cannot be
eliminated with standard dead code elimination.
Additionally: This transform uses a whitelist of instructions that it
knows do have side effects, (a.k.a. combinators). It assumes other
instructions have side effects: it will not remove them, and assumes
they have side effects via their ID operands.