Includes:
- Multi-sequence move-to-front
- Coding by id descriptor
- Statistical coding of non-id words
- Joint coding of opcode and num_operands
Removed explicit form Huffman codec constructor
- The standard use case for it is to be constructed from initializer list.
Using serialization for Huffman codecs
This adapts the fix for the single-block loop. Split the loop like
before. But when we move the OpLoopMerge back to the loop header,
redirect the continue target only when the original loop was a single
block loop.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/800
If the caller block is a single-block loop and inlining will
replace the caller block by several blocks, then:
- The original OpLoopMerge instruction will end up in the *last*
such block. That's the wrong place to put it.
- Move it back to the end of the first block.
- Update its Continue Target ID to point to the last block
We also have to take care of cases where the inlined code
begins with a structured header block. In this case
we need to ensure the restored OpLoopMerge does not appear
in the same block as the merge instruction from the callee's
first block.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/787
- DeadBranchElim: Make sure to mark orphan'd merge blocks and continue
targets as live.
- Add test with loop in dead branch
- Add test that orphan'd merge block is handled.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/776
Bit stream writer was manifesting incorrect behaviour when the following
two conditions were met:
- writer was on 64-bit word boundary
- WriteBits was invoked with num_bits=0 (can happen when a Huffman codec has only one
value)
The bug was causing very rare sporadic corruption which was detected by
tests after a random experimental change in MARK-V model.
Only inline calls to functions with opaque params or return
TODO: Handle parameter type or return type where the opqaue
type is buried within an array.
Includes code to deal correctly with OpFunctionParameter. This
is needed by opaque propagation which may not exhaustively inline
entry point functions.
Adds ProcessEntryPointCallTree: a method to do work on the
functions in the entry point call trees in a deterministic order.
Refactored the Huffman codec implementation and added ability to
serialize to C++-like text format. This would reduce the time-complexity
if loading hard-coded codecs.
Id descriptors are computed as a recursive hash of all instructions used
to define an id. Descriptors are invarint of actual id values and
the similar code in different files would produce the same descriptors.
Multiple ids can have the same descriptor. For example
%1 = OpConstant %u32 1
%2 = OpConstant %u32 1
would produce two ids with the same descriptor. But
%3 = OpConstant %s32 1
%4 = OpConstant %u32 2
would have descriptors different from %1 and %2.
Descriptors will be used as handles of move-to-front sequences in SPIR-V
compression.
ADCE will now generate correct code in the presence of function calls.
This is needed for opaque type optimization needed by glslang. Currently
all function calls are marked as live. TODO: mark calls live only if they
write a non-local.
This avoids conversion on variables which will not ultimately be optimized.
Also removed an obsolete restriction from FindTargetVars(). Also added
decorates to supported refs (eg. RelaxedPrecision). Also fixed name to
IsNonTypeDecorate().
- UniformElim: Only process reachable blocks
- UniformElim: Don't reuse loads of samplers and images across blocks.
Added a second phase which only reuses loads within a block for samplers
and images.
- UniformElim: Upgrade CopyObject skipping in GetPtr
- UniformElim: Add extensions whitelist
Currently disallowing SPV_KHR_variable_pointers because it doesn't
handle extended pointer forms.
- UniformElim: Do not process shaders with GroupDecorate
- UniformElim: Bail on shaders with non-32-bit ints.
- UniformElim: Document support for only single index and add TODO.
Add MultiMoveToFront class which supports multiple move-to-front
sequences and allows to promote value in all sequences at once.
Added caching for last accessed sequence handle and last accessed value
in each sequence.
Currently only SPV_KHR_variable_pointers is disallowed in passes which
do pointer analysis. Positive and negative tests of the general extensions
mechanism were added to aggressive_dce but cover all passes.
Visual Studio was complaining about possible loss of data on 64-bit
builds, due to an implicit cast from size_t to int. This changes the
data to use an int with no cast.
And always patch the backedge operand when patching phi functions. This
approach is more correct and cleaner. The previous code was generating
incorrect phis when the backedge block had no predecessors.
Create aggressive dead code elimination pass
This pass eliminates unused code from functions. In addition,
it detects and eliminates code which may have spurious uses but which do
not contribute to the output of the function. The most common cause of
such code sequences is summations in loops whose result is no longer used
due to dead code elimination. This optimization has additional compile
time cost over standard dead code elimination.
This pass only processes entry point functions. It also only processes
shaders with logical addressing. It currently will not process functions
with function calls. It currently only supports the GLSL.std.450 extended
instruction set. It currently does not support any extensions.
This pass will be made more effective by first running passes that remove
dead control flow and inlines function calls.
This pass can be especially useful after running Local Access Chain
Conversion, which tends to cause cycles of dead code to be left after
Store/Load elimination passes are completed. These cycles cannot be
eliminated with standard dead code elimination.
Additionally: This transform uses a whitelist of instructions that it
knows do have side effects, (a.k.a. combinators). It assumes other
instructions have side effects: it will not remove them, and assumes
they have side effects via their ID operands.
A SSA local variable load/store elimination pass.
For every entry point function, eliminate all loads and stores of function
scope variables only referenced with non-access-chain loads and stores.
Eliminate the variables as well.
The presence of access chain references and function calls can inhibit
the above optimization.
Only shader modules with logical addressing are currently processed.
Currently modules with any extensions enabled are not processed. This
is left for future work.
This pass is most effective if preceeded by Inlining and
LocalAccessChainConvert. LocalSingleStoreElim and LocalSingleBlockElim
will reduce the work that this pass has to do.
Fixes Instruction::ForEachInId so it covers
SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID and SPV_OPERAND_TYPE_SCOPE_ID.
Future proof a bit by using the common spvIsIdType routine.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/697
If this is used as a static library in another project, this does not
need to be installed, and otherwise will just clutter the application's install.
To use, define SKIP_SPIRV_TOOLS_INSTALL which internally defines
ENABLE_SPIRV_TOOLS_INSTALL to control installation.
Also include GNUInstallDirs to get standard output 'lib' directory which is sometimes 'lib64' and not 'lib'
Fixed width encoding is intended to be used for small unsigned integers
when the upper bound is known both to the encoder and the decoder
(for example move-to-front rank).
Command line application is located at tools/spirv-markv
API at include/spirv-tools/markv.h
At the moment only very basic compression is implemented, mostly varint.
Scope of supported SPIR-V opcodes is also limited.
Using a simple move-to-front implementation instead of encoding mapped
ids.
Work in progress:
- Does not cover all of SPIR-V
- Does not promise compatibility of compression/decompression across
different versions of the code.
The implementation is based on AVL and order statistic tree.
It accepts all kinds of values and the implementation
doesn't expect the behaviour to be consistent with id coding.
Intended by SPIR-V compression algorithms.
Create class to encapsulate control flow analysis and share across
validator and optimizer. A WIP. Start with DepthFirstTraversal. Next
pull in CalculateDominators.
Added data structure to SpirvStats which is used to collect statistics
on opcodes following other opcodes.
Added a simple analysis print-out to spirv-stats.
If the variable_pointer extension is used:
* OpLoad's pointer argument may be the result of any of the following:
* OpSelect
* OpPhi
* OpFunctionCall
* OpPtrAccessChain
* OpCopyObject
* OpLoad
* OpConstantNull
* Return value of a function may be a pointer.
* It is valid to use a pointer as the return value of a function.
* OpStore should allow a variable pointer argument.
Add --flatten-decorations to spirv-opt
Flattens decoration groups. That is, replace OpDecorationGroup
and its uses in OpGroupDecorate and OpGroupMemberDecorate with
ordinary OpDecorate and OpMemberDecorate instructions.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/602
The spvtools::Optimizer::Run method should also write the output binary
if optimization succeeds without changes but the output binary vector
does not have exactly the same contents as the input binary.
We have to check both the base pointer of the storage and the size of
the vector
Added a test for this too.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/611
Supported in assembler, disassembler, and binary parser.
The validator does not check SPV_AMD_gcn_shader validation rules
beyond parsing the extension.
Adds generic support for generating instruction tables for vendor
extensions.
Adds generic support for extensions the validator should recognize
(but not check) but which aren't derived from the SPIR-V core
grammar file.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/594
Autogenerating the following code:
- extension enum
- extension-to-string
- string-to-extension
- capability-to-string
Capability mapping table will not compile if incomplete.
TODO: Use "spirv-latest-version.h" instead of 1.1.
Added function to generate capability tables for tests.
Known extensions are saved in validation state. Unknown extension
produce a dignostic message, but do not fail the validation.
Moved extension definitions to their own file.