Implements the following simplifications:
(a - b) + b => a
(a * b) + (a * c) => a * (b + c)
Also adds logic to simplification to handle rules that create new operations
that might need simplification, such as the second rule above.
Only perform the second simplification if the multiplies have the add as their
only use. Otherwise this is a deoptimization of size and performance.
We have a check that ensures that the optimizer did not change the
binary when it says that it did not. However, when the binary is
converted back to a binary, we made a decision to remove OpNop
instructions. This means that any spv file that contains a NOP
originally will fail this check.
To get around this, we convert the module to a second binary that keeps
the OpNop instructions. That binary is compared against the original.
Fixes https://crbug.com/1010191
Added exports for libraries. External libraries that themselves use
libraries require all dependencies have exports, so not having exports can
cause major problems when used within other projects.
Install paths for exports are now placed in the proper directories expected
by Windows and *nix systems. Config files are generated as well, which
should work with CMake's find_package() function once installed.
We want to handle OpKill better. The wrap opkill causes lots of extra
code to be generated, even when they are not needed to avoid the main
problem: OpKill cannot be found directly in a continue construct.
This change will be more selective on which functions the OpKill will be
wrapped and inlining will avoid inlining.
Fixes#2912
* Add continue construct analysis to struct cfg analysis
Add the ability to identify which blocks are in the continue construct for a
loop, and to get functions that are called from those blocks, directly or
indirectly.
Part of https://github.com/KhronosGroup/SPIRV-Tools/issues/2912.
There is nothing in the spir-v spec that says the last
instructions in a module cannot be OpLine or OpNoLine.
However, the code that parses the module will simply drop
these instructions.
We add code that will preserve these instructions.
Strip-debug-info is updated to remove these instructions.
Fixes https://crbug.com/1000689.
* Handle extract with no indexes
It is possible that OpCompositeExtract instructions will not have any
indexes. This is not handled well by scalar replacement and instruction
folding.
Fixes https://crbug.com/1006435
* Fix typo.
* Use OpReturn* in wrap-opkill
The warp-opkill pass is generating incorrect code. It is placing an
OpUnreachable at the end of a basic block, when the block can be
reached. We can't reach the end of the block, but we can reach the end.
Instead we will add a return instruction.
Fixes#2875.
The warp-opkill pass is generating incorrect code. It is placing an
OpUnreachable at the end of a basic block, when the block can be
reached. We can't reach the end of the block, but we can reach the end.
Instead we will add a return instruction.
Fixes#2875.
Many of the places in copy propagate arrays assumes that integer constant will be defined by an OpConstant instruction. That is not always true. We fix these spots by allowing for an OpConstantNull.
If an OpKill instruction is inlined into a continue construct, then the
spir-v is no longer valid. To avoid this issue, we do inline into an
OpKill at all. This method was chosen because it is difficult to keep
track of whether or not you are in a continue construct while changing
the function that is being inlined into. This will work well with wrap
OpKill because every will still be inlined except for the OpKill
instruction itself.
Fixes#2554Fixes#2433
This reverts commit aa9e8f5380.
* Handle id overflow in the ssa rewriter.
Remove LocalSSAElim pass at the same time. It does the same thing as the SSARewrite pass. Then even share almost all of the same code.
Fixes crbug.com/997246
The first pass applies the RelaxedPrecision decoration to all executable
instructions with float32 based type results. The second pass converts
all executable instructions with RelaxedPrecision result to the equivalent
float16 type, inserting converts where necessary.
Add the first steps to removing the AMD extension VK_AMD_shader_ballot.
Splitting up to make the PRs smaller.
Adding utilities to add capabilities and change the version of the
module.
Replaces the instructions:
OpGroupIAddNonUniformAMD = 5000
OpGroupFAddNonUniformAMD = 5001
OpGroupFMinNonUniformAMD = 5002
OpGroupUMinNonUniformAMD = 5003
OpGroupSMinNonUniformAMD = 5004
OpGroupFMaxNonUniformAMD = 5005
OpGroupUMaxNonUniformAMD = 5006
OpGroupSMaxNonUniformAMD = 5007
and extentend instructions
WriteInvocationAMD = 3
MbcntAMD = 4
Part of #2814
If they are not aliased, the function will always print the message:
"Binary unexpectedly changed despite optimizer saying there was no change"
Which is (usually) totally bogus.
Fixes#2798
* Refactor instruction folders
We want to refactor the instruction folder to allow different sets of
rules to be added to the instruction folder. We might want different
sets of rules in different circumstances.
We also need a way to add rules for extended instructions. Changes are
made to the FoldingRules class and ConstFoldingRules class to enable
that.
We added tests to check that we can fold extended instructions using the
new framework.
At the same time, I noticed that there were two tests that did not tests
what they were suppose to. They could not be easily salvaged. #2813 was
opened to track adding the new tests.
Now we need to handle id overflow when we overflow while replacing uses of the variable. While looking at this code, I noticed an error in the way we handle access chains that cannot be replaced because of overflow. Name it will make some change, and then give up by returning SuccessWithoutChange. But it was changed.
This is fixed up by returning Failure if we notice the error at the time of rewriting the users. This is for both id overflow or out-of-bounds accesses.
Code is added to "CheckUses" to remove variables that have out-of-bounds accesses from the candidate list, so we don't even try to rewrite its uses.
Fixes https://crbug.com/995032
If we run out of ids when creating a new variable, sroa does not recognize
the error, and continues doing work. This leads to segmentation faults.
Fixes https://crbug/969655