Previously we use vectors of objects and move semantics to handle
ownership. That approach has the flaw that inserting an object into
the middle of a vector, which may trigger a vector reallocation,
can invalidate some addresses taken from instructions.
Now the in-memory representation internally uses vector of unique
pointers to handle ownership. Since objects are explicitly heap-
allocated now, pointers to them won't be invalidated by vector
resizing anymore.
- Find unreachable continue targets. Look for back edges
with a DFS traversal separate from the dominance traversals,
where we count the OpLoopMerge from the header to the continue
target as an edge in the graph.
- It's ok for a loop to have multiple back edges, provided
they are all from the same block, and we call that the latch block.
This may require a clarification/fix in the SPIR-V spec.
- Compute postdominance correctly for infinite loop:
Bias *predecessor* traversal root finding so that you use
a later block in the original list. This ensures that
for certain simple infinite loops in the CFG where neither
block branches to a node without successors, that we'll
compute the loop header as dominating the latch block, and the
latch block as postdominating the loop header.
Fixes dominance calculation when there is a forward arc from an
unreachable block A to a reachable block B. Before this fix, we would
say that B is not dominated by the graph entry node, and instead say
that the immediate dominator of B is the psuedo-entry node of the
augmented CFG.
The fix:
- Dominance is defined in terms of a traversal from the entry block
of the CFG. So the forward DFS should start from the function
entry block, not the pseudo-entry-block.
- When following edges backward during dominance calculations, only go to
nodes that are actually reachable in the forward traversal.
Important: the sense of reachability flips around when computing
post-dominance.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/297
The def-use dominance checker doesn't have enough info to know
that a particular use is in an OpPhi, so skip tracking those uses
for now. Add a TODO to do a proper OpPhi variable-argument check
in the future.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/286
Ensure the dominance calculation visits all nodes in the CFG.
The successor list of the pseudo-entry node is augmented with
a single node in each cycle that otherwise would not be visited.
Similarly, the predecssors list of the pseduo-exit node is augmented
with the a single node in each cycle that otherwise would not
be visited.
Pulls DepthFirstSearch out so it's accessible outside of the dominator
calculation.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/279
Add a pass to freeze spec constants to their default values. This pass does
not fold the frozen spec constants and does not handle SpecConstantOp
instructions and SpecConstantComposite instructions.
* Creates an ID class which manages definition and use of IDs
* Moved tracking code from validate.cpp to validate_id.cpp
* Rename and combine SsaPass and ProcessIds into IdPass
* Remove module dependency in Function
Works around issue 248 by weakening the test:
https://github.com/KhronosGroup/SPIRV-Tools/issues/248
The validator should try to track (32-bit) constant values, and then
for capability checks on IDs, check the referenced value, not the
raw ID number.
For dominance calculations we use an "augmented" CFG
where we always add a pseudo-entry node that is the predecessor
in the augmented CFG to any nodes that have no predecessors in the
regular CFG. Similarly, we add a pseudo-exit node that is the
predecessor in the augmented CFG that is a successor to any
node that has no successors in the regular CFG.
Pseudo entry and exit blocks live in the Function object.
Fixes a subtle problem where we were implicitly creating
the block_details for the pseudo-exit node since it didn't
appear in the idoms map, and yet we referenced it. In such a case the
contents of the block details could be garbage, or zero-initialized.
That sometimes caused incorrect calculation of immediate dominators
and post-dominators. For example, on a debug build where the details
could be zero-initialized, the dominator of an unreachable block would
be given as the pseudo-exit node. Bizarre.
Also, enforce the rule that you must have an OpFunctionEnd to close off
the last function.
Refactor the way the post order vector is created. This new method
will allow for the extraction of backedges and create the post order
vector in one pass.
diagnostic.cpp:
- unreachable code
operand.cpp
- conversion between int and uint32_t
- unreachable code
hex_float.h:
- conversion from 'const int' to 'unsigned int'
- unreachable code
validate_id.cpp
- forcing value to bool 'true' or 'false'
validate_types.cpp:
- forcing value to bool 'true' or 'false'
* ValidationState_t and idUsage now store the addressing model and memory model of the SPIR-V module (this is necessary for certain instructions that need different checks depending on if the logical or physical addressing model is used)
* removed SpvOpPtrAccessChain and SpvOpInBoundsPtrAccessChain from spvOpcodeIsPointer again as these are disallowed in logical addressing mode and only allowed in physical addressing mode (which doesn't use/need spvOpcodeIsPointer in the first place)
* added SpvOpImageTexelPointer and SpvOpCopyObject to spvOpcodeIsPointer
* OpLoad/OpStore now only check if the used pointer operand originated from a valid pointer producing opcode in logical addressing mode (as per 2.16.1)
* moved bitcast pointer tests to the kernel / physical addressing model part (+cleanup)
* renamed spvOpcodeIsPointer to spvOpcodeReturnsLogicalPointer to clarify this function is only meant to be used with the logical addressing model
Add a high level version number for SPIRV-Tools, beginning
with v2016.0-dev. The README describes the format of the
version number.
The high level version number is extracted from the CHANGES
file. That works around:
- stale-bait for when we don't add tags to the repository
- our inability to add tags to the repository
Option --version causes spirv-as, spirv-dis, and spirv-val to
show the high level version number.
Add spvSoftwareVersionString to return the C-string for
the high level version number.
Add spvSoftwareVersionDetailsString() so that clients can get
more information if they want to.
Also allows us to clean up the uses in the tool executables files,
so now only one file includes build-version.inc.
Move the update-build-version logic to the only
CMakeLists file that needs it.
The update build version script takes a new argument
to name the output file.
* IdType is renamed to IdResultType.
* version is splitted into major_version and minor_version.
* Seperate Scope and IdScope operand kinds. Same for MemorySemantics.
For fulfilling this purpose, the |opcode| field in the
|spv_parsed_instruction_t| struct is changed to of type uint16_t.
Also add functions to query the information of a given SPIR-V
target environment.
This patch uses a Python script to parse the JSON grammar file to
generate the opcode table and operand kind tables.
Now we don't need to do the post-processing (from OperandClass
to spv_operand_type_t) and copying of the opcode info table is
not required anymore!
Previously, the grammar allowed many execution modes for a single
OpExecutionMode instruction.
Removes the variable- and optional- execution mode operand type
enum values.
Issue found by antiagainst@
Recognize SpvOpInBoundsPtrAccessChain and SpvOpPtrAccessChain as opcodes
returning a pointer.
* spvOpcodeIsPointer: recognize SpvOpInBoundsPtrAccessChain and SpvOpPtrAccessChain as opcodes returning a pointer
* isValid<SpvOpEntryPoint>: don't check kernel function signatures (these don't have to be 'void main(void)')
* added tests for kernel OpEntryPoint, OpInBoundsPtrAccessChain and OpPtrAccessChain, as well as facilities to actually test kernel/OpenCL SPIR-V
* fixed pow and pown specification (both should take 2 parameters), spec bug reported at https://www.khronos.org/bugzilla/show_bug.cgi?id=1469
* use ASSERT_TRUE instead of ASSERT_EQ
* added pow and pown test (pow(val, 2.0f) and pown(val, 3))
Revert " * fixed pow and pown specification (both should take 2 parameters), spec bug reported at https://www.khronos.org/bugzilla/show_bug.cgi?id=1469"
This reverts commit c3d5a87e73.
Revert " * added pow and pown test (pow(val, 2.0f) and pown(val, 3))"
This reverts commit 7624aec720.
Users always want to run all the checks. The spv_validate_options_t
mechanism, which provides little benefits to users, complicates the
internal implementation and also makes the tests exercise different
paths as users do.
Right now the tests are more like integration tests instead of
unit tests, which should be our next refactoring aim.
Now we have public headers arranged as follows:
$SPIRV_TOOLS_ROOT/include/spirv-tools/libspirv.h
$SPIRV_TOOLS_ROOT/include/spirv/spirv.h
$SPIRV_TOOLS_ROOT/include/spirv/GLSL.std.450.h
$SPIRV_TOOLS_ROOT/include/spirv/OpenCL.std.h
A project should use -I$SPIRV_TOOLS_ROOT/include
and then #include "spirv-tools/libspirv.h"
The headers from the SPIR-V Registry can be accessed as "spirv/spirv."
for example.
The install target should also install the headers from the SPIR-V
Registry. The libspirv.h header is broken otherwise.
The SPIRV-Tools library depends on the headers from the SPIR-V Registry.
The util/bitutils.h and util/hex_float.h are pulled into the internal
source tree. Those are not part of the public API to SPIRV-Tools.
This showed up in mips and mips64 builds. A combination of templates
and the error reporting were causing gcc to crash. This splits up the
functionality in a way that now successfully compiles.
- The SPIR-V spec generator has changed how it represents optional
operands. Now it tracks a separate boolean flag indicating optionality.
However, SPIRV-Tools still wants to represent both operand class
and optionality in the same enums space (SPV_OPERAND_TYPE_*).
So there's extra work in the patch.
- In the spec generator, OperandImage is now OperandImageOperands.
This affects enum translation in opcode.cpp.
- In the spec generator, image operands are explicitly followed by
Id, and VariableIds. However, SPIRV-Tools uses the bits set
in the image operand bitmask to control the number and meaning
of the Ids that follow. So in writing the opcode.inc syntax
table, drop all operands after OperandImageOperands.
- Some enums are now more explicitly represented in the generated
opcode.inc:
- AccessQualifier (e.g. on OpTypeImage), in both required and
optional flavours.
- MemoryAccess (e.g. on loads and stores)
- Add SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER
- Add tests for the optional AccessQualifier operand on OpTypeImage.
- Update the AccessQualifier test for OpTypeImage so it's a round
trip test through the disassembler as well.
Also
- Add type_id to spv_id_info_t.
- Use spv_id_info_t::type_id instead of words[1].
Triggered some asserts on tests, where the code incorrectly assumed
words[1] had a type. Remove the asserts and handle gracefully.
- Add tests for OpStore of a label, a void, and a function.
Remove redundant validations of OpConstant and OpConstantComposite.
Binary parser already performs these checks, so the validations can
never be triggered.
Enable bad-constant tests.
Replace two other, imperfect mechanisms for use-def tracking.
Use ValidationState_t::entry_points to track entry points.
Concentrate undefined-ID diagnostics in a single place.
Move validate_types.h content into validate.h due to increased
inter-dependency.
Track uses of all IDs: TYPE_ID, SCOPE_ID, ...
Also update some blurbs.
Fix entry-point accumulation and move it outside ProcessIds().
Remove validate_types.h from CMakeLists.txt.
Blurb for spvIsIdType.
Remove redundant diagnostics for undefined IDs.
Join "can not" and reformat.
This adds function and block layout checks to the validator. Very
basic CFG code has been added to make sure labels and branches
are correctly ordered.
Also:
* MemoryModel and Variable instruction checks/tests
* Use spvCheckReturn instead of CHECK_RESULT
* Fix invalid SSA tests
* Created libspirv::spvResultToString in diagnostic.h
* Documented various functions and classes
* Fixed error messages
* Fixed using declaration for FunctionDecl enum class
This adds half-precision constants to spirv-tools.
16-bit floats are always disassembled into hex-float format,
but can be assembled from floating point or hex-float inputs.
Change the offending class to more closely follow Google C++ style:
- Member names have a trailing underscore.
- Use an accessor method for the stream_ member.
If we later add a source/ as an -I include directory,
then avoid confusing other headers that want to include the
standard "endian.h" from /usr/include.
Also rename source/endian.cpp to source/spirv_endian.cpp
* Validates module level instructions for logical layout
conformance
* Does not validate:
1. Function logical layout
2. Minor cases with OpVariable
3. Missing MemoryModel instruction in module
4. Order of function definition and function declaration
* 782 unit tests for logical layout
Addressed feedback
Most uses of an ID must occur after the definition
of the ID. Forward references are allowed for
things like OpName, OpDecorate, and various cases
of control-flow instructions such as OpBranch, OpPhi,
and OpFunctionCall.
TODO: Use CFG analysis for SSA checks. In particular,
an ID defined inside a function body is only usable inside
that function body. Also, use dominator info to catch
some failing cases.
Also:
* Validator test cases use (standard) assignment form.
* Update style to more closely follow the Google C++ style guide
* Remove color-diagnostics flag.
This is enabled by default on terminals with color. Prints
hidden ASCII for terminals that can't handle color(Emacs)
* Pass functors to SSAPass to check if the
operand can be forward referenced based on its index value
* Return SPV_ERROR_INVALID_ID for ID related errors
spvBinaryParse returned SPV_ERROR_INVALID_BINARY for all types of
errors. Since spvBinaryParse does some ID validation, this was
returning inappropriate error codes for some tests.
* Common fixture for validation tests.
It only runs certian validation passes.
* Add a SPV_VALIDATE_SSA_BIT for testing purposes
* Fixtures now return error codes
* Add OpName support in diag message and unit tests
* Binary parsing can fail with invalid ID or invalid binary error code
Tests include:
* OpDecorate
* OpName
* OpMemberName
* OpBranchConditional
* OpSelectionMerge
* OpMemberDecorate
* OpGroupDecorate
* OpDeviceEnqueue
* Enable several tests failing in ID validation.
This is a grammar fix. The Decoration operand of OpDecorate (and
OpMemberDecorate) determines the remaining operands. Don't just
allow any number of literal numbers as operands.
(The OperandVariableLiterals operand class as the last member
of the OpDecorate and OpMemberDecorate entries in in opcode.inc is
an artifact of how the spec generates the opcode descriptions. It's
not suitable for parsing those instructions.)
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/34
Add unit tests for all diagnostics issued by spvBinaryParse.
Handle image format operands in the binary parser and the
disassembler.
Document that the callback function pointers can be null,
in which case they are ignored.
Detect exhaustion of input when parsing an operand,
to avoid buffer overruns on some invalid input cases.
Fix the description strings for some operand types.
Make the diagnostic messages for those operand types
consistent between the assembler and binary parser.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/29
Add members:
- words: a pointer to an array of words in the instruction,
in host native endianness.
- num_words: sizes the words member
Remove member:
- offset
This simplifies clients of spvBinaryParse, because they don't
have to handle endianness translation.
Also, it makes the binary parse API more composable, allowing
for easy chaining of binary parse clients. A binary parse client
is handed the array of words directly instead of having to reference
some external array of all the words in the SPIR-V binary. It also
allows a binary parse client to mutate the instruction stream before
handing off to a downstream consumer.
TODO(dneto): Still need to write the unit tests for spvBinaryParse
Fixes: https://github.com/KhronosGroup/SPIRV-Tools/issues/1
Fixing some C++ conversion errors.
* Implicit conversion from int to bool.
* Implicit conversion from size_t to uint32_t.
* Implicit conversion from char* to uint8_t.
Adding no-op color operators so unhandled platforms can still link.
- Removed dead configuration in CMakeLists.txt.
- Used target_compile_options() instead of CMAKE_{C|CXX}_FLAGS.
- Turned on warnings on tests.
- Fixed various warnings for comparing signed with unsigned values.
- Removed dead code exposed by compiler warnings.
Don't use SYSTEM attribute on include_directories directive
for the SPIR-V standard header files. When you do, object files
are not considered dependent on those headers.
Checked by looking at the dependency file source/disassemble.cpp.o.d,
and by trying to compile after a trivial edit to spirv.h
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/7
Also, use "" inclusion instead of <> inclusion for standard SPIR-V
headers.
Bits 24-31: 0
Bits 16-23: SPIR-V major number (1)
Bits 8-15: SPIR-V minor number (0)
Bits 0-7: SPIR-V minor number (2)
The assembler will construct the word appropriately,
and the disassemble will print it in major.minor.revision form.
The high 16-bits are a registered generator tool.
These are registered at
https://www.khronos.org/registry/spir-v/api/spir-v.xml
The low 16-bits are tool-specific. It might be a version number,
for example, but is not constrained by the spec or by the registration
process.
The disassembler prints the tool name when we know it.
If we don't, print "Unknown" and then the numeric tool number
in parentheses.
In all cases, the disassembler prints lower 16-bit number on the
same line but after the tool name.
Also add newly registered generators:
6: Khronos LLVM/SPIR-V Translator
7: Khronos SPIR-V Tools Assembler
Decoration Stream depends on it.
GeometryStreams depends on Geometry capability.
Spot check dependence of OpEmitStreamVertex on GeometryStreams.
(Opcode dependencies on capabilities are automatically generated from
opcode.inc)
Previously the opcode table is declared as an global array and we
have spvOpcodeTableInitialize() modifying it. That can result in
race condition. Now spvOpcodeTabelGet() copies the whole underlying
array.
Updated readme.
Note: The header advertises itself as Rev 1, but contains
many (all?) the updates intended for Rev 2. We might need
to update one more time before SPIR-V 1.0 Rev2 is published.
Regenerated syntax tables for 1.0.
Changed names:
InputTriangles -> Triangles
InputQuads -> Quads
InputIsolines -> Isolines
WorkgroupLocal -> Workgroup
WorkgroupGlobal -> CrossWorkgroup
PrivateGlobal -> Private
(Dim) InputTarget -> SubpassData
WorkgroupLocalMemoryMask -> WorkgroupMemoryMask
WorkgroupGlobalMemoryMask -> CrossWorkgroupMemoryMask
AsyncGroupCopy -> GroupAsyncCopy
WaitGroupEvents -> GroupWaitEvents
Remove:
IndependentForwardProgress capability
Smooth decoration
FragColor BuiltIn
WorkgroupLinearId in favour of LocalInvocationId
ImageSRGBWrite capability
Special OpenCL image instructions
Add:
image channel data type UnormInt101010_2
AcquireReleaseMask
InputTargetIndex updates:
InputTargetIndex -> InputAttachmentIndex
InputAttachmentIndex depends on InputAttachment capability,
and it takes a literal number argument.
Capability StorageImageExtendedFormats updates:
Enum value changed from 26 to 49. (Changes position in tables).
Replaces AdvancedImageFormat capability.
OpenCL source language -> OpenCL_C, OpenCL_CPP
Replaced uint64_t with size_t in the places that make sense and
added spv_const_binary{,_t} to allow the interface to accept non
modifiable spirv where appropriate.
The bit pattern for a hex float is preserved through
assembly and disassembly.
You can use a hex float to express Inf and any kind of NaN
in a portable way.
Zero and normal floating point values are printed with enough
enough digits to reproduce all the bits exactly.
Other float values (subnormal, infinity, and NaN) are printed
as hex floats.
Fix a binary parse bug: Count partially filled words in a
typed literal number operand.
TODO: Assembler support for hex numbers, and therefore reading
infinities and NaNs.
- Concrete operand types are never optional.
Split them to make this so, e.g. add SPV_OPERAND_TYPE_IMAGE
since there was SPV_OPERAND_TYPE_OPTIONAL_IMAGE.
Similarly for SPV_OPERAND_TYPE_MEMORY_ACCESS.
This entails duplicating two operand table entries.
- The above, plus some rearranging of enums, allows us to define
first and last optional operand types, and first and last
variable operand types.
This lets us simplify the code for spvOperandIsOptional, and
spvOperandIsVariable.
- Replace SPV_OPERAND_TYPE_MULTIWORD_LITERAL_NUMBER with the
more accurately named SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER.
Its special characteristic is that the type of the literal
number is determined by some previous operand in the instruction.
This is used for literals in OpSwitch, OpConstant, and OpSpecConstant.
This lets us refactor operand parsing cases in the assembler.
- Remove the special required-thing-in-optional-tuple in favour of
the corresponding concrete operand type:
SPV_OPERAND_TYPE_ID_IN_OPTIONAL_TUPLE
--> SPV_OPERAND_TYPE_ID
SPV_OPERAND_TYPE_INTEGER_LITERAL_IN_OPTIONAL_TUPLE
--> SPV_OPERAND_TYPE_INTEGER_LITERAL
- Constrain spvOpeandTypeStr to only have to work for non-variable
operand types. Add a test for this.
The binary parser has a C API, described in binary.h.
Eventually we will make it public in libspirv.h.
The API is event-driven in the sense that a callback is called
when a valid header is parsed, and for each parsed instruction.
Classify some operand types as "concrete". The binary parser uses
only concrete operand types to describe parsed instructions.
The old disassembler APIs are moved into disassemble.cpp
TODO: Add unit tests for spvBinaryParse.
This begins the refactoring of the disassembler into
two parts: A binary decoder in binary.cpp, and an
event-driven converter to text in disassemble.cpp