The SPIR-V data rules say that all uses of an OpSampledImage
instruction must be in the same block as the instruction, and highly
restrict those instructions that can consume the result id of an
OpSampledImage.
This adapts the transformations that split blocks and create synonyms
to avoid separating an OpSampledImage use from its definition, and to
avoid synonym-creation instructions such as OpCopyObject consuming an
OpSampledImage result id.
Some transformations (e.g. TransformationAddFunction) rely on running
the validator to decide whether the transformation is applicable. A
recent change allowed spirv-fuzz to take validator options, to cater
for the case where a module should be considered valid under
particular conditions. However, validation during the checking of
transformations had no access to these validator options.
This change introduced TransformationContext, which currently consists
of a fact manager and a set of validator options, but could in the
future have other fields corresponding to other objects that it is
useful to have access to when applying transformations. Now, instead
of checking and applying transformations in the context of a
FactManager, a TransformationContext is used. This gives access to
the fact manager as before, and also access to the validator options
when they are needed.
This adds a new kind of fact to the fact manager that knows whether a
block is dead - i.e. guaranteed to be statically unreachable - and a
new transformation for adding a selection construct to a CFG that
conditionally branches to a fresh, dead block, such that the branch
will never be dynamically taken. Transformations that may create new
blocks ('split block' and 'outline function') are updated to propagate
dead block facts to newly-created blocks where appropriate. A fuzzer
pass randomly adds dead blocks to the module.
Future transformations will be able to exploit the fact that such
blocks are known to be dead.
This change refactors the 'split blocks' transformation so that an
instruction is identified via a base, opcode, and number of those
opcodes to be skipped when searching from the base, as opposed to the
previous design which used a base and offset.
This change to spirv-fuzz uses ideas from "Swarm Testing" (Groce et al. 2012), so that a random subset of fuzzer passes are enabled. These passes are then applied repeatedly in a randomized fashion, with the aggression with which they are applied being randomly chosen per pass.
There is plenty of scope for refining the probabilities introduce in this change; this is just meant to be a reasonable first effort.
With this pass, the fuzzer can split blocks in the input module. This
is mainly useful in order to give other (future) transformations more
opportunities to apply.