Creates a pass called eliminate dead functions that looks for functions
that could never be called, and deletes them from the module.
To support this change a new function was added to the Pass class to
traverse the call trees from diffent starting points.
Includes a test to ensure that annotations are removed when deleting a
dead function. They were not, so fixed that up as well.
Did some cleanup of the assembly for the test in pass_test.cpp. Trying
to make them smaller and easier to read.
Create a new optimization pass, strength reduction, which will replace
integer multiplication by a constant power of 2 with an equivalent bit
shift. More changes could be added later.
- Does not duplicate constants
- Adds vector |Concat| utility function to a common test header.
This optimizes a single index extract whose composite value terminates with a
CompositeConstruct (or ConstantComposite) by evaluating to the correct
component. This was needed for opaque legalization.
This highlights the need/opportunity to improve this optimization to deal
with more complex composite expressions including currently handled ops
plus Null ops and special vector composition. A TODO has been added.
This adapts the fix for the single-block loop. Split the loop like
before. But when we move the OpLoopMerge back to the loop header,
redirect the continue target only when the original loop was a single
block loop.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/800
If the caller block is a single-block loop and inlining will
replace the caller block by several blocks, then:
- The original OpLoopMerge instruction will end up in the *last*
such block. That's the wrong place to put it.
- Move it back to the end of the first block.
- Update its Continue Target ID to point to the last block
We also have to take care of cases where the inlined code
begins with a structured header block. In this case
we need to ensure the restored OpLoopMerge does not appear
in the same block as the merge instruction from the callee's
first block.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/787
- DeadBranchElim: Make sure to mark orphan'd merge blocks and continue
targets as live.
- Add test with loop in dead branch
- Add test that orphan'd merge block is handled.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/776
Only inline calls to functions with opaque params or return
TODO: Handle parameter type or return type where the opqaue
type is buried within an array.
Includes code to deal correctly with OpFunctionParameter. This
is needed by opaque propagation which may not exhaustively inline
entry point functions.
Adds ProcessEntryPointCallTree: a method to do work on the
functions in the entry point call trees in a deterministic order.
ADCE will now generate correct code in the presence of function calls.
This is needed for opaque type optimization needed by glslang. Currently
all function calls are marked as live. TODO: mark calls live only if they
write a non-local.
This avoids conversion on variables which will not ultimately be optimized.
Also removed an obsolete restriction from FindTargetVars(). Also added
decorates to supported refs (eg. RelaxedPrecision). Also fixed name to
IsNonTypeDecorate().
- UniformElim: Only process reachable blocks
- UniformElim: Don't reuse loads of samplers and images across blocks.
Added a second phase which only reuses loads within a block for samplers
and images.
- UniformElim: Upgrade CopyObject skipping in GetPtr
- UniformElim: Add extensions whitelist
Currently disallowing SPV_KHR_variable_pointers because it doesn't
handle extended pointer forms.
- UniformElim: Do not process shaders with GroupDecorate
- UniformElim: Bail on shaders with non-32-bit ints.
- UniformElim: Document support for only single index and add TODO.
Currently only SPV_KHR_variable_pointers is disallowed in passes which
do pointer analysis. Positive and negative tests of the general extensions
mechanism were added to aggressive_dce but cover all passes.
And always patch the backedge operand when patching phi functions. This
approach is more correct and cleaner. The previous code was generating
incorrect phis when the backedge block had no predecessors.
Create aggressive dead code elimination pass
This pass eliminates unused code from functions. In addition,
it detects and eliminates code which may have spurious uses but which do
not contribute to the output of the function. The most common cause of
such code sequences is summations in loops whose result is no longer used
due to dead code elimination. This optimization has additional compile
time cost over standard dead code elimination.
This pass only processes entry point functions. It also only processes
shaders with logical addressing. It currently will not process functions
with function calls. It currently only supports the GLSL.std.450 extended
instruction set. It currently does not support any extensions.
This pass will be made more effective by first running passes that remove
dead control flow and inlines function calls.
This pass can be especially useful after running Local Access Chain
Conversion, which tends to cause cycles of dead code to be left after
Store/Load elimination passes are completed. These cycles cannot be
eliminated with standard dead code elimination.
Additionally: This transform uses a whitelist of instructions that it
knows do have side effects, (a.k.a. combinators). It assumes other
instructions have side effects: it will not remove them, and assumes
they have side effects via their ID operands.
A SSA local variable load/store elimination pass.
For every entry point function, eliminate all loads and stores of function
scope variables only referenced with non-access-chain loads and stores.
Eliminate the variables as well.
The presence of access chain references and function calls can inhibit
the above optimization.
Only shader modules with logical addressing are currently processed.
Currently modules with any extensions enabled are not processed. This
is left for future work.
This pass is most effective if preceeded by Inlining and
LocalAccessChainConvert. LocalSingleStoreElim and LocalSingleBlockElim
will reduce the work that this pass has to do.
Fixes Instruction::ForEachInId so it covers
SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID and SPV_OPERAND_TYPE_SCOPE_ID.
Future proof a bit by using the common spvIsIdType routine.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/697
If this is used as a static library in another project, this does not
need to be installed, and otherwise will just clutter the application's install.
To use, define SKIP_SPIRV_TOOLS_INSTALL which internally defines
ENABLE_SPIRV_TOOLS_INSTALL to control installation.
Also include GNUInstallDirs to get standard output 'lib' directory which is sometimes 'lib64' and not 'lib'