Currently the validator, when checking an instruction is in the correct
section, always advances the current section. This means if we have an
instruction from a previous section we'll end up reporting it as invalid
in a function definition. This error is confusing.
This CL updates the validator to check if the given opcode is from a
previous layout section before advancing the current section. If it is
from a previous layout section an error is emitted.
* Remove use of deprecated googletest macro
INSTANTIATE_TEST_CASE_P has been deprecated. We need to use
INSTANTIATE_TEST_SUITE_P instead.
* Remove extra commas from test suites.
* Check rules from Execution Mode tables, 2.16.2 and the Vulkan
environment spec
* Allows MeshNV execution model with the following execution modes
* LocalSize, LocalSizeId, OutputPoints and OutputVertices
* Done to not break their validation
When validating a FunctionCall we can trigger an assert if we are not
currently within a function body. This CL adds verification that we are
within a function before attempting to add a function call.
Issue 1789.
Many of the files have using std::<foo> statements in them, but then the
use of <foo> will be inconsistently std::<foo> or <foo> scattered
through the file. This CL removes all of the using statements and
updates the code to have the required std:: prefix.
This CL changes validate.cpp to use diag providing an explicit
instruction. This changes the result of the function end checks to not
output a disassembly anymore as printing the last line of the module
didn't seem to make sense.
[val] Add extra context to error messages.
This CL extends the error messages produced by the validator to output the
disassembly of the errored line.
The validation_id messages have also been updated to print the line number of
the error instead of the word number. Note, the error number is from the start
of the SPIR-V, it does not include any headers printed in the disassembled code.
Fixes#670, #1581
According to the SPIR-V Spec, section 2.4 Logical Layout of a Module there
should be a single required OpMemoryModel instruction provided. This CL adds
validation that OpMemoryModel is provided to the SPIR-V validator.
Fixes#1207
Re-formatted the source tree with the command:
$ /usr/bin/clang-format -style=file -i \
$(find include source tools test utils -name '*.cpp' -or -name '*.h')
This required a fix to source/val/decoration.h. It was not including
spirv.h, which broke builds when the #include headers were re-ordered by
clang-format.
From the SPIR-V Spec 2.16.1:
A function declaration (an OpFunction with no basic blocks), must have
a Linkage Attributes Decoration with the Import Linkage Type.
A function definition (an OpFunction with basic blocks) cannot be
decorated with the Import Linkage Type.
It is best to check the error messages of unit tests that fail
validation. This will ensure that a validation failure is due to what we
expect and not due to some secondary reason.
Updating SPIR-V Validator unit tests with error message checks.
According to the SPIRV Spec (2.16.1):
* There is at least one OpEntryPoint instruction, unless the Linkage
capability is being used.
* No function can be targeted by both an OpEntryPoint instruction and an
OpFunctionCall instruction.
Also updated unit tests to includ OpEntryPoint.
These rules are under "Data Rules" in 2.16.1 (Universal Validation
Rules) part of the SPIR-V 1.1 Specification document:
* Scalar floating-point types can be parameterized only as 32 bit, plus
any additional sizes enabled by capabilities.
* Scalar integer types can be parameterized only as 32 bit, plus any
additional sizes enabled by capabilities.
* Vector types can only be parameterized with numerical types or the
OpTypeBool type.
* Matrix types can only be parameterized with floating-point types.
* Matrix types can only be parameterized as having only 2, 3, or 4
columns.
* Specialization constants (see Specialization) are limited to integers,
Booleans, floating-point numbers, and vectors of these.